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ABSTRACT While feature extraction based on two-dimensional principal component analysis (2DPCA)
is widely used in image recognition, such a method usually fails to handle the noise and outliers, because
adopted F-norm square actually exaggerates the effect of outliers. To tackle the aforementioned problem,
we present a novel algorithm called Area-2DPCA, which uses F-norm to characterize the variance and
reconstruction error. By doing so, the project directions, which minimize the summation of the area between
projection directions and reconstruct error of each data, can be found. Moreover, the Area-2DPCA sets
different weighted coefficients to each residual error. To find the solution of our model, a non-greedy
algorithm, which has a closed form solution in each step, is presented. The extensive experimental results
demonstrate the superiority of our proposed model, compared with the state-of-the-art.

INDEX TERMS Two-dimensional principal component analysis, robust feature extraction, `2,1-norm.

I. INTRODUCTION
Finding an effective image representation is a fundamental
issue in the areas of image representation and pattern recog-
nition [1]–[4]. Principal component analysis (PCA) [5] and
two-dimensional principal component analysis (2DPCA) [6]
are two most typical unsupervised methods for image rep-
resentation and classification. Basically, PCA and 2DPCA
employ squared Euclidean distance, which is equivalent to
squared F-norm of matrix or vector, to characterize the recon-
struction error or variance in the objective function. As is
well known, squared Euclidean distance are not immune to
the noise and outliers due to the fact that outlying mea-
surements can arbitrarily skew the solution from the desired
solution [7]–[12].

To address the above-mentioned problem, many robust
PCA methods have been developed in recent years, in which
the techniques based on nuclear-norm and L1-norm are two
representatives [13]–[16]. Nuclear-norm based technique can
well attain the clean data from the noised data if data only
include a fraction of the corrupted entries and get good per-
formance [13], [17], but it is incapable of handling new data
directly. To tackle this problem, Bao et al. proposed an induc-
tive robust PCA (IRPCA) [18], which aims to learn a square
projection matrix P with low-rank structure and directly gets
the clean data from the testing data by linear transformation.

The associate editor coordinating the review of this manuscript and
approving it for publication was Huanqiang Zeng.

However, it fails to obtain the low-dimensional representation
for high-dimensional data.

Different from IRPCA and nuclear-norm PCA, L1-norm
based PCA technique can get robust projection directions
for dimensionality reduction, and many related methods have
been developed for image classification especially for face
recognition. L1-norm based PCA methods can be roughly
divided into two formulations: reconstruction error based for-
mulation and covariance based formulation. Reconstruction
error based formulation minimizes L1-norm reconstruction
error to get optimal solution. The most representative one
is L1-PCA [19]. L1-PCA is robust to outliers and performs
well, but it is hard to solve. Covariance based formulation
maximizes L1-norm variance to obtain the optimal projection
directions. For example, Kwak [20] sought the projection
directions by maximizing L1-norm variance with a greedy
algorithm. The proposed method is called PCA-L1 that does
not guarantee the maximization of the objective function.
To handle this disadvantages, Nie et al. attained the optimal
solution of PCA-L1 by non-greedy algorithm [21]. Lu et al.
integrated correlation of data into PCA-L1 and obtained the
impressive experimental results [22].

To take advantage of the spatial structure information of
image, many robust approaches of dimensionality reduction
based on image matrix have been presented. 2DPCA-L1 is
one of the most representative methods and can be considered
as the extension work of 2DPCA. It is usually solved by dif-
ferent algorithms such as greedy strategy [23] and non-greedy
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strategy [24]. Wang and Wang [25] added a sparse limi-
tation to 2DPCA-L1 and proposed 2DPCA-L1-S. Inspired
by 2DPCA-L1 and nuclear-norm, Zhang et al. [17] used
nuclear-norm to characterize the spatial structure information
of the reconstruction error and developedN-2DPCA (nuclear-
based 2DPCA). However, the aforementioned matrix based
methods still have the following disadvantages. First, it is
unclear whether they have rotational invariance that is impor-
tant in image analysis and pattern recognition [26]–[29].
Second, they consider each data with the same contribution.
Third, they ignore the relationship between the variance and
the reconstruction error.

To tackle the above-mentioned disadvantages, we present
a novel robust formula for 2DPCA, namely Area-
2DPCA, which uses F-norm to jointly characterize the
low-dimensional representation and reconstruction error,
and eventually integrates them into one criterion function.
To solve Area-2DPCA, an efficient iterative algorithm is
presented. Experimental results demonstrate the effectiveness
of our model. The highlights of our model are summarized as
follows:
• In our model, we use F-norm to characterize
the variation of the low-dimensional representation
and corresponding reconstruction error, which is
robust to outliers. Apart from it, it has rotational
invariance [7], [30], [31];

• Our model considers the relationship between the vari-
ance and the reconstruction error, which can adaptively
assign different coefficients to each reconstruction error.

• The solution is relevant to the weighted covariance
matrix, which can depict the data structure well.

II. PROBLEM FORMULATION
2DPCA is a two-dimensional extension of PCA. Its basic
idea is the same as PCA, which preserves the maxi-
mum information of original image data by maximizing
the sum of the variance after projection of the original
image data on the principal components. Suppose A ={
Ai ∈ Rm×n (i = 1, 2, · · · ,M)

}
is a set of training samples

withM picture data, wherem and n are the rows and columns
of the picture data, respectively. The linear transformation
matrix is W = [w1,w2, · · · ,wd ] ∈ Rn×d , where d denotes
the number of transformed projection vectors. Without loss
of generality, we assume the training images are centralized.
Thus, the objective function of 2DPCA is [6]

max
W TW=Id

tr(
M∑
i=1

W T (Ai)TAiW ) = max
W TW=I

M∑
i=1

‖AiW‖2F (1)

which is equivalent to the following model (2).

argmin
W TW=Id

M∑
i=1

‖Ei‖2F (2)

where Id ∈ Rd×d is an identity matrix. ‖·‖F denotes the
Frobenius norm (F-norm) of a matrix, Ei = Ai − AiWW T .

The objective functions (1) and (2) show that 2DPCA
implicitly considers each image picture or reconstruction
error with the same contribution. This affects the robustness
of 2DPCA to noise and outliers. To deal with this disadvan-
tage, many robust 2DPCAmethods with L1-norm as distance
metric have been developed. One of the most representative
objective functions is [23]

max
W TW=Id

M∑
i=1

‖AiW‖L1 (3)

where ‖·‖L1 denotes the L1-norm of a matrix that can be
defined as ‖Y‖L1 =

∑n
j=1

∥∥yj∥∥1, yj is the j-th column of
matrix Y .
Compared with the traditional 2DPCA technique,

the model (3) may reduce the impact of outliers by L1-norm.
However, it has several shortcomings. Firstly, solution of
the model (3) is irrelevant to the scatter matrix that well char-
acterizes the data structure [27]; Secondly, the model (3) does
not guarantee the minimization of the total reconstruction
error of data, which is the true goal of 2DPCA, due to the fact∑M

i=1 ‖Ei‖L1+
∑M

i=1 ‖AiW‖L1 6=
∑M

i=1 ‖Ai‖L1 . It means that
solution of the model (3) is not the solution of the model (4).

min
W TW=Id

M∑
i=1

‖Ei‖L1 (4)

Thirdly, it does not consider the relationship between the
variance in the projected subspace and corresponding recon-
struction error under the L1-norm distance metric. Fourth,
it still considers each picture with the same contribution.
This also affects the robustness of the model due to the fact
that outliers or noise make samples have sparse distribution.
To handle the aforementioned disadvantages, Area-2DPCA
is presented in Section 3.

III. AREA-2DPCA
A. MOTIVATION AND OBJECTIVE FUNCTION
It can be concluded from the above analysis that squared
F-norm exaggerates the role of some data points, which sig-
nificantly deviate from the clean data points, in solving the
model of 2DPCA. This degrades the robustness of 2DPCA
to outliers. Thus, to tackle the aforementioned limitation,
we should employ a suitable distance metric that not only
reduces the impact of outliers in the objective function but
also characterizes the geometric structure. In a normative
sense, F-norm and squared F-norm have the same role in
characterizing both the scatter of data and geometric struc-
ture. The main difference between them is that F-norm can
make the difference of the effect of different data points tend
to become smaller, compared with squared F-norm. Thus,
if we select F-norm as distance metric in 2DPCA, it will
have the following two advantages. First, it can well capture
geometric structure and have rotational invariance. Second,
it can degrade the role of outliers in solving the optimal
projection directions; Third, it helps enhance the role of some
neighbors’ data points having the different labels. This helps
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FIGURE 1. Data points and optimal projection directions of 2DPCA with
different distance metrics.

FIGURE 2. Projections of 2DPCA with different distance metrics.

encode the discriminant information of data. To illustrate the
above-mentioned advantages, we useMatlab to get some data
points, which aremarked by different shapes, and two outliers
as in [14]. Data with the same shape belong to the same class
and each class has 10 true data points. The optimal direction
of traditional 2DPCA is obtained under the 20 true data points
and considered as the baseline (See Fig. 1). We also plot
the optimal projections of 2DPCA with different distance
metrics such as squared F-norm, L1-norm and F-norm under
the 20 true data points and 2 outliers in Fig. 1. Fig. 2 shows the
corresponding projected data of the aforementioned methods.
Note that, we do not use the label information in solving the
optimal directions of 2DPCA with different distance metrics.
From Fig. 1 and Fig. 2, we have that, (1) the optimal pro-
jection of F-norm is closer to baseline, compared to squared
F-norm and `1-norm. This shows that F-norm can improve
the robustness of algorithm. (2) The low-dimensional repre-
sentation of F-norm are separable, compared squared F-norm

and L1-norm. It illustrates that F-norm well encodes discrim-
inative information.

Moreover, the relationship between variance and corre-
sponding reconstruction error is nonlinear due to the fact
‖Ei‖F + ‖AiW‖F 6= ‖Ai‖F . Thus, maximization of the
total variation of data does not guarantee the minimization
of reconstruction error. According to the aforementioned
analysis, we propose a novel method, namely Area 2DPCA
for dimensionality reduction. Area 2DPCA uses F-norm to
characterize the low-dimensional representation and recon-
struction error, and then integrates them into the criterion
function. Specifically, the goal of Area 2DPCA is to find the
projection directions which minimize the summation of area
between projection directions and reconstruct error of each
data (See Fig. 3). The objective function of Area-2DPCA is

min
W TW=I

M∑
i=1

∥∥∥Ai − AiWW T
∥∥∥
F
‖AiW‖F

FIGURE 3. Reconstruction error vs. projection.

As can be seen in the aforementioned model, when
‖AiW‖F becomes zero, the above model is still minimum.
In this case, the reconstruction error is large. This contradicts
the purpose of PCA. In order to avoid this trivial solution,
we add a constant γ for it. Thus, we rewrite the objective
function of Area-2DPCA as follows:

min
W TW=I

M∑
i=1

∥∥∥Ai − AiWW T
∥∥∥
F
(‖AiW‖F + γ ) (5)

B. ALGORITHM
To solve the model (5), we first introduce the following
related theorems [32]:
Theorem 1: For the same order matrix X , Y , we have

tr(XTY ) ≤ ‖X‖F‖Y‖F (6)

with equality if and only if X or Y is a multiple of the other.
Theorem 2: Suppose U6V T is the compact singular value

decomposition (SVD) of A ∈ Rm×n, then W = UV T is the
solution of the model (7).

argmax
W TW=Id

tr(W TA) (7)

where V TV = UTU = Id , 6 ∈ Rd×d is a diagonal matrix
and 6(j, j) = λj is jth singular value of A. d = rank(A) is the
rank of A.
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Algorithm 1: Algorithm For The Model (5)
Input: Given training data Ai ∈ Rm×n, (i = 1, · · · ,M ),
ε=1e− 8.

Initialize: W (1) ∈ Rn×d which satisfies W (1)TW (1)
=

Id , t = 1. δ =
∣∣J (W (t))− J (W (t−1))

∣∣, where J (W (t)) =
M∑
i=1

∥∥Ai − AiWW T
∥∥
F‖AiW‖F .

while δ ≥ ε do
1.Calculate d (t)i according to Eq. (9)
2.Calculate H (t) by Eq. (11).
3.Calculate SVD of matrix H (t), i.e., H (t)

=

U (t)6(V (t))T .
4.Solve W (t+1) = argmax tr

(
W TH (t)

)
, i.e., W (t+1) =

U (t)(V (t))T .
5.Update δ.
6.Update t: t ← t + 1.
end while
Output: W (t+1)

∈ Rn×d

To solve the model (5), by simple algebra, we have

M∑
i=1

∥∥∥Ai − AiWW T
∥∥∥
F
(‖AiW‖F + γ )

=

M∑
i=1

∥∥Ai − AiWW T
∥∥2
F∥∥Ai − AiWW T
∥∥
F

(‖AiW‖F + γ )

=

M∑
i=1

tr(ATi Ai)− tr(W
TATi AiW )∥∥Ai − AiWW T
∥∥
F

(‖AiW‖F + γ ) (8)

Combining Eq. (8), we can rewrite the model (5) as

min
W TW=I

M∑
i=1

(tr(ATi Ai)− tr(W
TATi AiW ))di (9)

where di =
(‖AiW‖F + γ )∥∥Ai − AiWW T

∥∥
F

.

From the formula (9), we can see that there are two
unknown variables W and di which relates to W . Thus, it is
difficult to directly attain the optimal solution of the model.
If we know di in advance, then it is easy to solve themodel (9).
Inspired by this, we propose an algorithm for alternatively
updatingW (while fixing di) and di (while fixingW ) until the
objective function value converges. Specifically, the solution
process is as follows:

First, updateW while fixing d (t)i . Then, the first term in the
model (9) is constant, and the model (9) becomes

argmax
W TW=Id

M∑
i=1

tr(W TATi diAiW )= argmax
W TW=Id

tr(W TH ) (10)

where

H =
M∑
i=1

AiT diAiW (11)

Suppose H = U6V T is the SVD of matrix H , then,

W = UV T (12)

is the optimal solution of the model (10) via
theorem 2.

Second, calculate di with the updatedW . Repeat the itera-
tive process until the objective function value converges, and
we can obtain the final projection matrix. After the above
analysis, we summarize the solution of solving Area 2DPCA
in algorithm 1.

C. ROTATIONAL INVARIANCE
Rotational invariance means that the projected data remain
unchanged under the given rotational matrix 0 (0T0 = I ).
This property is usually emphasized in image analysis and
pattern recognition. Thus, we have
Theorem 3: Solution of Area-2DPCA has the rotational

invariance property.
Proof:Given an arbitrary rotation matrix 0(0T0 = I ), and

denote by Zi = AiW , which is low-dimensional representa-
tion of Ai, then, for each term in Eq. (5), we have∥∥∥Ai − AiWW T

∥∥∥
F
‖AiW‖F

=

∥∥∥(Ai − ZiW T )
∥∥∥
F
‖Zi‖

=

∥∥∥(Ai − ZiW T )0T0
∥∥∥
F
‖Zi‖

=

√√√√ m∑
j=1

∥∥(Ai(j, :)0T − Zi(j, :)W T0T )0
∥∥2
2 ‖Zi‖

=

√√√√ m∑
j=1

∥∥Ai(j, :)0T − Zi(j, :)W T0T
∥∥2
2 ‖Zi‖

=

√√√√ m∑
j=1

∥∥Âi(j, :)− Zi(j, :)Ŵ T
∥∥2
2‖Zi‖F

=

∥∥∥(̂Ai − ZiŴ T )
∥∥∥
F
‖Zi‖F (13)

where Ŵ = 0W , Ai(j, :), Âi(j, :), and Zi(j, :) denote the
j-th row of matrices Ai, Âi, Zi, respectively.

Eq. (13) indicates that, suppose W ∗ is the solution of the
model (5), then Ŵ must be the solution of the model (5) under
the rotational matrix 0. Then,

ÂiŴ = Ai0T0W = AiW = Zi (14)

Eq. (14) shows that the projected data Zi = AiW remains
unchanged under a rotational matrix 0.

From the above analysis, we can draw that the fea-
tures extracted by subspace learning method should remain
unchanged during the rotation transformation because the
data distribution under the rotation transformation of the
sample space remains unchanged. It can help prevent the
performance of subspace learning technology from degrad-
ing. Moreover, as is known to all, the projection directions
of our model(5) depend on the matrix H which relates to
the weighted covariance matrix of data. Finally, our model
assigns different coefficients, which relate to the variance
of data, to each image. Thus, our model directly considers

68086 VOLUME 7, 2019



Y. Wang, Q. Li: Robust 2DPCA With F-Norm Minimization

the relationship between reconstruction error and variance of
data.

IV. EXPERIMENTS
To verify the feasibility and effectiveness of our pro-
posed algorithm, we validate the proposed algorithm in
six famous databases including ORL, COIL20, AR, CMU
PIE, LFWCrop and Extended Yale B, and compare it
with 2DPCA-L1-S [25], 2DPCA-L1 [23], N-2DPCA [17]
and 2DPCA [6]. In ORL, COIL20 and LFWCrop databases,
each features are normalized into [0, 1]. In each database,
we randomly select 20% images and randomly place a
1/4 size of occlusion (white black dots and image object
respectively) in the selected images. Furthermore, we use
the reconstruction error, which is calculated by Eq. (15),
to measure the quality of the aforementioned dimensionality
reduction methods.

error =
1
n

n∑
i=1

∥∥∥xcleani −WW T xcleani

∥∥∥
2

(15)

where n denotes the number of training data, W denotes the
learned projection matrix composed of multiple projection
directions. xiclean denotes the ith clean data. In the following
experiments, we set γ as 10−3.

A. EXPERIMENTS ON THE IMAGE DATABASES
The AR database [33] has at least 4,000 images that are
from 126 people, and includes 70 males and 56 Females.
Images in this database have different facial expressions,
lighting conditions and different picture occlusions. Most of
the people in this database were collected in two periods, one
week apart, with 13 images of 120 people collected in each
period. The 120 people include 65 males and 55 females and
The 13 images contain 6 images of light changes, 3 images
of wearing scarves and 3 pictures of wearing sunglasses.
We manually cut the face images, and then normalized each
image to be 50× 40 pixels [6]. The images of one person are
shown in Fig. 4. In the experiment, we scrambled and rear-
ranged all the data, and then randomly selected 13 pictures
per person for training data and the remaining images were
used as test data. We repeated this process 10 times randomly

FIGURE 4. Images of one person in the AR database.

The Extended Yale B database [34] includes 2,414 images
for 38 people. These images contain 64 different lighting
conditions and 9 different postures. In this database, there are
60 images in category 11 and 13, 59 in category 12, 62 in
category 15, 63 in category 14 and 64 in other categories.

FIGURE 5. The first row is the original pictures in the Extended Yale B
database and second row is some noisy images.

Fig.5 shows some of the sample images. The first row in
the Fig.5 is the original pictures with varying lighting and
the second row is the images after adding the random noise
block. In the experiments, we resized each picture to 32× 32
pixels and 14 pictures of each class were randomly selected
for adding noise blocks. Randomly selected 32 pictures from
each class for training that contains 7 noisy images, and the
remaining for the test. Repeat all the experiments 10 times.

FIGURE 6. The first row is the original pictures in the CMU PIE database
and second row is some noisy images.

The CMU PIE database [35] consists of more than
41,368 face images taken by 68 volunteers in 13 differ-
ent poses, 4 different facial expressions and 43 different
light conditions. In this experiment, a sub-dataset of the PIE
database was used, which includes 2,856 images of 68 indi-
viduals and 42 images per person, and each image is cropped
to 32× 32 pixels. In Fig.6, we show some samples in the PIE
database (See first row) and noisy images (See second row).
In our experiment, 10 images in each class were randomly
selected to add noise, and 21 images in each class were ran-
domly selected for training, which include 5 noisy images and
16 noiseless images, and the remaining for the test. We repeat
this process randomly 10 times.

FIGURE 7. Some sample instances in the COIL20 dataset.

The COIL20 database [36], also known as the Columbia
Object Image Library. This database contains 20 objects, and
the object has a variety of complex geometric and reflec-
tive properties. Each object which is stable at the approx-
imate center of the turntable rotates horizontally through
360 degrees and is taken a picture every 5 degrees, so each
object has a total of 72 pictures, which is 64 × 64 in size.
Fig.7 shows some samples in the COIL20 database.
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FIGURE 8. Some sample instances in the ORL dataset.

20 images of each object are randomly selected for training,
and the remaining for the test. We repeat it 10 times.

Face images in the ORL database [37] are taken by the
University of Cambridge Laboratory from April 1992 to
April 1994. it has a total of 40 subjects of different ages, races
and genders. In this database, 10 images per person for a total
of 400 grayscale images and the image size is 92 × 112 and
the image background is black. Some facial expressions and
details have some changes, such as laughing and not laughing,
eyes open or closed, with or without glasses and so on. Fig. 8
shows some samples in this database. In our experiment, each
picture is cropped to 32×32 pixels, we randomly selected half
of the pictures of each category for training and the remaining
as the test, and then repeat 10 times.

LFWcrop [38] is a clipped version of the Labeled Faces in
the Wild (LFW) [39] database, reserving only the center part
of each image (i.e, face), with the majority of the background
in the dataset clipped off. Then the remaining area was scaled
to 64 × 64 pixels. The cropped face in LFWcrop shows
real-life conditions including misalignment, scale variations,
in-plane and out-of-plane rotations due to the fact that the
position and size of the faces in LFW was determined by
using an automatic face locator (detector). In the LFWcrop
database, the number of each person is unequal. We show
some samples in Fig.9. In our experiments, we chose the per-
son whose pictures are more than 20 but less than 100 as the
gallery. This gallery has a total of 1883 samples of 57 classes.
We randomly select ninety percent of images of each person
for training, the rest of the samples for testing, and then repeat
this process 10 times.

FIGURE 9. Some sample instances in the LFWCrop dataset.

B. EXPERIMENTAL RESULTS
Based on the aforementioned experiments, we list the average
classification accuracy, recall, precision and the correspond-
ing standard deviation (Std) of five algorithms on several
database (AR, CMUPIE andYale B) in Table 1, Table 2 and 3,
respectively. Table 4 and 5 list the average reconstruction
error and the corresponding std of five algorithms on the

TABLE 1. The average classification accuracy (%) and std on the PIE,
AR and Extended Yale B databases.

TABLE 2. The average recall (%) and std on the PIE, AR and Extended Yale
B databases.

TABLE 3. The average precision (%) and Std on the PIE, AR and Extended
Yale B databases.

TABLE 4. The average reconstruction error (×10−2) and std of five
algorithms on the ORL, COIL20 and LFW databases with black and white
dot noise.

ORL, COIL20, AR and LFWCrop databases with black and
while dot noise and object noise, respectively. To evaluate
the complexity of our algorithm, we show the average run-
ning time of each algorithm on the AR, COIL20, ORL, and
LFWcrop databases in Table 6. Note that, the aforementioned
five algorithms run on the PC computer with Intel Core
i7-4770 CPUM620@ 3.40 GHz 8 GBRAM, simultaneously
we plot the convergence curve of our algorithm on the four
databases (AR, ORL, COIL20 and LFWcrop). Comparing
with the aforementioned experimental results, we have sev-
eral interesting observations as follows:
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TABLE 5. The average reconstruction error (×10−2) and std of five
algorithms on the AR, ORL, and LFWcrop databases with image noise.

TABLE 6. The average running time (×10−1) and std of each method on
the AR, ORL, COIL20 and LFWCrop databases.

FIGURE 10. Convergence of Area-2DPCA on the AR, COIL20, ORL, and
LFWcrop databases.

• Our approach Area-2DPCA is overall superior to robust
methods 2DPCAL1, N-2DPCA and 2DPCAL1-S. The
reason may be that the solution of our model relates to
the weighted covariance matrix, which can characterize
the data structure well. Moreover, our model assigns
different weighted coefficients, which relate to variance,
to each reconstruction error and then get optimal solu-
tion by minimizing it, while the other robust methods do
not have these advantages.

• Area 2DPCA works better than 2DPCA. It may be that
Area-2DPCA uses F-norm to characterize the variance
and reconstruction error, which has an inhibitory effect
on outliers, compared with squared F-norm that is used
in traditional 2DPCA.

• Table 6 illustrates that traditional 2DPCA is the faster
among all the five methods. It may be that 2DPCA
directly solves the optimal solution without iteration,
while other methods do not. Our proposed algorithm
is faster than 2DPCAL1, N-2DPCA and 2DPCAL1-S.
The reason may be that L2-norm optimization problem

is easier to be solved with low computational complexity
and our algorithm has good convergence, compared with
nuclear-norm and L1-norm based optimization problem.
Fig.10 illustrates that ourmodel will converge with a few
iteration.

V. CONCLUSIONS
A novel robust 2DPCA objective function for image feature
extraction and representation is developed, namely Area-
2DPCA. Area-2DPCA uses F-norm to characterize recon-
struction error and low-dimensional representation, and its
purpose is to seek the projection directions which minimize
the total area between projection directions and reconstruct
error of data. To find the solution of our model, an iterative
algorithm is represented. In each iteration, our algorithm has
a closed solution. Compared with 2DPCA and other robust
2DPCA methods, Area 2DPCA not only reduces the impact
of outliers in the objective function but also has rotational
invariance.Moreover, ourmodel well preserves the geometric
structure of data due to the fact that the solution of our model
depends on the weighted covariance matrix. The extensive
experiments show that our model is more effective and robust.
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