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ABSTRACT In order to alleviate the impacts of the rapid network energy exhaustion and the unreliable links
on the data gathering in the Internet of Things (IoT), mobile intelligent computing based on compressive
sensing date gathering (MIC-CSDG) algorithm is proposed in this paper, which could improve the data
reconstruction accuracy. We conduct research from the following four links. First, this method employs
mobile intelligent computing to derive the multi-hop function among sensor nodes, which is further utilized
to determine the proportional relationship for the sensor nodes. Second, based on the sparse matrix,
an observation matrix is designed with low correlation to mitigate the influences of the data packet loss on
the entire IoT system and improve the data reconstruction accuracy for the sink node. Then, the acknowledge
mechanism for the data forwarding strategy is employed to improve the reliability of the data transmission
among clusters. Therefore, reliable data handover is accomplished for the multi-path routing data among
different nodes. The results which are about the simulation shows that the loss rate of the packet is equal
to 40%, the data reconstruction error of the MIC-CSDG algorithm still remains lower than 5%. Compared
with other existing algorithms, the data forwarding time is reduced by 16.36%, while the average network
energy consumption is reduced by 23.59%. Therefore, the validity and efficiency of the proposed method
are verified.

INDEX TERMS Internet of Things, mobile intelligent computing, data gathering, compressive sensing.

I. INTRODUCTION
The Internet of Things (IoT) had riched the exchange of
information for the objects in the physical world [1]–[5].
According to a predefined protocol, the IoT is established
by the inter-connection of the data sensing terminals, e.g.,
sensor networks, RFID, ultra-red identifier, and the GPS
system, to perform the information exchange and com-
munication [6]–[9]. The IoT is widely employed for the

The associate editor coordinating the review of this manuscript and
approving it for publication was Xuxun Liu.

smart identification, locating, tracking and managing of the
objects [10], [11]. Usually, the IoT is organized in three lay-
ers, i.e., the application layer, the transmission layer and the
sensing layer. The sensing layer riches the seamless sensing
of the physical objects to identify the objects, obtain the basic
properties of the objects, and gather data. The transmission
layer achieves the reliable data transmission between the
sensing layer and the application layer, to further reduce the
network delay and packet loss, as well as improve the data
gathering speed and accuracy. The application layer achieves
the smart processing, i.e., the gathered data is analyzed and
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processed in the application layer for the effective check of
the data [12]–[15]. The key to the application of IoT is the
software, including the application software at the server end
and the intermediate, as well as the software for data mining
and analysis, and the embedded software in the transmission
layer and the sensing terminals. The intermediate is the core
of the IoT software, while the sensor network is a crucial part
for the sensing layer in IoT. Sensor networks normally cannot
be directly linked to the IoT [16]–[19]. Instead, the data is
forwarded to the IoT via the Sink node. Therefore, the data
gathered by the sensor nodes needs to be forwarded by the
intermediate network. During the forwarding, the interme-
diate network and the choice of the gateway node signif-
icantly affects the data forwarding efficiency. The amount
of data gathered by the sensing layer in IoT is huge, while
the users are only interested in a particular part of the total
data. Therefore, the excessive data transmission not only
wastes a large amount of energy, but also leads to network
congestion.

Recently, the emerging compressive sensing (CS)
technique serves as a brand new method for the acquisi-
tion and processing of the signals, providing new solutions
for the processing of the data in wireless sensor net-
works (WSNs) [20]–[23]. Research shows the data which is
CS-based gathering methods could fully exploit the spatial
characteristics of the network, reduce the network energy
consumption, simplify the data compression procedure, and
avoid the energy hole problem [24]–[26]. However, the gath-
ering method of the CS-based data in WSNs is focused
mainly on the reliable network environment, where packet
loss is negligible on the network links. The packet loss in
realistic WSNs is quite common. In addition, it is shown
by existing results that the performance of the gathering
methods of the CS-based data is strongly affected by the loss
of the packet. For example, with extremely loss rate of the
packet which is low, existing gathering methods of the data
cannot guarantee the effective recovery of the of the network
data. Although some solutions have been proposed based
on the sparse random projection to alleviate the impacts of
the packet loss, no realistic design is provided for the sparse
expression base and the generality of these solutions cannot
be guaranteed.

In order to address the problems mentioned above,
a Mobile Intelligent Computing Based on Compressive Sens-
ing Date Gathering algorithm (MIC-CSDG) is proposed in
this work. This method employs the mobile intelligent com-
puting to derive the multi-hop function among sensor nodes,
which is further utilized to determine the proportional rela-
tionship for the sensor nodes. Based on the sparse matrix,
an observation matrix is designed with low correlation to
mitigate the influences of the data packet loss on the entire
IoT system and improve the data reconstruction accuracy for
the sink node. Then, the acknowledge mechanism for the data
forwarding strategy is employed to improve the reliability of
the data transmission among clusters. Therefore, the reliable
data handover is accomplished for the multi-path routing data

among different nodes. We summarized the work’s major
contributions as follows.

(1) The MIC-CSDG algorithm is proposed, which divides
the entire WNS into different regions, and conducts indepen-
dent sampling and measurement within each region. There-
fore, the overload issue is solved for the central region,
while the direct transmission and compressive sensing are
effectively combined to reduce the transmission energy
consumption.

(2) Based on the sparse matrix, an observation matrix is
designed with low correlation tomitigate the influences of the
data packet loss on the entire IoT system and improve the data
reconstruction accuracy for the sink node. Therefore, the data
compression performance of the proposed MIC-CSDG algo-
rithm can be guaranteed. In addition, the low correlation of
the sparse routing projection matrix is also maintained, which
ensures the effective reconstruction of the sensing data.

(3) Based on (1), the mobile intelligent computing is
employed for the clustering of the dynamic region division.
The maximal hop number required for the intra-cluster com-
munication is derived. Then, according to the probabilistic
forwarding protocol, the decision process is provided for the
intra-cluster data transmission to increase the data transmis-
sion reliability and reduce the packet loss.

(4) It is shown by the simulations that compared with exist-
ing algorithms; the proposed MIC-CSDG algorithm could
reduce the reconstruction error, network delay and the con-
sumption which is of the energy, even prolong lifetime of the
network. Therefore, the validity and efficiency of the method
which is proposed is verified.

II. RELATED WORKS
In realistic application scenarios, monitoring is often required
for some key regions in the sensing area, and higher require-
ments are imposed on the timeliness and accuracy of the
data reconstruction algorithms. For solving these problems,
the area of the WSNs is divided into different regions and
independent sampling is conducted in each region, which
could effectively solve the overload issue of the central
region. Meanwhile, the direct transmission is combined with
the CS technique to reduce the transmission energy consump-
tion. Then, an observation matrix is designed based on a
sparsematrix, to curb the influence of packet loss on the entire
IoT system and further improve the data reconstruction accu-
racy at the Sink node. With the emerging of the distributed
CS theory, more and more researchers have paid attention to
the application of the CS technique in WSNs.

A. CS RECONSTRUCTION ACCURACY
It was pointed out in paper [27] that distributed CS could
exhibit the advantages of stronger error tolerance, higher
security level and adaptivity, which lays the foundations for
the application of CS techniques in WSNs. The CS technique
was combined with the spatial and temporal correlation in
paper [28] in order that it could decrease the whole number of
communication and even prolong the lifetime of the network.
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A fusion scheme of the layered data was put forward in
paper [29] based on the compression field, where the parent
node in each layer conducts the collection, compression and
fusion of the data from lower-level layers. The data is trans-
mitted to higher layers in turn, and finally reaches the cluster
head node at the top level. This scheme could greatly reduce
the redundant data within the network, the total amount of
transmitted data, as well as the energy consumption. The
iterative recurrent CS algorithm was proposed based on grids
in paper [30] to solve the locating problem of multiple tar-
get nodes. In this algorithm, multiple target nodes can be
located simultaneously and the locating accuracy can also be
improved. For the locating problem of mobile target nodes,
a CS based locating algorithm was proposed in paper [31],
where the movement laws and the sparse expression base
are matched to transform the locating problem of mobile
targets into a reconstruction problem of the sparse signal.
The CS technique is further combined with network coding
in paper [32] and a compressive network coding scheme
is proposed based on the temporal and spatial correlation.
In this scheme, the data is compressed from the spatial dimen-
sion and temporal dimension to reduce the data amount and
prolong the network lifetime. Exploiting the CS technique
and the spatial-temporal correlation of the data, Energy con-
sumption optimized compressive sensing in group sensor net-
works (ECO-CS) was proposed in paper [33]. Compared with
the conventional data interpolation algorithm, the proposed
algorithm is more advantageous in recovering lost packets.
As for the application of CS in data gathering, the research
topics mainly focus on the gathering efficiency, the matching
between the observation matrix and the data gathering rout-
ing, as well as reducing the amount of transmitted data. Based
on the temporal-spatial relation of the gathered data, a scheme
of the data gathering was proposed in paper [34] to minimize
the energy consumption. A gathering scheme of a sequence
CS based data was raised in paper [35] for the WSN, which
could simultaneously reduce the network transmission cost
and guarantee the data recovery quality.

B. DATA GATHER ALGORITHM BASED ON CS
Compressive data gathering based on even clustering (CDG)
was provided in paper [36] that the sparse projection could
also achieve the effective recovery of the compressed data,
and the relation was derived between the observation number
and the sparsity degree of the projection matrix. The sparse
projection was exploited in paper [37] to achieve the highly
accurate reconstruction of the data sensed by a single sensor.
In addition, according to the sparse projection, the sparse
expression base was designed to satisfy different require-
ments under different application scenarios. The Random
Walk method is employed in paper [38] to realize the data
gathering in WSNs under distributed environment, and a
theoretical analysis was provided on relevant performances
of the data recovery. A data model estimation algorithm was
proposed based on random projection in paper [39], where
only the values of a quantity which is small of sensors are

required in each measurement and the communication cost
can be greatly reduced. A data gathering algorithm based
on compressive sensing in lossy wireless sensor networks
(CS-RTSC), the data gathering in paper [40] is conducted,
and the quantity of sensor nodes involved in the gathering
for each individual value can be greatly reduced. There-
fore, the communication cost can be effectively reduced in
the data gathering process. The gathering algorithm of a
CS-based data with optimized routing protocol was proposed
in paper [41]. This algorithm compresses the link data to
prolong the lifetime of the network. However, this algorithm
robustness is poor and the network energy consumption is
not guaranteed minimized. A sparse projection matrix based
on the gathering algorithm which is of data was put forward
in paper [42], where the cost-minimizing sparse projection
matrix is employed to achieve the data sampling of the node
data. In addition, this algorithm also accomplishes the accu-
rate reconstruction of the gathered data. A CS based data
gathering scheme with optimized tree-splitting routing was
proposed in paper [43]. This scheme can be divided into
two steps, i.e., the sparsifying process of the node data and
the optimizing of the data gathering routing, which could
guarantee the accuracy of the gathered data.

Therefore, the data compression performance and the low
correlation with the sparse routing projection matrix can
be guaranteed simultaneously for the proposed algorithm.
Henceforth, the sensing data can be effectively reconstructed.
Based on the statements mentioned above, the mobile intelli-
gent computing is employed in this paper to derive the clus-
tering network model for the dynamic region division. Also
provided is the analysis for the maximal number of required
hops to finish the intra-cluster communication. In order that
it could reduce the reliability of the data transmission and
reduce the packet loss, the ant colony algorithm is utilized
for the retransmission, check, and multi-path transmission
within the cluster. Finally, simulations are performed based
on the reconstruction error, network energy consumption,
network lifetime, and network delay. It is shown that algo-
rithm which is proposed outperforms the other algorithms,
which proves the validity and effectiveness of theMIC-CSDG
algorithm.

III. PROBLEM DESCRIPTION
A. DATE GATHERING IN COMPRESSIVE SENSING
Compressive Sensing is an effective method for the signal
acquisition and compression, which is already widely applied
in the simultaneous data sampling and compression. Assum-
ing that X is a signal with dimension N, while 8 is a matrix
of measurement with sizeM ×N withM < N . The received
signal is Y = 8 × X . When X is a combination of liner of k
base vectors (k << N ), we can reconstruct X with known Y
and8 with a large probability. So as to reconstruct the target
signal with higher accuracy, the row number M of 8 should
satisfy M ≥ c · k in which k is the sparsity degree of the
target signal and c is the sampling ratio function. When CS
techniques are employed, if the sparse expression base of X
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FIGURE 1. CS based data transmission process.

is 9, i.e., X = 9 ·2, where ||2||0 = k can be expressed as
the 0-norm, then we denote the signal as k-sparse.
Assuming a WSN with N nodes, s1, s2, s3, . . . , sn, and

the sampling value of these nodes can be expressed as
x1, x2, x3, . . . , xn at a certain time. In the gathering process of
the CS based data, every node multiplies its sampling value
by M weights and forwards the result to the node at the next
hop. Finally, the Sink node receives M measurement values,
which is a linear combination of the sensing data. Gathering
process of the CS based data can be expressed as follows:

y1
y2
...

ym

 =

φ11 φ12 · · · φ1n
φ21 φ22 · · · φ2n
...

...
. . .

...

φm1 φm2 · · · φmn



x1
x2
...

xn

 (1)

That is, y = 8 × x, where y = [y1, y2, . . . , ym]T is the
value vector in received measurement at the Sink node and
x = [x1, x2, . . . , xn]T is the sampling value at N nodes. 8 is
usually the Gaussian measurement matrix or the Bernoulli
matrix where elements share the same distribution.

In order to further explain the CS based data gathering pro-
cess in WSN with multi-hop transmission topology, the link
structure for the data gathering process is illustrated as the
following Fig. 1.

The sensor nodes set is s1, s2, s3, . . . , sn, the generated
sampling data is x1, x2, . . . , xn, and the data is transmitted to
the node of sink in a multi-hop manner. If the conventional
transmission mechanism is employed, then every node has
to transmit the data passed from the downstream nodes and
transmit data which are its own. Then the node of sink will get
N uncoded data packets. The whole quantity of transmitted
data packets in the network is N(N + 1)/2, and the node
energy consumption increases as the distance from the Sink
node decreases. However, if the technique of CS is employed,
the initial N data packets can be represented by M coded
data packets, where M << N . Then the original data could
be reconstructed by the Sink node with a large probability.
The weights φi = {φ1 i, φ2 i, . . . , φmi} are imposed on each
sampling value xi, where φi is the element in the observation
matrix 8M×N . Therefore, the Sink node receives M data
packets, and onlyM × N data packets are required for trans-
mission.

In a dense matrix, each element in each row is non-zero.
Therefore, the quantity of the data packets which is gathered
in each measurement is O(N), in which N is the quantity
of sensor nodes which are in the network. The data fusion
process, which is based on the matrix of the dense measure-
ment, it is usually expressed in the form of a tree routing,

where the network routing is the shortest spanning tree based
on the cluster head [44]–[47]. Assuming that the amount of
measurement is M, and then the amount of transmitted data
packets for each node is M. The child nodes multiply the
sensing data with their own weights and then transmit the
result to the parent nodes. After the reception of the data from
the child nodes, the parent node also multiplies its own data
with the weights and performs the summation. Then the result
is further transmitted to the nodes in the upper layer in the
same manner, until the data from all the nodes reaches the
cluster head.

According to the description above, in the conventional
data gathering methods, the child nodes only needs to trans-
mit their own data, e.g., the nodes far from the cluster heads.
However, in the dense random data fusion methods, the child
nodes need to transmit M data packets, which is larger than
that of the conventional methods. Therefore, in Hybrid-CS
based methods, only when the quantity of transmitted data
packets is more thanM is the CS operation adopted. The spe-
cific procedure is illustrated in Fig. 2(c), where the quantity
on the transmission link represents the quantity of transmitted
data packets for the corresponding node, while the number
underlined on the links indicates that the corresponding nodes
adopt the CS operation for the data fusion. The conventional
data transmission method is shown in Fig. 2(a). It is shown
in Fig. 2(a) that when the node is closer to the cluster head,
it has to transmit more data packets. Therefore, the energy
overhead for transmission is heavier, which could cause the
imbalance of the network remaining energy. The dense ran-
dom projection based method is illustrated in Fig. 2(b). It is
shown that the number of the data packets which were trans-
mitted is the same for each node, i.e., the consumption of the
energy is balanced for different nodes. In addition, the total
amount of transmission is smaller than that of the convention
Non-CS based method. The Hybrid-CS based data fusion
is shown in Fig. 2(c), where the node at the lower end of
the fusion tree adopts the conventional transmission method
while the CS method is employed only when the number
of transmitted data packets exceeds the number of measure-
ments. It can be observed in Fig. 2 that the method of the
Hybrid-CS based data fusion could reduce the unnecessary
resource waste for the nodes at the lower end, which greatly
reduces the transmission amount as well as the communica-
tion load.

B. OTHER RECOMMENDATIONS
Assuming that, in the WSN area, we randomly deployed
N nodes, and we denote the sensing data as d =

(d1, d2, . . . , dN )T. If d is sparse under the sparse expression
base 9N×N , then the measurement matrix is 8 = (φ)M×N ,
and the observed vector is Y=(yi)M×1 = 8·9T

·d . According
to (2) and (3), the Sink node could solve the optimization
problem and the original data could be reconstructed with a
certain accuracy degree.

Y = 8 · S = 8 ·9T
· d = 2 · d (2)
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FIGURE 2. CS based on data gathering. (a) Non-CS which is based on data
gathering. (b) Dense random projection based data gathering. (c) Hybrid
CS based data gathering.

−→
d = argmin

∥∥∥−→d ∥∥∥
p

(3)

δs(i, j) =


+1 with prob. (1− p)/2
−1 with prob. (1− p)/2
0, with prob. p

(4)

where 2 = 8 · 9T is the matrix which is of sensing, and∥∥∥−→d ∥∥∥
p
is the lp norm of the sensing data vector

−→
d , as is shown

as follows:

∥∥∥−→d ∥∥∥
p
=


(

N∑
i=1

|xi|p
)1/p

0 < p < +∞

max
i=1,2...,N

|xi|

(5)

The scattered transformation base 9N×N for the vector of
data which is of sensing is obtained by the Discrete Fourier
Transform (DFT), scattered transformation, and orthogonal
sparse base, as shown in (6) and (7). The CS reconstruction
accuracy is measured by the relative error η, and a smaller η
indicates higher reconstruction accuracy.

X (k) =
N−1∑
n=0

x(n)e−j
2π
N kn
=

N−1∑
n=0

x(n)W kn
N (6)

9j(t) = 1
/√

Nei2π jt/N (7)

η =
∥∥x̂− x

∥∥
2

/
‖x‖2 =

√√√√N−1∑
n=0

(x̂n − xn)2
/√√√√N−1∑

n=0

x2n

(8)

Theorem 1: For matrix 8s = (ξ1, ξ2, . . . , ξM )T, ξi is the
discrete random sequence with independent and identical dis-
tribution. The random variable that constitutes the sequence
follows the distribution of the Bernoulli. After that the matrix
8s is full ranked with a probability approaching ‘‘1’’.
Proof: We can assume that with the conditions above, the

matrix 8s is not full rank. Therefore, for the i-th row of the
matrix, a group of coefficients exist, satisfying the following
equation:

xi = a1x1 + a2x2 + . . .+ ai+1xi+1 + . . . .+ aMxM (9)

where a1, a2, a3 . . . , aM are not all zeros. Make the process
{X (n), n = 0, 1, . . . ,N } which is random denote the row
vector ξi, and then mean function and the variance function
are:

EX (n) = [(+1) (1− p) /2]+[(−1) (1− p) /2]+0× p = 0

(10)

DX (n) = E [X (n)− EX (n)]2 = E [X (n)]2 = 1− p (11)

Denote a stochastic process {Y (n), n = 0, 1, . . . ,N } as
a1ξ1 + a2ξ2 + . . . + ai+1ξi+1 + . . . + aM ξM , the mean and
variance of this random variable are derived as follows:

EY (n) = E

 ∑
j∈[1,M ],j 6=i

ajξj(n)

= ∑
j∈[1,M ],j 6=i

ajEξj(n)=0

(12)
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DY (n) = E [Y (n)− EY (n)]2 = E [Y (n)]2

=

∑
j∈[1,M ],j 6=i

a2j Dξj(n) =
∑

j∈[1,M ],j 6=i

a2j (1− p) (13)

Therefore, different stochastic processes are described by
X (n) and Y (n). Because the discrete stochastic process X (n),
the value X (i) of the corresponding variable X (i) which is
random takes from x(i) ∈ {+1,−1, 0}. Therefore, the state
space length IX is 3N . Because the discrete stochastic process
Y(n), the value Y (i) of the corresponding variable Y (i) which
is random takes from −M + 1 ≤ y(i) ≤ M − 1, y(i) ∈ Z .
Therefore, the state space length IY is (2M − 1)N .
Assuming event A as the event which equation (12) holds,

event of B as the event that the coefficients a1, a2 . . . , aM
are not whold zeros, event of C as the event that only one
coefficient in a1, a2, . . . , aM is non-zero, then we have:

P (A|B) < P (A|C) (14)

Therefore, the derivation of P(A|C) is transformed to
addressing the probability that the independently identically
distribution stochastic processes X1(n) and X2(n) have the
same state. In the stochastic process state space X (n), dif-
ferent states have respectively different probabilities. For the
analytical convenience and without loss of any generality,
we assume p = 1/3 in (5). Then,

P (A|B) < P (A|C) = (1/3)N << 10−3 (15)

Therefore, event A’s probability is quite low, i.e.,
the assumption which is original did not hold and the matrix
8s was full rank with a probability approaching 1.

IV. CLUSTER FORMATION AND OPTIMIZATION
A. DYNAMIC CLUSTERING
The unit operation time is taken as the basic number of rounds
in WSNs. The dynamic clustering model is employed for a
WSN which is with N sensor nodes in a certain operation
period. N sensor nodes are separated into Ns clusters with
the same cluster radius Rk , where Rk = λRc and Rc is the
radius, of the communication, of the sensing nodes and λ
is the maximal number of communication hops within the
cluster. Ns can be calculated as:

Cn = δπR2k = δπλ
2R2c (16)

Ns =
N
Cn
=

N
δπλ2R2c

(17)

where Cn is the quantity of sensor nodes in the cluster, δ is
the node density in the network. According to equations (16)
and (17), it is shown that when the number of clusters Ns
increases, the amount of communication within the cluster
can be increased as well. The mathematical model for the
communication gain is derived as follows:

fmax = ω1Ns + ω2Qc (18)

where ω1 and ω2 are weighting factors and Qc is the total
number of communication hops in the cluster.

An appropriate scheduling of the clustering could reduce
the size of the cluster and cluster number, equalize the number
of hops which are among the sensor nodes, and reduce the
network consumption of the communication energy. Theo-
rem 2 is introduced based on the illustrations above.
Theorem2: The minimal amount of communication hops λ

within a cluster should satisfy:

λ =

(
L + 9ω2

1

) 1
3 +

(
L − 9ω2

1

) 1
3

H
2
3

(19)

where H = πδω2R2c , L = 4πδω1ω2R2c .
Proof:Within a cluster, the minimal number of hops for the

communication among sensor nodes and the minimal amount
of sensor nodes for the successful communication with the
cluster head is:

Cλ = δπλR2c (20)

For the minimal hop number β of a single cluster, the
amount of upstream sensor nodes in that can be derived as:

C
′

β = Cβ − Cβ−1 = δπR2c (2β − 1) a (21)

The total number of communication hops in a single cluster
is:

Qsc =
λ∑
β=1

βC
′

β =

λ∑
β=1

πβδR2c (2β − 1) (22)

where Qsc is the number of total communication hops within
a single cluster.

For the entire network, multiplying (17) with (22), we can
get the total number of communication hops for the sensor
nodes.

Qc = Ns × Qsc =
N

δπλ2R2c
×

λ∑
β=1

πβδR2c (2β − 1) (23)

Simplify (23) and we have:

Qc =
N
λ2

[
2λ (λ+ 1) (2λ+ 1)− 3λ (λ+ 1)

6

]
= N

(
2λ
3
−

1
6λ
+

1
2

)
(24)

By substituting (17) and (24) into (18), we have:

fmax = ω1
N

δπλ2R2c
+ ω2N

(
2λ
3
−

1
6λ
+

1
2

)
(25)

By calculating the partial derivative for (25), we have the
approximate solution of λ:

λ =

(
4πδω1ω2R2c + 9ω2

1

) 1
3 +

(
4πδω1ω2R2c − 9ω2

1

) 1
3(

πδω2R2c
) 2
3

(26)

Therefore, the proof is completed.
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B. PROBABILISTIC FORWARDING
The clustering structure is helpful for the transmission control
for the data in large-scale WSNs, where a large amount
of nodes which are of sensor are uniformly and randomly
distributed in the target fields. After gathering of the data
within the cluster, the sensor nodes transmit the data to the
Sink node in a manner of multi-hop.
Definition 1: If the gradient of a sensor node is h, then this

sensor node is termed h-hop node. The nodes that can directly
transmit with the Sink node are termed the 1-hop node.
Definition 2: If the source node of a message is an h-hop

node, then this message is termed the h-hop message.
Definition 3: If a h-hop node can directly communicate

with a (h-1)-hop node, after that this (h-1)-hop node is termed
the 1-hop downstream node of this h-hop node, meanwhile
the h-hop node is termed the 1-hop upstream node of this
(h-1)-hop node.
Definition 4: Unless si (h-1)-hop nodes are not the down-

stream nodes of the same h-hop node, these si nodes are
termed homologous nodes.

Assuming that the required success probability for themes-
sage transmitted to the Sink node is p∗, while the forwarding
probability is p for the sensor nodes, the relationship between
p and p∗ can be analyzed in the following four cases.

(1) The gradient of the source node is 1. In this case,
the Sink is the 1-hop downstream node of this source node,
i.e., the Sink node could transmitted with the source node
directly and the data packets from the source node could be
directly communicated to the Sink node. Therefore, no other
node is required for the forwarding.

(2) The gradient of the source node is 2. In this case,
the message is a 2-hop message and the source node cannot
directly communicate with the Sink node, while the message
needs to be forwarded via a 1-hop node to reach the Sink
node. Assuming that there are K1 1-hop downstream nodes
for the source node and each 1-hop downstream node for-
wards this message with the same probability p1, then the
probability for the Sink node to receive the 2-hop message
is:

P = 1− (1− p1)K1 (27)

Apparently, this probability has to satisfy:

p∗ ≤ 1− (1− p1)K1 ≤ 1 (28)

Therefore, we have:

1−
(
1− p∗

) 1
K1 ≤ p1 ≤ 1 (29)

Let α1 = 1− (1− p1)K1 where α1 denotes the probability
that a 2-hop message could successfully reach the Sink node
after the forwarding of a 1-hop node. Equation (29) describes
the upper bound and the lower bound for this forwarding
probability of the 1-hop node. Since the lower bound is
strongly dependent on K1, p1 is dependent on K1.
(3) The gradient of the source node is 3. In this case, the

3-hop message has to be forwarded twice, through a 1-hop

node and a 2-hop node, to reach the Sink node. Assuming
that there are K2 1-hop downstream nodes for the source
node, i.e., s1, s2, . . . , sK . In addition, each 1-hop downstream
node forwards this message with the same probability p2.
These K2 nodes have K1 independent 1-hop nodes. The
1-hop downstream node j of the source node forwarding this
message, the message will be received by node j andK1 1-hop
downstream nodes. According to the analysis in the second
case above, this node will forward this message with prob-
ability p1, and p1 satisfies (29). Then, the probability that
the message could be forwarded to the Sink node via node
j is α1p2, i.e., after the forwarding of node j and the 1-hop
node, the message can successfully reach the Sink node. The
probability that the 3-hopmessage cannot reach the Sink node
is:

P1 =
K2∏
j=1

(
1− αj1p2

)
(30)

The probability that the message can successfully reach the
Sink node is:

p = 1− P1 =
K2∏
j=1

(
1− αj1p2

)
(31)

Therefore, we could derive that the forwarding probability
p2 of the 2-hop node should satisfy:

p∗ ≤ 1−
K2∏
j=1

(
1− αj1p2

)
≤ 1

α
j
1 = 1−

(
1− pj1

)K j
1

(32)

Equation (32) indicates that the forwarding probability p2
of the 2-hop node is dependent on p1. This dependence is
harmful for the calculation of p2. We can calculate from
formulas (29) and (30).

α
j
1 = 1−

(
1− pj1

)K j
1
≥ p∗ (33)

which holds for an arbitrary 2-hop node j. Substitute (33)
into (32), we have

1−
K2∏
j=1

(
1− αj1p2

)
≥ 1−

(
1− pp∗

)K2 (34)

Further simplify (34), we have the constraint condition for
p2.

1− (1− p∗)
1
K2

p∗
≤ p2 ≤ 1 (35)

When p2 satisfies (35), equation (32) will definitely hold.
Therefore, the calculation of p2 is no longer dependent on p1.

(4) The gradient of the source node is m + 1. In this case,
a (m + 1)-hop message should be forwarded by Kmm-hop
nodes. Everym-hop node forwards themessagewith the same
probability pm. Similar to the analysis in the third case, we can
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derive that the forwarding probability of the m-hop nodes
should satisfy:

1− (1− p∗)
1
Km

p∗
≤ pm ≤ 1 (36)

Based on the analysis above, in order to ensure that a (m+
1)-hop message could eventually reach the Sink node with
probability p∗, the forwarding probability of thei-hop node
should satisfy the following conditions:

1− (1− p∗)

1
Ki ≤ pi ≤ 1 i= 1

1− (1− p∗)

1
Ki

p∗
≤ pm ≤ 1 i= 2, 3, · · · ,m

(37)

Equation (37) is only dependent on the number of homolo-
gous nodes and the expectation of the successful transmission
probabilityp∗. In this way, the bound for the forwarding prob-
ability is:

pi =


1− (1− p∗)

1
Ki i = 1

1− (1− p∗)

1
Ki

p∗
i = 2, 3, · · · ,m

(38)

According to (38), pi decreases as Ki increases, which
could be illustrated by the fact that more homologous nodes
can lead to more message transmission paths and lower for-
warding probability. In particular, if each forwarding node has
only one homologous node, i.e., one transmission path to the
Sink node, then according to (38), the last 1-hop node will
forward with probability p∗ while the remaining nodes will
forward with probability 1. Apparently, this can be one way
to satisfy the forwarding probability p∗.

C. ALGORITHM DESCRIPTION
Step1: Initialization of the WSN. Firstly all the nodes are
activated by the Sink node to establish Minimum Spanning
Tree (MST) routing and finish the networking of the node.
Step2: The Sink node broadcast the data packet which

is the heartbeat to the network. Upon the reception of the
packet of the heartbeat data, the nodes which are in the
network transmit their heartbeat data packet in period T1.
This transmission is conducted along the network routing and
in the conventional transmission-forwarding data gathering
method.
Step3: Each node performs the real-time counting of the

received data packets on their own reception links. The count-
ing results are stored in the memory, and further serve as the
information of the priori for the sliding window-aided packet
loss prediction mechanism.
Step4: At the end of the time period T1, the received

sequence for each node is denoted as {Xi}. The Sink node
firstly broadcasts the seed ξ which is random to the net-
work. Upon the reception of the seed which is random, the

node i combines ξ with its ID and generates (ξ, IDi). Then,
a unique observation matrix (δi1, δi2, . . . , δiM )T is generated
and stored in tis own memory.
Step5: According to the routing, every node multiplies

the data di which is gathered with the observation coeffi-
cients δij. The results are summed up and further transmitted
to the Sink node. According to (13), the re-transmission
scheme is selected to recover the lost packets. The maximal
re-transmission number is set as max_num. Otherwise; the
prediction is taken as the received the packet of data and
communicated through the hop which is the next. Therefore,
this round of CS-based observation and sampling is finished.
Step6: After one round of data gathering and according to

M observation values, the Sink node constructs the observed
vector Y = (y1, y2, . . . , yM )T. The Sink node further recon-
structs the observation matrix (δij)M×N according to the ξ
which is a seed which is random and the ID of the net-
work nodes. Based on the sparse expression base 9N×N ,
CS algorithms are utilized to reconstruct the sparse matrix S.
By calculating d = 9·S, the original signal vector d can be
reconstructed.

V. PERFORMANCE EVALUATION
So as to verify the effectiveness and the validity of the pro-
posed MIC-CSDG algorithm, we perform the simulations on
Matlab and simulation results are illustrated in this section.
Related configurations are descried as follows. The square
monitoring area is 200m× 200m and N = 550 sensor nodes
are deployed densely. The energy for every sensor node is
10J. A Sink node is deployed outside the monitoring area.
Parameters for data gathering are: ω1 ∈ [0.1, 0.4], ω2 ∈

[0.5, 0.9], λ ∈ [1, 10],Rc = 10m, t = 600s.
The comparison on the reconstruction error with differ-

ent parameters is illustrated in Fig. 3 to Fig. 5, for the
proposed MIC-CSDG algorithm and the other three algo-
rithms. According to Fig. 3, the improvement of the proposed
MIC-CSDG algorithm is not very obvious with the network
running time.

However, the other three algorithms exhibit obvious
improvement as the network running time increases.When the
network running time is 300s, the performances are signifi-
cantly improved for the other three algorithms. By contrast,
the performance of the proposed MIC-CSDG algorithm is
almost steady and the variation is almost smaller than 3%.
According to Fig. 4, when the network running time t∈[200s,
400s], the performances are improved for all of the four algo-
rithms. In addition, these four algorithms show a balanced
improvement rate. At the beginning of the running time of the
network, the error performances of the other three algorithms
are worse than the proposed MIC-CSDG algorithm. As the
running time increases, the CS-RTSC algorithm, the CDG
algorithm, and the ECO-CS algorithm exhibit faster improve-
ment, while the performance of the MIC-CSDG algorithm
remains steady. The parameters for Fig. 5 are ω1 = 0.5,
ω2 = 0.9, ω1 = 0.3, ω2 = 0.7, λ = 10. Similarly,
the performance of the proposed MIC-CSDG algorithm also
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FIGURE 3. Comparison on reconstruction error with different parameters
(ω1 = 0.4, ω2 = 0.9, λ1 = 5, λ2 = 8).

FIGURE 4. Comparison on reconstruction error with different parameters
(ω1 = 0.14, ω2 = 0.5, λ1 = 5, λ2 = 8).

remains steady. By contrast, the other three algorithms shows
worse performances and their performances are not obviously
improved as the network running time increases. The main
reason which is behind this result is that the algorithm of
CS-RTSC adopts the extremely sparse observation matrix in
order to reconstruct the data which is original. On the one
hand, the number of samples is not sufficient. On the other
hand, the loss of the packet will decrease the quantity of
observations, which further causes deteriorated reconstruc-
tion accuracy due to insufficient observations. Although the
CDG algorithm and the ECO-CS could alleviate the problem
of misjudgment for the reception of the packet situation,
the correlated packet loss which is in the gathering of the
CS-based data would undermine the accuracy of the recon-
struction seriously. By contrast, the number of observations is
maximized in the proposed MIC-CSDG algorithm. In addi-
tion, the misjudgment problem at the Sink node is alleviated.

FIGURE 5. Comparison on reconstruction error with different parameters
(ω1 = 0.5, ω2 = 0.9, ω1 = 0.3, ω2 = 0.7, λ = 10).

FIGURE 6. Comparison on pack arrrival rate with different parameters
(ω1 = 0.4, ω2 = 0.9, λ1 = 5, λ2 = 8).

The correlated packet loss problem is also addressed by
the MIC-CSDG algorithm. In this way, the accuracy, of the
reconstruction, of the CS-based data gathering processing
is guaranteed from different perspectives. Furthermore, it is
illustrated by the results of simulation that with the loss
rate of a packet of 40%, the reconstruction error of the pro-
posed MIC-CSDG algorithm could still remain lower than
5%. Therefore, the effective reconstruction in CS-based data
gathering is guaranteed.

The comparisons on the packet arrival rate are illustrated
in Fig. 6, Fig. 8, and Fig. 10 for different parameters.
In addition, the comparisons on the average forwarding time
are illustrated in Fig. 7, Fig. 9, and Fig. 11, respectively.
550 sensor nodes are assumed for the simulations, while
each sensor node will transmit 55 messages. The proposed
MIC-CSDG algorithm is compared with the CS-RTSC algo-
rithm, the CDG algorithm, and the ECO-CS algorithm with
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FIGURE 7. Comparison on the average forwarding times with different
parameters (ω1 = 0.4, ω2 = 0.9, λ1 = 5, λ2 = 8).

FIGURE 8. Comparison on pack arrrival rate with different parameters
(ω1 = 0.1, ω2 = 0.5, λ1 = 5, λ2 = 8).

different p∗. The simulation results in Fig. 6, Fig. 8, and
Fig. 10 are obtained by counting the received data packets
at the Sink node. According to the results of the simulation,
the proposedMIC-CSDG algorithm could satisfy the require-
ment for p∗. As p∗ increases, the packet arrival rate could
closely approach the theoretical upper bound for p∗, i.e., 1.
According to Fig. 7, Fig. 9, and Fig. 11, the average for-
warding time for each message of the proposed MIC-CSDG
algorithm also increases. When p∗ approaches 1, the average
forwarding time of the MIC-CSDG algorithm still remains
steady. Actually, this property guarantees that the proposed
MIC-CSDG algorithm could improve the packet arrival rate
with a small number forwarding and further save the energy
consumption. By contrast, the other three algorithms require
more message forwarding times and exhibit lower packet
arrival rate. The reason is that for each algorithm, if the data
sparsity increases, the data correlation will be weaker. There-

FIGURE 9. Comparison on the average forwarding times with different
parameters (ω1 = 0.1, ω2 = 0.5, λ1 = 5, λ2 = 8).

FIGURE 10. Comparison on pack arrrival rate with different parameters
(ω1 = 0.5, ω2 = 0.9, ω1 = 0.3, ω2 = 0.7, λ = 10).

fore, according to the CS theory, themessage forwarding time
will increase and the packet arrival rate will decline. However,
when the data sparsity is 9, the proposed MIC-CSDG algo-
rithm could outperform the CS-RTSC algorithm, the CDG
algorithm, and the ECO-CS algorithm in terms of the packet
arrival rate performance and the average forwarding time
performance. But when the data sparsity is 17, the proposed
MIC-CSDG algorithm is more advantageous due to weaker
data correlation. The CS-RTSC fails to effectively evaluate
the network node data which is based on a limited number
of samples which are compressed. In addition, the CDG
algorithm and the ECO-CS algorithm maximize the number
of observations for the node data to improve the packet
arrival rate and average forwarding time. However, these
two algorithms fail to outperform the proposed MIC-CSDG
algorithm. Over the unreliable links, the MIC-CSDG algo-
rithm could alleviate the heavy dependence of the gathering
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FIGURE 11. Comparison on the average forwarding times with different
parameters (ω1 = 0.5, ω2 = 0.9, ω1 = 0.3, ω2 = 0.7, λ = 10).

FIGURE 12. Comparison on networks energy consumption with different
parameters (ω1 = 0.4, ω2 = 0.9, λ1 = 5, λ2 = 8).

algorithms of the CS-based data effectively on the data corre-
lation. Therefore, the packet arrival rate performance and the
message forwarding time performance could be improved for
correlated data sets.

According to Fig. 12 and Fig. 13, as the amount of sensor
nodes increases, the consumption of the energy also increases
for the four algorithms. This is due to the fact that in order
to obtain higher packet arrival rate, the number of sampling
nodes has to be increased for all the algorithms to improve
the network throughput. Accordingly, the energy consump-
tion is increased. However, the proposed MIC-CSDG algo-
rithm exhibits the lowest energy consumption among all the
algorithms. This is due to the clustering network structure,
which could balance the intra-cluster node energy. In addi-
tion, only nodes in the same cluster are able to communicate
in the MIC-CSDG algorithm. Therefore, no other nodes are

FIGURE 13. Comparison on networks energy consumption with different
parameters (ω1 = 0.1, ω2 = 0.5, λ1 = 5, λ2 = 8).

required to transmit with the Sink node and the network load
can be further balanced.

VI. CONCLUSIONS
The MIC-CSDG algorithm was proposed in the paper in
order to facilitate the energy-efficient sampling in WSNs.
According to this algorithm, the CS-based data gathering pro-
cess is independently conducted within each cluster, which
could exploit the advantages of CS techniques and avoid
excessively large data center in the data transmission process.
To further verify the efficiency of the algorithm which is pro-
posed, we perform simulations on the reconstruction, packet
arrival rate, message forwarding time, and the consumption of
the energy. It is shown that the algorithm which is proposed
could achieve the accurate reconstruction of the signal with
unknown sparsity. In addition, this algorithm exhibits strong
global searching ability to improve the overall performance.
Especially for unstable networks, the data reconstruction
accuracy shows prominent improvement over existing data
gathering algorithms. In addition, the network coverage opti-
mization mechanism is introduced with the network cluster-
ing. Therefore, the amount of sampling data could be reduced
for each cluster member node. Meanwhile, the nodes are
only required to perform communication within the cluster,
without communicating with the Sink node. Compared with
the conventional data gathering algorithms inWSNs, the pro-
posed MIC-CSDG algorithm could effectively decrease the
energy consumption for the nodes in the cluster, curb the rapid
energy exhaustion for the network, and therefore prolong the
network lifetime.
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