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ABSTRACT Most current works on speaker identification are based on i-vector methods; however, there is
a marked shift from the traditional i-vector to deep learning methods, especially in the form of convolutional
neural networks (CNNs). Rather than designing features and a subsequent individual classification model,
we address the problem by learning features and recognition systems using deep neural networks. Based on
the deep convolutional neural network (CNN), this paper presents a novel text-independent speaker iden-
tification method for speaker separation. Specifically, this paper is based on the two representative CNNs,
called the visual geometry group (VGG) nets and residual neural networks (ResNets). Unlike prior deep
neural network-based speaker identification methods that usually rely on a temporal maximum or average
pooling across all time steps to map variable-length utterances to a fixed-dimension vector, this paper equips
these two CNNs with a structured self-attention mechanism to learn a weighted average across all time steps.
Using the structured self-attention layer with multiple attention hops, the proposed deep CNN network is
not only capable of handling variable-length segments but also able to learn speaker characteristics from
different aspects of the input sequence. The experimental results on the speaker identification benchmark
database, VoxCeleb demonstrate the superiority of the proposed method over the traditional i-vector-based
methods and the other strong CNN baselines. In addition, the results suggest that it is possible to cluster
unknown speakers using the activation of an upper layer of a pre-trained identification CNN as a speaker

embedding vector.

INDEX TERMS Speaker identification, deep neural networks, self-attention, embedding learning.

I. INTRODUCTION

Speaker identification has gained increasing attention from
the academic and industry communities in recent years
[1]-[3], and it is been widely used in applications, including
surveillance [4], discriminative speaker embedding learn-
ing [5]-[7], and speaker diarization [8]. The principal goal of
speaker identification is to automatically infer the identity of
a speaker from an input utterance given a closed set of known
voice models [1]-[3], [9]. Generally, a traditional speaker
identification system starts with acoustic feature extraction,
such as mel-frequency cepstrum coefficients (MFCCs), and
then utilizes a large scale of unlabeled speech data to train
a model to capture speaker characteristics in an unsupervised
way, finally training a classifier for the speaker classification.

The associate editor coordinating the review of this manuscript and
approving it for publication was Alba Amato.

A large number of various signal processing and pattern
recognition methods have been successfully applied to the
speaker identification task, which include wavelet [10], hid-
den markov models (HMMs) [11], [12], vector quantization
(VQ) [12], [13], sparse coding [14], Gaussian mixture mod-
els (GMMs) [11], Gaussian mixture model-universal back-
ground models (GMM-UBM), i-vector [15], support vec-
tor machines (SVMs) [16], and, most recently deep neural
networks [17]-[20]. Specifically, the classic GMM-based
method [11] was inspired by the interpretation that the Gaus-
sian components represent some general speaker-dependent
spectral shapes and the capability of Gaussian mixtures to
model arbitrary densities. Moreover, Campbell er al. [16]
approached the problem by using SVMs to map inputs
into a high-dimensional space and then separating classes
with a hyper-plane. Afterwards, Campbell er al. [21] fur-
ther combined SVMs with the GMM supervector concept.
In this approach, GMMs are used for latent factor analysis to
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compensate for the speaker and the channel [22], leading
to a GMM supervector of the stacked means of the mixture
components. Then the SVM model takes the resulting GMM
supervector as input to build a classifier.

The i-vector systems, which use GMM factor analysis, are
aimed at learning to compensate for both the speaker and
channel variability in a low-dimensional (e.g., a few hundred)
space, normally called the total variability subspace [15].
In addition, universal back-ground models (UBMs) are
employed to generate frame-level soft alignments required
in the i-vector estimation process. The i-vectors are typi-
cally post-processed through a linear discriminant analysis
(LDA) [23] stage to generate dimensionality-reduced and
channel-compensated features, which can then be efficiently
modeled and scored with various classification backends such
as a probabilistic LDA (PLDA) or an SVM [5], [24], [25],
resulting in a hybrid system. In conclusion, because of the
great success of these aforementioned methods, the i-vector
speaker recognition hybrid systems still dominate most of
the current research on speaker identification [15], achieving
the best performance in recent NIST (National Institute of
Standards and Technology) evaluations of both speaker and
language recognition [26]. However, these hybrid systems
are problematic since they are designed to train the different
modules separately with different criteria, which may not be
optimal for the final speaker identification task. In contrast,
we propose an end-to-end speaker identification framework,
in which we combine CNNs with the structured self-attention
mechanism without intermediate models.

Recently, with the increase in deep learning in the speech
recognition community, a number of various deep neural
networks (DNN5s) have been successfully applied to speaker
recognition. Lei et al. in [27] proposed a method using a
phonetically aware deep neural network method for speaker
recognition, where the DNNS first replace the standard GMM
to produce frame alignments and then use it to enhance
phonetic modeling in the i-vector UBM. The system is highly
dependent on the need for transcribed in-domain training data
and greatly increases the computational complexity. More
recently, the design of end-to-end DNN-based speaker recog-
nition systems is currently a very active research area, which
can be directly optimized to discriminate between different
speakers [S]-[7], [19], [28]. This has the potential to produce
efficient, compact and scalable systems, which only require
speaker labels for training and are capable of leveraging large
amounts of data to capture the characteristics of the speaker.
The early systems often apply DNNs to separate speakers,
leading to frame-level feature representations, which are then
used as input to Gaussian speaker models [29], [30]. Heigold
et al. introduced an end-to-end system, trained on the phrase
“OK Google” that jointly learns an embedding along with
a similarity metric to compare pairs of embeddings [28].
Snyder et al., introduced a temporal pooling layer into a
DNN to map variable-length utterances to fixed-dimension
embeddings for a text-independent application [31].
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Further, Snyder et al. in [19] systematically investigated the
impact of data augmentation techniques.

Nevertheless, existing methods simply ignore leveraging
the temporal information to compute fixed speaker embed-
dings; therefore, a model with temporal information, has not
yet been implemented in speech processing. In this paper,
to leverage the temporal information for speaker embeddings,
we propose the insertion of the structured self-attention layer
into a CNN for text-independent speaker identification. Deep
CNNs equipped with the structured self-attention mechanism
are very well suited to the problem identification. First, deep
CNNss are capable of capturing energy modulation patterns
across time and frequency when applied to spectrogram-
like inputs, which have been shown to be an important trait
for distinguishing among different speaker characteristics.
Second, by using the structured self-attention layer with mul-
tiple attention hops, the network is able to not only handle
variable-length segments, but also learn speaker character-
istics from different aspects of the input sequence, which
explicitly exploits the temporal or context knowledge to form
speaker embeddings. Analogous to the works in [5], [6],
the proposed system is systematically evaluated on the pub-
licly available VoxCeleb database, which is a large-scale text-
independent speaker identification corpus.

The organization of this paper is as follows. Section III
first presents the proposed methods for speaker identi-
fication, which include two representative deep CNNs,
the self-attention algorithm, and the objective function. Then,
in Section IV, we show the experimental results on the
VoxCeleb database. Finally, Section V concludes this paper
and suggests directions for the future work.

Il. RELATED WORK

There is currently a large body of research regarding the
use of deep CNNs for audio data. Common use cases are
efficiently recognizing text or emotional states from speech,
as well as differentiating acoustic events in a large cor-
pus [32]-[35]. These systems are based on low-level acoustic
features such as MFCCs and use a variety of deep CNNs
techniques, e.g., VGG nets [36], ResNets [37], and the Incep-
tion network [38]. Although these approaches work well
for speech recognition and acoustic event detection, there
are a handful of related works on text-independent speaker
identification, and hence, they require a more sophisticated
acoustic model.

A recent paper [27] employs DNNs for speaker recognition
with phoneme detection, in which, based on the i-vector
framework, DNNs are only used to replace the standard
GMM to yield frame alignments to enhance phonetic model-
ing in the i-vector UBM. Moreover, although the authors have
proven the efficiency on the 2012 NIST speaker recognition
evaluation, it is primarily intended for text-dependent speaker
authentication.

The most closely related works are [5], [6] in which the
authors also make use of deep CNNs to directly optimize
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FIGURE 1. Overview of the proposed system for closed-set speaker identification. Note that while MFCCs correspond to mel-frequency cepstrum

coefficients, FC corresponds to fully connected layers.
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FIGURE 2. Computation graph of the self-attention layer used in the proposed network.

them for the text-independent speaker identification task in
an end-to-end way. Most importantly, the authors also adapt
the VGG CNN network and the ResNets for the 1251-way
speaker identification problem on the VoxCeleb database.
However, the temporal average pooling mechanism or the
temporal maximum pooling mechanism is adopted to form
a fixed speaker embedding. Though the evaluation process
on the VoxCeleb database has presented an obvious perfor-
mance gain over the i-vector speaker identification method,
such methods ignore the temporal information implied by the
speech signals, which has been proven helpful for speaker
identification [1]-[3]. In contrast, we use the self-structured
attention mechanism, originally introduced in [39] for sen-
tence embedding, which is capable of exploiting the temporal
knowledge in processing sequential data(eg, speech signals)
and provides provable guarantees in conjunction with deep
CNNs. In our evaluation, we strictly follow the evaluation
process defined in [5], and the evaluation results demonstrate
that our proposed method significantly outperforms that pro-
posed in [5].

Ill. PROPOSED METHODS

A. SPEAKER IDENTIFICATION SYSTEM DESCRIPTION

The closed-set speaker identification system this paper
focuses on can be viewed as a multi-class classification prob-
lem. That is, given a test utterance, such an identification
system assigns a speaker label in the set of registered speak-
ers. Inspired by the great success of deep neural networks in
speech recognition, speech emotion recognition, sound event
detection, and image classification, our proposed system is
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rooted in two representative deep CNNs, the VGG CNN [36]
and ResNets [37], known for their great classification per-
formance in large-scale image classification tasks and speech
recognition tasks [34], [35]. On top of the VGG-like CNN
and ResNets, there is one structured self-attention layer [39],
followed by a temporal average pooling layer. Similar to the
common structure of DNNs for a classification task, the top-
most layer is a softmax layer. The structure of the proposed
network is shown in Figure 1.

B. SELF-ATTENTION MECHANISM

The self-attention mechanism has recently become pop-
ular because it has been successfully applied in several
tasks, including speech recognition [40]-[42], speech emo-
tion recognition [43], phoneme recognition [44], and neural
machine translation [45], [46].

In this paper, we adopt the structured self-attention layer
originally introduced in [39] for sentence embedding. Fig-
ure 2 illustrates the computation graph of the structured self-
attention layer. Given a speech sequence of T frames H =
(h1, ha, ..., ht) that have the size T'-by-n;, and are the hidden
outputs from the previous layer, the self-attention layer per-
forms a series of linear combinations of the 7 hidden vectors
in H with the ultimate aim of encoding such a variable length
sequence into a fixed-size embedding matrix. Specifically,
the self-attention layer first takes the entire hidden outputs
H as input and computes an annotation matrix of weights A
as follows:

A = softmax(tanh(HW)W,), (1)
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where Wi € R"™"*"% and W, € R"™ " are two train-
able matrices, and the annotation matrix A will be sized by
T-by-ng, and tanh(x) = };Z:Z is the hyperbolic tangent
function. The hyper-parameter n; corresponds to the number
of attention hops. Here, the softmax() is applied along
the first dimension of its input, which ensures the computed
weights sum up to one.

Finally, a linear map is again used to mix the differ-
ent i; from different n; attention hops, leading to speaker
embedding E

E=ATH, 2

where E is a matrix of a shape of ny x nj. Table 1 lists all
the variable notations. Note that the structured self-attention
layer can be eventually implemented using a two-layer feed-
forward neural network, which allows fast computation.

TABLE 1. Notations introduced in the self-attention algorithm.

Abbreviations  Explanations

A Annotation matrix

H A sequence with the size T-by-np,

T The sequence length

%% A trainable matrix with size ny-by-n.
Wo A trainable matrix with size n.-by-ng
tanh(z) The hyperbolic tangent function

Ne The hidden size of the middle layer
nk The number of attention hops

np The dimension of the each frame in the sequence
E The speaker embedding

softmax(x) The softmax function

I Identity matrix

B Tuning parameter

When compared with the standard self-attention mech-
anism only using one hop that usually focuses on a very
specific area of the input speech sequence [6], the structured
self-attention mechanism utilizes n; attention hops to learn
to capture the essential speaker characteristics from multiple
areas of the input speech sequence. However, as the number
of the attention hops ny increases, the attention matrix A
tends to suffer from redundancy problems [39]. To address
the redundancy problem, as suggested in [39], a penalization
term is added to the loss of the network (cf. Section III-E),
which is defined by

L, = BIATA —I||%, A3)

where |||-]|] is the Frobenius norm of a matrix, / is the identity
matrix with a shape of ny x ny, and g > 0 is a tuning param-
eter controlling the importance of the penalization term.

C. VGG-LIKE CNNS

Based on the structured self-attention layer, we first pro-
pose to combine it and the VGG convolution net to form
a speaker identification system. The deep VGG convolu-
tion net was originally proposed for image classification in
the ImageNet 2014 competition [36]. Since then, the VGG-
inspired networks have been successfully adapted to image
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classification [36], ASR [32], [33], large-scale audio classifi-
cation [34], and speech emotion recognition [35]. The basic
concept of the VGG is to construct a multiple-layer convo-
lution network by using small 3 x 3 convolutional kernels
with rectified linear unit (ReLU) and non-linear functions
without pooling (eg, max or average) between these layers.
Here, we make use of this concept to construct a VGG-like
CNN, which consists of 7 hidden convolutional layers, one
structured self-attention layer, one temporal average pooling
layer, and two fully connected layers. Note that the structured
self-attention layer not only generates a fixed length input for
the following fully connected layers but also allows for the
model to jointly attend to discriminative speaker information
from different positions. Further, to reduce the computational
burden of the following fully connected layers, the temporal
average pooling layer is applied to the resulting speaker
embedding. The ReLU activation is used for each hidden
layer. Additionally, batch normalization [47] is applied for
each convolutional layer. The full details on the proposed
VGG-like CNN are given in Table 2, and Figure 3 illustrates
the structure of the modified VGG network.

TABLE 2. Modified VGG architecture with the self-attention layer and an
average pool layer at the end for speaker identification. The ReLU and
batch normalization layers are not shown. Each row specifies the number
of convolutional filters and their sizes as filter_size x filter_size,

# filters. Here the self-attention layer corresponds to the layer introduced
in Section I1I-B.

Layer VGG-like CNN Output (7' x F' x C)
Input: — 300 x 40 x 1
. 3% 3,64
L1: convl_block [3 3 64} X 2 300 x 40 x 64
L2: pooll 2 X 2, max pool, stride 2 150 x 20 x 64
] [3 x 3,128]
L3: conv2_block -3 x 3, 128_ X 2 150 x 20 x 128
L4: pool2 2 X 2, max pool, stride 2 75 x 10 x 128
] [3 x 3,256]
L5: conv3_block -3 %3 256_ X 2 75 x 10 x 256
L6: pool3 2 X 2, max pool, stride 2 38 X 5 x 256
) [3 x 3,512]
L7: conv4_block -3 % 37512_ X 2 38 X 5 x 512
L8: pool4 2 X 2, max pool, stride 2 19 x 3 x 512
L9: self-attention ng =4 4 % 1536
L10: pool_time avg pool 1536
L11: densel 1536 x 256 256
L12: dense2 256 x 1251 1251
D. RESNETS

In addition, we devoted efforts to investigating the ResNets
with the self-attention mechanism since the ResNets have
gained great attention in computer vision problems, speech
recognition, and speech emotion recognition [35], [37]. The
key purpose of the ResNets is to solve the problem of
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FIGURE 3. Modified VGG architecture with the self-attention layer and an
average pool layer at the end for speaker identification. The ReLU and
batch normalization layers are not shown.

performance degradation when there are a large number of
hidden layers in a deep neural network. A common deep
network generally is aimed at directly learning the under-
lying mapping. However, a deep ResNet is asked to fit
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a residual function [37]. The resulting residual mapping is
more amenable to optimization because it is easier to push
a residual to zero than to fit an underlying mapping [37].
In theory, given the target mapping H (x) and the input of the
first layer of the residual block x, the ResNet block fits the
mapping as follows:

F(x) =H(x)—x, “4)
and therefore, the original function becomes
H(x) = F(x) + x. 5)

This can be accomplished by the addition of shortcut connec-
tions among the layers, as shown in Figure 4 [37]. As seen
from Figure 4, the shortcut connections perform an identity
mapping, and the inputs are added to the output of the mul-
tiple layers. Obviously, such a ResNet block is differentiable
and can therefore be trained with traditional backpropagation.

Following the concept of deep residual learning,
the ResNet, which was originally proposed for image
object detection, is composed of a number of residual units
(cf. Figure 4), where each residual unit consists of two
convolutional layers with 3 x 3 filter sizes, batch normaliza-
tion (BN) [47] is applied after each convolution, and ReLU
activation functions are applied after the first convolution and
after the shortcut connection addition operation.

TABLE 3. Modified ResNet-18 architecture with the self-attention layer
and an average pool layer at the end for speaker identification. The RelLU
and batch normalization layers are not shown. Each row specifies the
number of convolutional filters and their sizes as filter_size x filter_size,
# filters. Here, the self-attention layer corresponds to the layer
introduced in Section IlI-B.

Layer ResNet-18 Output (7' x F' x C)
Input — 300 x 40 x 1
L1: convl 7 X 7,32, stride 1 300 x 40 x 32
L2: pooll 3 X 3, max pool, stride 2 150 x 20 x 32
3 x 3,32
L3: conv2_block {3 X3 32:| X 2 75 x 10 x 32
3 x 3,64
L4: conv3_block |:3 x 3, 64} X 2 38 X 5 x 64
. 3 x 3,128
L5: conv4_block |:3 % 3, 128} X 2 19 x 3 x 128
. 3 % 3,256
L6: conv5_block [3 % 3. 256} X 2 10 x 2 x 256
L7: self-attention ng =4 4 x 512
L8: pool_time avg pool 512
L9: densel 512 x 256 256
L10: dense2 256 x 1251 1251

In this work, we modify the original ResNet-18 with
18 hidden layers and extend it by adding the structured
self-attention layer for speaker identification. The proposed
ResNet-18 architecture is shown in Table 3.
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FIGURE 4. A basic residual unit in ResNets, which consists of convolutional layers (Conv) with 3 x 3 filters, batch normalization (BN)

layers, and the RelLU activation function [37].

E. LOSS

The proposed network is asked to classify speakers using
a multi-class cross entropy objective function, which is
commonly used for image object detection and speaker
recognition in neural networks [19], [20], [48]. Unlike the
previously reported systems that were trained to predict
speaker labels from frames [17], [29], [30], our system is
trained to predict speakers from variable-length segments.
Let us consider a dataset with N training examples from
K speakers. Given a speech segment consisting of 7" input
frames xgn),xén), . ,xgl), let p(yx |x§':’;) be the prediction
probability of the deep network model for the k-th speaker.
The cross-entropy objective function is formally defined as
follows:

N K
== dulog(POrlx"), ©6)

n=1 k=1

where the quantity d,; is 1 if the speaker label for the
n-th training segment is k; otherwise, it is 0. In the training
process, the parameters of a network are optimized towards
minimizing the cross-entropy objective by the backpropa-
gation algorithm [49]-[51]. Therefore, the network training
algorithm is shown in Algorithm 1.

Algorithm 1 The Neural Network Training Optimization
Algorithm

Require: Learning rate
Require: Initial parameters 6
1: while stopping criterion not met do
2:  Sample a minibatch of m examples from the train-
ing set {x(', x® ... x™} with corresponding target
labels y'.
3:  Compute the loss based on the (6).
:  Compute gradient estimate: 2.
5. Apply update with the gradient estimate g for the
parameters 6.
6: end while

IV. EXPERIMENTS
A. SELECTED DATA
We use the VoxCeleb database to evaluate the effective-
ness of the proposed system [5], which is a large-scale
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FIGURE 5. Distribution of the utterance lengths in the VoxCeleb database.

text-independent speaker identification corpus including
153486 utterances for 1,251 celebrities, extracted from
videos uploaded to YouTube. As shown in Figure 5, the
153486 utterances are of varying duration, ranging from
3.96 seconds to 144.92 seconds. The dataset is gender-
balanced, with 55% of the speakers being male. The speakers
span a wide range of different ethnicities, accents, profes-
sions, and ages. Moreover, there are a large number of chal-
lenging multi-speaker acoustic environments in the dataset,
including red carpet, outdoor stadium, quiet studio inter-
views, speeches given to large audiences, excerpts from pro-
fessionally shot multimedia, and videos shot on hand-held
devices. As a consequence, all utterances are degraded by
real-world noise, consisting of background chatter, laughter,
overlapping speech, and room acoustics, and there is a range
in the quality of the recording equipment and the channel
noise. Figure 5 presents the distribution of the 153 486 utter-
ances in the VoxCeleb database. The speaker identification
task was introduced as shown in Table 4 [5]. In the following
experiments, we follow the official split regarding the dataset
and report the top-1 and top-5 accuracies.

B. EXPERIMENTAL SETUP

As for the acoustic feature extraction, pre-emphasis with
a factor of 0.97 is first conducted. Then, 40 dimen-
sional log-mel filterbanks using a Hamming window with
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TABLE 4. Number of instances for the speaker identification task in
VoxCeleb.

Train  Validation  Test >

138327 6908 8251 153486

a frame-length of 25ms and a frame-shift of 10ms are
extracted. Since the utterances in the VoxCeleb dataset are
of varying duration (up to 144.92 s), we fix the length of
the input sequence to 3 seconds. These end up as log-mel
filterbank of size 40 x 300 for a 3-second utterance. Figure 6
presents the whole process to extract the log-mel filterbanks
features. In addition, mean and variance normalization is
performed on every frequency bin of the mels to obtain zero
mean and unit variance, which plays a key role in this system
as found in [5].

In the testing stage, all the testing utterances with different
duration are tested on the same model. Since the duration is
arbitrary, we feed the testing speech utterances to the trained
neural network one by one.

C. IMPLEMENTATION DETAILS AND NETWORK TRAINING
All experiments in the paper are implemented by the widely
used deep learning tool TensorFlow [52]. We set the batch
size as 128 and train neural networks on one NVIDIA GTX
1080 Ti GPU. We use the Adam optimizer with g =
09,8, = 098,¢ = 10~2 [53]. The warmup process for
varying the learning rate [46], which increases the learning
rate linearly for the first predefined training steps and then
decreases it proportionally, is adopted to speed up the learning
process. Moreover, we use grid search to determine a suite
of hyper-parameters such as weight decay, the size of the
embedding layer, the dropout probability, and the maximum
gradient norm. To reduce sensitivity to utterance length, it is
desirable to train the network on speech chunks that capture
the range of duration we expect to encounter at test time
(e. g., a few seconds to a few minutes, as shown in Figure 5).
However, due to GPU memory limitations, we have to find a
tradeoff between the minibatch size and maximum training
example length. Moreover, to remedy overfitting [5], we
randomly sample 3-second segments from each utterance for
the training and validation data in the training process, which
can be treated as a simple data augmentation method.
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D. METHODS FOR COMPARISON
We compare the following state-of-the-art methods to evalu-
ate the effectiveness of the proposed approach.

e I-Vectors + SVM [5]: This approach was previously
implemented along with the release of the VoxCeleb
dataset [S]. The implementation of this system is
explained as follows: the GMM-UBM system was first
built by using 13-dimensional MFCCs as input. The
cepstral mean and variance normalization (CMVN) is
applied on the features. Using the conventional GMM-
UBM framework, a single speaker-independent univer-
sal background model (UBM) of 1024 mixture compo-
nents is trained for 10 iterations from the training data.
gender-independent i-vector extractors [10] are trained
on the VoxCeleb dataset to produce 400-dimensional
i-vectors. Probabilistic LDA (PLDA) is then used to
reduce the dimension of the i-vectors to 200. For identifi-
cation, a one-vs-rest binary SVM classifier is trained for
each speaker m (m € 1...K). All feature inputs to the
SVM are L2 normalized, and a held-out validation set
is used to determine the C parameter (which determines
the tradeoff between maximizing the margin and penal-
izing training errors). Classification during test time is
performed by choosing the speaker corresponding to the
highest SVM score.

o I-Vectors + PLDA + SVM [5]: This system is similar
to the I-Vectors + SVM system, except that the PLDA
score function is applied.

e I-Vectors + LogReg [6]: This system takes
60-dimensional MFCCs features with delta and double-
delta coefficients to train a 2048-components full covari-
ance GMM UBM model, resulting in a 600-dimensional
i-vector. For the closed-set speaker identification,
a multi-class LogReg is selected for the inference.

e VGG-like CNN + TAP [5]: This approach uses
512 x 300 dimension spectrograms for a fixed 3 second
chunk as the inputs to a VGG-like CNN with proper
modifications for the speaker identification task. A tem-
poral average pooling (TAP) layer is used after the fc6
layer, which makes the network invariant to the length
of the input speech segment.

« ResNet34 4+ {TAP, SAP, LDE} [6]: This system corre-
sponds to three recently reported speaker identification
systems based on 34-layer ResNets (ResNet34) with
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TAP, self-attention pooling (SAP) [54], and learnable
dictionary encoding-based pooling (LDE) [6]. For the
acoustic features, 64 dimensional Fbanks that are mean-
normalized over a sliding window of up to 3 seconds
are adopted as the inputs to ResNet34. Before training
these deep nets, a frame-level energy-based voice activ-
ity detection (VAD) selects the features corresponding
to voice frames.

TABLE 5. The results for speaker identification on VoxCeleb (higher is
better).

Accuracy Top-1 (%)  Top-5(%)
I-Vectors + SVM [5] 49.0 56.6
I-Vectors + PLDA + SVM [5] 60.8 75.6
I-Vectors + LogReg [6] 65.8 81.4
VGG-like CNN+ TAP [5] 80.5 92.1
ResNet-34 + TAP [6] 88.5 94.9
ResNet-34 + SAP [6] 89.2 94.1
ResNet-34 + LDE [6] 89.9 95.7
VGG-like CNN+Self-Attention (ours)  88.2 93.8
ResNet-18+Self-Attention (ours) 90.8 96.5

E. RESULTS FOR SPEAKER IDENTIFICATION

Table 5 presents the experimental results achieved by our pro-
posed VGG-like CNN and ResNet-18, the traditional i-vector
based methods, as well as the two recently proposed CNN-
based methods on the VoxCeleb database. It can be obvi-
ously determined from the table that our proposed methods
reach 88.2% and 90.8% of the top-1 accuracy and 93.8%
and 96.5% of the top-5 accuracy for the VGG-like CNN +
Self-Attention and ResNet-18 4 Self-Attention approaches,
respectively, which outperform the traditional i-vector-based
methods in terms of top-1 and top-5 accuracies by a large
margin, suggesting the effectiveness of deep neural networks
for speaker identification over the traditional methods, such
as the i-vector-based methods. Further, the VGG net and
ResNets with the self-attention layer perform better than the
VGG and ResNets alternatives, and it is worth noting that
the ResNet-18 with the structured self-attention mechanism
obtains the best accuracies. These findings indicate that the
ResNets are more suited for speaker identification than the
VGG nets. Most importantly, they strongly suggest the key
role of the self-attention in the proposed VGG and ResNet-18
architectures.

F. EFFECT OF DIFFERENT ACOUSTIC FEATURES

Here, we start to investigate the effect of different acous-
tic features on the proposed VGG-like and ResNet CNNs.
In addition to FBank acoustic features, two widely used fea-
tures, spectrograms and MFCCs, which have been commonly
adopted for speaker identification, are used for comparison
here. Similar to the computation process shown in Figure 6,
a total of 40 coefficients were extracted for MFCCs and
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TABLE 6. The results of the three most frequently used acoustic features
for speaker identification on VoxCeleb (higher is better). Here, Spectr.
corresponds to the spectrograms feature.

Model Feature Type  Top-1(%)  Top-5(%)
VGG-like CNN [5] Spectr. 80.5 92.1
VGG-like CNN+Self-Attention (ours)  Spectr. 85.3 929
ResNet-18+Self-Attention (ours) Spectr. 87.2 93.3
VGG-like CNN+TAP [5] MFCCs 82.4 92.8
VGG-like CNN+Self-Attention (ours) MFCCs 87.4 93.5
ResNet-18+Self-Attention (ours) MEFCCs 88.5 94.8
ResNet-34 [6] FBank 89.9 95.7
VGG-like CNN+Self-Attention (ours)  FBank 88.2 93.8
ResNet-18+Self-Attention (ours) FBank 90.8 96.5

FBanks, and 512 for spectrograms. All features were normal-
ized to have zero-mean and zero-unit variance.

Table 6 shows the accuracies obtained using spectrograms,
MFCCs, and FBank. First, we can easily observe that models
using the FBank features always outperform the spectrograms
and MFCCs features in our experiments, which echoes the
finding reported in [35]. Second, when the input features are
the same, due to the use of the structured self-attention mech-
anism, our proposed VGG and ResNet variants outperform
the previously proposed VGG and ResNet architectures on
the benchmark database. In the following sections, we place
our focus only on the FBank features.

G. IMPACT OF TEMPORAL POOLING LAYERS

As mentioned in Section I, it is common to apply a temporal
pooling layer after stacked layers in a deep net to result in
a fixed-length embedding vector. Generally, there are three
types of temporal pooling layers, i. e., average pooling, max-
imum pooling, and the combination of average pooling and
standard deviation pooling. As shown in the diagram of the
proposed system (cf. Figure 1), an average pooling layer is
inserted between the self-attention layer and the last fully
connected layer. Here, we perform a systematic investigation
of the impact of the three types of common temporal pooling
layers on the proposed VGG and ResNet-18.

Table 7 shows the results for different temporal pooling
layers on the VoxCeleb database. As can be shown in the
table, the proposed networks fluctuate according to the vari-
ous temporal pooling layers. However, the average pooling
always boosts the performance of the proposed networks,
which echoes the consistent findings reported in [5].

H. SPEAKER CLUSTERING

Finally, based on our proposed ResNetl8 speaker identi-
fication network, we present, here, that it is possible to
cluster an unknown speaker through the activations of an
upper (dense or softmax) layer of a pre-trained identifi-
cation CNN as a feature vector. Figure 7 visualizes the
individual output vectors produced by the snippets from
10 unknown speakers (i.e., never encountered during the
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TABLE 7. Results of the speaker identification experiment on VoxCeleb for different common temporal pooling layers when the Fbank features are

extracted for the experiments. (higher is better).

Model Pooling Top-1 (%)  Top-5(%)
VGG-like CNN [5] Average Pooling 82.4 92.8
ResNet-34 [6] Average Pooling 88.5 94.9
VGG-like CNN+Self-Attention (ours) Maximum Pooling 86.9 93.4
VGG-like CNN+Self-Attention (ours)  Average Pooling 88.2 93.8
VGG-like CNN+Self-Attention (ours) Average + Std Pooling 87.5 93.5
ResNet-18+Self-Attention (ours) Maximum Pooling 88.1 94.4
ResNet-18+Self-Attention (ours) Average Pooling 90.8 96.5
ResNet-18+Self-Attention (ours) Average + Std Pooling 89.8 95.5
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FIGURE 7. Speaker Embedding visualization using t-SNE on the basis of the FBanks, output vectors of the average pooling
layer, softmax layer, and embedding layer (i. e., the fully connected before the softmax layer) for 10 speakers randomly
selected from the VCTK database. Different colors represent embeddings from different speakers. (a) Fbanks. (b) Average
pooling layer (i.e., L8 in Table 3). (c) Softmax layer (i.e., L10 in Table 3). (d) Embedding layer (i.e., L9 in Table 3).

original identification-targeted training) randomly chosen
from the VCTK database [55] for the average pooling layer
(the L8 layer in Table 3), the embedding layer (the L9 layer
in Table 3) and the softmax layer (the L10 in Table 3)
in the ResNetl8 network trained to recognize 1251 speak-
ers, using the popular visualization method t-SNE [56] with
the cosine metric. Although there is a mismatch between
the VoxCeleb database used to train the network and the
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VCTK database, we observe a very clear separation among
different speakers for the resulting vectors from the L9
layer (cf. Table 3), which suggests that the low-dimensional
speaker embeddings from the L9 layer can be treated as a
useful latent space for speaker separation. Moreover, the net-
work can efficiently learn higher-level representations of
the low-level acoustic features when compared with the
FBanks.
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V. CONCLUSIONS
The research that related to speech processing has currently
attracted increasing attention. It has motivated application
that have been working effectively in many fields, including
the most recent ones: banking, smart homes, smarts cities and
the Internet of vehicles. This work proposes novel methods
for text-independent speaker identification, where two rep-
resentative convolutional neural networks, VGG and ResNet,
are extended by a structured self-attention mechanism, which
can aggregate relevant information from different locations of
the variable-length input utterance. The proposed networks
are extensively evaluated on the large VoxCeleb database.
We observe that the proposed methods with the self-attention
mechanism outperform the traditional i-vector-based meth-
ods and other recently proposed deep convolutional networks.
In conclusion, our contributions are summarized as
follows:

(1) We propose a novel approach of exploiting the struc-
tured self-attention layer with multiple attention hops
which learns rich speaker characteristics from differ-
ent aspects of the input sequence. It turns out that
these exploited speaker characteristics can be used to
improve speaker identification accuracy.

(2) We add the self-attention layer to two representative
CNNs, ie, VGG and ResNets, to build speaker iden-
tification models.

(3) Through experimental results, we demonstrate that our
proposed methods outperform the traditional methods
and other deep learning methods by a large margin. Our
best model improves on previous state-of-the-art per-
formance on the VoxCeleb speech identification task
by 0.9 %.

In the future, we plan to investigate the effectiveness of
the proposed networks for other related applications, such as
speaker verification, speaker diarization, and speech emotion
recognition.
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