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ABSTRACT During instrumented split-belt treadmill tasks, it is challenging to avoid partially stepping on
the contralateral belt. If this occurs, accurate detection of gait events from force sensors becomes impossible,
as the force data are invalidated. In this paper, we present an algorithm, which automatically detects these
invalid force data using an acceleration derivative-based measure. We used this algorithm in combination
with the coordinate-based treadmill algorithm to replace the invalidated gait events detected from force
sensors with those detected from 3-D markers. The performance of the proposed algorithm was evaluated
against the visual examination of data collected from healthy participants in both the same speed and
differential speed configurations, using the receiver operator characteristics, the area under the curve, and
the Youden index. We found that the area under the curve (AUC) score was above 0.8 in both the same speed
and differential speed configurations. Moreover, there was not enough evidence (p > 0.05) to suggest a
correlation between walking speed and the performance of the algorithm. We conclude that the algorithm
has good to excellent detection and correction performance, which can be useful for research involving
analysis of gait with instrumented split-belt treadmills. A MATLAB (MathWorks, Inc., Natick, MA, USA)
based implementation of the proposed algorithm and example data files are also presented.

INDEX TERMS Gait analysis, split-belt treadmill, anomaly detection, force plates, 3-D kinematics,
accelerometers.

I. INTRODUCTION
A split-belt treadmill is a special type of treadmill which
has a separate belt for each leg [1]. As both the belts
are separate and individually actuated, the split-belt can be
used in two speed configurations. (i) Same speed configura-
tion (SS) in which both the belts move at the same speed.
(ii) Differential speed configuration (DS) in which the two
belts move at different speeds [2]. Split-belt walking, where
one leg is forced to move at a faster speed, is a well studied
task in humans, animals and using robots [3]–[14]. It is used
in the study of locomotor learning in healthy and pathological
populations as it provides a novel and perturbing locomotor
environment [15]–[18]. Using split-belt treadmill researchers
have also proposed a variety of gait rehabilitation paradigms
for patients with motor impairments [19]–[21].

Force plates embedded in the belts, 3-D motion capture
camera system, accelerometers, and gyroscopes are generally
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used to record different aspects of the gait during split-belt
treadmill tasks [22]–[28]. Detection of heel-strike (HS) and
toe-off (TO) at correct time points from the data recorded
with these sensors play an importance role in gait analysis.
These events determine the stance and swing phases of gait.
Although gait events can be determined from a range of
different sensors [29], the detection of gait events by setting
a threshold for data obtained from force plates is generally
considered the gold standard method [24], [30], [31]. For
example, using a threshold of 20 Newtons, a HS is registered
at the time when the increasing value of force crosses this
threshold. Similarly a TO is registered at the time when the
decreasing force crosses this threshold.

A. PROBLEM STATEMENT
Walking on the split-belt treadmill requires a wider base of
gait [32] to ensure that the feet remain on the right and left
belts respectively [33]. Failure to do so invalidates the force
sensor data [34]. This becomes more evident when one has to
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walk for a longer duration such as 10–15 minutes. Placing
a separator between the two belts is often recommended
to avoid the crossing over of the feet [33], however this
compromises the natural walking pattern. When thresholding
method is used to detect gait events from the force data, it can
lead to invalid events. One solution for this problem is to
not use the force data and instead rely on secondary sensors
such as 3-D kinematic data or accelerometers, however, this
is known to be less accurate [35]. Another solution is to man-
ually identify time intervals where force data is invalidated
and switch back and forth between events from force plate
and the secondary sensor. However, this solution becomes
impracticable when analyzing a large dataset, such as a large
number of participants, long session duration or multiple data
collection sessions. Thus there is a need for a method which
can automate the process of gait event detection from force
plate data, identify invalidated force data due to placement of
both feet on the same belt and correct for these invalidated
force data.

B. PROPOSED SOLUTION
In this study we propose a detection and correction algorithm
(DACA) which automatically marks time instances where the
force data has been invalidated and replaces gait events in
these instances with events derived from 3D markers. The
proposed method uses an acceleration derivative based mea-
sure to transform force plate data into noise levels. It then uses
adaptive statistical profiling to detect time intervals where
force data has been invalidated due to placement of both
feet on the same belt. Combined with existing methods of
gait event detection from force plate data and 3-D motion
capture system, the proposed method is capable of fully auto-
mated gait event detection and correction. The performance
of the proposed algorithm was evaluated by comparing its
performance against visual examination in both the same
speed and differential speed configurations. To the best of our
knowledge, this is the first solution for gait event detection
and correction from force plates embedded in a split-belt
treadmill.

II. METHODS
A. EXPERIMENTAL DATASET
The dataset used for evaluation of the proposed algorithm
was taken from a randomized controlled trial involving walk-
ing on an instrumented split-belt treadmill (Bertec Corpora-
tion, Columbus, OH, USA). The sampling rate of the force
platform was 1000 Hz. A nine-camera motion capture sys-
tem (Vicon Vantage, Nexus 2.4, Vicon Motion Systems Ltd,
Oxford, UK) was used to record position data at a frame rate
of 200 Hz from 33 reflective markers placed according to the
Cleveland clinic model [36]. An illustration of the split-belt
treadmill used in this study is shown in Figure 1.
The trial investigated the effect of cerebellar transcra-

nial direct current stimulation (ctDCS) on motor adaptation
in a healthy population. Thirty participants (Average age:

FIGURE 1. An illustration of the split-belt treadmill used in this study.

30 ± SD 6 years, 12 female) were recruited through pro-
fessional networks and local advertising. Participants were
excluded if they had a history of orthopaedic, cardiac or neu-
rological conditions that could interfere with walking, or any
contra-indications to application of ctDCS. All the partici-
pants provided written consent before data collection. Ethics
approval (16/338) for the study was obtained from Auckland
University of Technology Ethics Committee. Data was col-
lected over four 1 1

2 hour sessions at the Running and Cycling
Clinic, AUT Millennium Institute, New Zealand.

Whilst walking on the treadmill, participants were
instructed to look straight ahead and stay in the middle of
the treadmill with one foot on each belt, and holding a front
rail adjusted to their elbow height. The participant’s fastest
comfortable walking speed on the treadmill was determined.
During data collection the participants walked for a total
of 25 minutes where 15 minutes were undertaken with the
belts moving at different speeds followed by 10 minutes
with both belts moving at same speeds. In the differential
speed configuration the fast belt speed was set to the par-
ticipant’s fastest comfortable waking speed and the slow
belt to half of this speed. The treadmill was configured
such that the fast belt was under the participant’s domi-
nant leg. In the same speed configuration both belts were
set to half of the participant’s fastest comfortable walking
speed.

To evaluate the proposed algorithm, the six data files with
the highest prevalence of invalid force data were selected
from each speed configuration. These files included data
from 6 different participants over four different sessions.
The fastest comfortable walking speed for these participants
ranged from 1.1 to 2.1 meters/second (m/s).
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FIGURE 2. Detection and correction of gait events where the force data is invalid. ‘`a’ represents intervals of invalid force.

B. EVENT DETECTION FROM FORCE PLATES
To determine heel-strikes and toe-offs for each foot, the data
from force plates was first filtered with a 2nd order zero-phase
low-pass Butterworth filter with cut-off at 10 Hz. The filtered
force was used to obtain the heel-strikes and toe-offs with a
threshold at 20 Newtons. A HS was registered at the time
when the increasing value of force crossed this threshold.
Similarly a TO was registered at the time when the decreas-
ing force crossed this threshold. These events are shown
in Figure 2 (a). Mathematically, it was achieved by applying
the first order difference operation to the threshold data. The
time of positive differences were marked as heel-strikes and
time of negative differences as toe-offs.

C. DETECTION AND CORRECTION ALGORITHM (DACA)
The time points and intervals where the force plate data
was invalidated by placement of both feet on the same plate
were detected by transforming the raw force values to noise
levels. This was done by binning raw force data into bins
of length 25 milliseconds and finding noise level in each
bin. The bin length was chosen to strike a balance between
computation time required for data processing and capturing
faster dynamics of force data. The noise level was defined as
the natural log of the integral of the square of the acceleration
derivative as given below.

ni(x) = ln

∣∣∣∣ 1

(xpeaki )2

∫ ti+1

ti

( d3
dt3

x(t)
)2dt∣∣∣∣ (1)

where x(t) is the raw force plate data, and xpeaki , ni(x) define
the peak raw force value and the measure of noise for the
ith bin respectively. This noise measure is similar to the
log dimensionless acceleration derivative used to quantify
movement smoothness [37]. The noise levels for the bins are
shown in Figure 2 (b). Assuming that the raw force data was
divided into k bins, the mean and standard deviation of the

noise levels from these bins were defined as follows.

n̄ =

∑k
i=1 ni
k

σn =

√∑k
i=1(ni − n̄)2

k − 1
(2)

If kb number of consecutive bins had a noise level above the
mean (n̄) plus one standard deviation (σn), the first bin was
marked invalid as shown by ‘+’ in Figure 2 (a). The number
of bins (kb) was used to select the sensitivity of the detector
to invalid force.

In reference to the slow belt force data in Figure 2 (a), as the
foot was lifted completely off the belt at toe-off, the force
became zero. The force remained zero during a normal swing
phase and started increasing again at the heel-strike. How-
ever in case of the third, fourth and the fifth swing phase,
the force did not become zero as the contralateral foot was
partially placed on the slow belt. This non-zero force during
a swing phase signified the crossing over of feet across belts.
When the force was zero, the noise level in corresponding
bins was undefined as xpeaki was zero. This can be observed
in Figure 2 (b), where the plotted noise levels have gaps.
These periods of undefined noise level correspond to swing
phase and the periods of defined noise level correspond to
the stance phase, as shown in Figure 2 (c). This definition
of swing and stance phase gives poor estimates of the actual
phases because the accuracy of the estimates is dependent on
bin size. However the advantage is that the obtained values
do not depend on detected force events. The mode statistic
of the time duration of these stance phases was defined as
the mode stance time and it was used to identify invalid
force intervals. Thus a stance phase which was longer than
twice the mode stance time was identified as an invalid force
interval, under the assumption that such a stance phase is not
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naturally possible. The resulting intervals of invalid force are
represented by ‘`a’ in Figure 2 (a, d).
These intervals and bins of the detected invalid force were

then used to remove gait events detected from force data
and were replaced by events detected from 3-D marker data.
This process of detection and replacement of anomalous gait
events was done for each belt separately. The results are
shown in Figure 2 (d).
The detected bins of invalid force could not be directly

used to remove and replace nearby invalid gait events as the
bin size (25 milliseconds) was too short. Thus an interval
was created at the time of the invalid bin time. The length of
these intervals in each direction was set to three quarters of
the mode stance time. This length was chosen to ensure that
the nearby invalid events were removed and replaced while
valid events from adjacent phases were not. The use of mode
stance time for this purpose also ensured that this operation
was adaptive to speed changes across belts and participants.
The lengths of the detected intervals of invalid force were
shortened in each direction by half of the mode stance time.
This was done to avoid unnecessarily removing valid force
events from adjacent phases.

D. EVENT DETECTION FROM 3-D MARKER DATA
To detect gait events from the 3-D marker data, a modified
form of the Coordinate-based Treadmill Algorithm was used
[38]. First the marker data was low pass filtered using a 2nd

order zero-phase Butterworth filter with cut-off at 25 Hz. The
zero-phase filter does not introduce a time lag in the signal
and, therefore, does not disrupt the time synchronization
between the force plate data and 3-D marker data. Second,
the heel-strikes for the left and the right foot were detected as
themaxima of the left and the right heel marker position in the
anterior-posterior direction respectively. Similarly the toe-
offs for the left and the right foot were detected as the minima
of the left and the right fifth metatarsal marker position in the
anterior-posterior direction respectively.

E. VISUAL EXAMINATION OF DATA
The detection and correction performance of the algorithm
was validated by comparison with detection and correction
done by a trained examiner. A graphical tool was developed
inMATLAB (MathWorks, Inc., Natick, MA, USA) 2017b for
this purpose. The examiner inspected the raw force data of
a single file at a time by scrolling through it in 10 second
windows. The examiner marked an interval of invalid force
by selecting a start and an end point. The gait events detected
from both the force and the marker data in that interval were
then revealed. The examiner reviewed each gait event and
selected one of the estimates (force or marker event) and
deleted the other.

F. STATISTICAL ANALYSIS
The statistical analysis was performed separately for the two
speed configurations, the belt sides (the fast or dominant leg
(DL) and the slow or non-dominant leg (NDL)), and excluded

force, included marker events. This was done to consider
the performance of the algorithm under varying conditions.
To illustrate the scope of the problem, the prevalence of
excluded force events was defined as the percentage of force
events excluded by the examiner from the total number of
force events detected. The prevalence of included marker
events was defined as the percentage of markers events
included by the examiner from the total detected marker
events.

To evaluate the performance of the proposed algorithm,
we compared; (a) whether the algorithm removed the same
set of force events as the examiner and (b) whether the algo-
rithm included same marker events as the examiner. These
assessments were made using receiver operator characteristic
curves (ROC). It is a graphical tool for visualizing the perfor-
mance of classifiers [39]. It shows the performance of a clas-
sifier in terms of the trade-off between its true positive rate
(TRP, hit rate, sensitivity) and its false positive rate (FPR, fall-
out). For comparison with the random performance, an iden-
tity line (TPR = FPR) is also plotted. The farther is the
ROC curve of a classifier above the random performance line,
the better is its classification ability. In order to assess the abil-
ity of the proposed method to both exclude invalidated force
events and include valid marker events, we plotted separate
ROC curves. Also separate ROC curves were plotted for the
slow belt and the fast belt in the two speed configurations.
Thus a total of 8 ROC curves were plotted. All the 6 data files
of each speed configuration were used in plotting a curve.
To plot a curve we computed TRP and FPR as a function
of the number of bins (kb) used by the proposed algorithm.
Its value was varied from 1 to 10. For each value of kb we
computed TPR and FPR for the six data files and averaged
TPR and FPR across these files. This corresponded to the
threshold averaging method explained by Fawcett [39]. True
positive rate for excluded force events (TPRf ), false positive
rate for excluded force events (FPRf ), true positive rate for
included marker events (TPRm) and false positive rate for
included marker events (FPRm) was defined as follows.

TPRf =
TPf
Pf
× 100 (3)

FPRf =
FPf
Nf
× 100 (4)

TPRm =
TPm
Pm
× 100 (5)

FPRm =
FPm
Nm
× 100 (6)

TPf True positive force events: Force events excluded by
both the algorithm and the examiner.

FPf False positive force events: Force events excluded by
the algorithm and not by the examiner.

Pf Positive force events: Force events excluded by the
examiner.

Nf Negative force events: Force events not excluded by the
examiner.
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TABLE 1. Means and standard deviations for prevalence of excluded force events and included marker events. NDL stands for non-dominant leg. DL
stands for dominant leg. The differential speed configuration corresponds to both the belts moving at different speed with a ratio of 1:2. The same speed
configuration corresponds to both the belt moving at same speed with a ratio of 1:1.

TPm True positive marker events: Marker events included by
both the algorithm and the examiner.

FPm False positive marker events: Marker events included
by the algorithm and not by the examiner.

Pm Positive marker events: Marker events included by the
examiner.

Nm Negative marker events: Marker events not included by
the examiner.

To represent ROC performance as a scalar value,
we obtained area under the curve (AUC). The AUC score was
interpreted as the probability that the proposed algorithm cor-
rectly labeled a randomly chosen positive case against a ran-
domly chosen negative case. Thus an AUC score of 1.0 was
considered perfect discriminative ability and 0.5 represented
random guessing [39]. To identify optimal number of bins
(kb), we obtained Youden index [40]. It was computed as
TPR – FPR at each point of the ROC curve and its maximum
value (YImax) corresponded to the optimal number of bins
(kb). YImax was interpreted as informedness of the proposed
method with 1.0 considered perfect discriminative ability and
0 as random guessing.

To evaluate the relationship between the walking speed of
participants and the performance of the proposed method,
the Spearman’s rank correlation coefficient (ρ) and p-value
for zero correlation null hypothesis (H0: ρ = 0) was obtained.
The correlation was performed between speed and true pos-
itive rate, speed and false positive rate. Significance level
was set at 0.05. True positive rates and false positive rates
were obtained for excluded force events and included marker
events for each belt in each speed configuration as explained
in Equations 3 – 6. To keep the analysis simple, no distinction
was made between belts, speed configuration, excluded force
events or included marker events while performing the corre-
lation. Nonetheless a different number of bins (kb) parameter
of the algorithm was chosen for each speed configuration as
dictated by the ROC analysis. Moreover, for the differential
speed configuration, the fastest comfortable walking speed
was treated as the walking speed. And for the same speed
configuration, half of the fastest comfortable walking speed
was treated as the walking speed.

Finally to show the implication of using the proposed
algorithm on standard gait analyses, we compared the step
lengths measured using the corrected gait events derived from
DACA against the uncorrected gait events derived from force
plates using the threshold method. The step length for both

the DL and the NDL of one of the participants was obtained
for this purpose. The step length for the DL was calculated
for each step at heel-strike as the distance from the DL heel
marker to the NDL heel marker. Similarly the step length for
the NDL was calculated for each step at heel-strike as the
distance from the NDL heel marker to the DL heel marker.

III. RESULTS
A. PREVALENCE
Table 1 lists the prevalence of excluded force events and
included marker events by the examiner. The prevalence of
included marker events was higher compared to the preva-
lence of excluded force events due to the fact that in many
cases gait events were not detected at all from invalidated
force data. The prevalence rates were higher in same speed
configuration compared to the differential speed configura-
tion. The rates were also higher for the slow belt compared
to the fast belt. These results are further discussed later in
Section IV.

B. RECEIVER OPERATOR CHARACTERISTICS
The receiver operator characteristic curves are given
in Figure 3. With a single bin (kb = 1) the true positive
and the false positive rates for both the excluded force
events and the included marker events were equal to 100%.
As the number of bins were increased, the false positive rate
decreased more rapidly than the true positive rate. This was
also reflected by the area under the curve which was above
0.8 in all cases, refer to Table 2. The algorithm demonstrated
good performance (AUC > 0.8) for slow belt (NDL) in the
differential speed configuration and excellent performance
(AUC > 0.9) in all other cases.

The number of bins corresponding to YImax was 3 for both
marker and force events for both the slow and the fast belt
in the differential speed configuration. In the same speed
configuration the number of bins corresponding to YImax was
5 for both the belts for the force events. For the marker events,
the number of bins was 6 for slow belt (NDL) and 5 for the fast
belt (DL). These results indicated that the algorithm achieved
consistent performance under same parameter value within a
speed configuration.

C. RELATIONSHIP BETWEEN SPEED AND PERFORMANCE
True positive rates and false positive rates for excluded
force events, included marker events, belts and speed
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FIGURE 3. Differential speed (a, b) and same speed (c, d) configuration receiver operator characteristics curves for excluded force events and
included marker events by the algorithm. ‘o’ represents the point corresponding to maximum Youden index. NDL stands for non-dominant leg. DL
stands for dominant leg. TPRf and FPRf are the true positive and the false positive rates for the excluded force events respectively. TPRm and
FPRm are the true positive and the false positive rates for the included marker events respectively.

TABLE 2. Performance metrics for the proposed algorithm under different conditions. NDL stands for non-dominant leg which was over the slow belt. DL
stands for dominant leg which was over the faster belt. kb represents the number of bins parameter of the algorithm. YImax represents the maximum
value of the Youden index.

FIGURE 4. True positive rate (TPR) and false positive rate (FPR) plotted
against walking speed. ρ, ‘p’ represent the Spearman’s rank correlation
coefficient and its corresponding p-value respectively. The solid lines
represent the least-squares best fit lines.

configurations are plotted against the walking speed in
Figure 4. As dictated by the results of the ROC analysis
(Table 2), these TPRs and FPRs were obtained with number

of bins (kb) equal to 3 and 5 for the differential and the same
speed configuration, respectively. The correlation between
TRP and speed, FPR and speed was 0.06 and 0.01, respec-
tively. There was not enough evidence (p > 0.05) to suggest
a statistically significant correlation in either case. However
there were a few large outliers which are discussed later in
Section IV.

D. COMPARISON WITH FORCE THRESHOLD METHOD
Step lengths measured using uncorrected gait events derived
with the force threshold method and gait events corrected
using DACA are shown in Figure 5 (a) and (b) respectively.
The uncorrected gait events resulted in a smaller number
of steps (318) with multiple step length outliers. Whereas
DACA corrected gait events identified a larger number of
steps (352) and normally distributed step lengths.

IV. DISCUSSION
We have developed a novel algorithm which automatically
detects invalid force data during a split-belt treadmill task.
This rigorous evaluation of the performance of the algorithm
indicates that it has good to excellent detection and correction
performance in both the same speed and differential speed
configurations.
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FIGURE 5. Step lengths for the dominant (DL) and the non-dominant leg (NDL) measured using uncorrected gait events derived with the force
threshold method (a) and gait events corrected using the proposed method (b). The number of points correspond to the number of steps
identified from the gait events.

The prevalence of invalidated and corrected gait events
as determined by the examiner varied between 0.18% and
18% dependent upon the speed configuration and duration
of the task, illustrating the scope of the problem. This has
led researchers to use belt separators which changes the task
[33], discard parts of the data or abandon the use of force
data in favor of other sensors [34]. Thus the proposed method
provides a viable alternative with the benefit of reduced
processing time compared to manual examination and correc-
tion. Also it results in more robust events for gait analyses as
compared to automatic event detection using the force plates
alone.

The prevalence of both the excluded force events and
included marker events was considerably higher for the slow
belt in both differential speed and same speed configura-
tions. The higher prevalence for the slow belt relates to
the dominant leg stepping onto the slow belt. This sug-
gests that prevalence of invalid force events is related to
leg dominance and not to belt speed. The prevalence of
included marker events was also higher compared to the
prevalence of excluded force events due to the fact that in
many cases, gait events were not detected at all from inval-
idated force data. Furthermore the prevalence was higher in
same speed configuration. This may be due to familiariza-
tion to same speed configuration which has been found to
narrow the base of gait over time [5], or fatigue resulting
from 15 minutes of walking in the differential speed config-
uration which preceded the same speed configuration in this
study.

The parameters of the algorithm are simple, intuitive and
can be tuned manually. In future applications, the parameters
can be fine tuned to meet the characteristics of the force
sensor, the split-belt task and the population. All of the algo-
rithm parameters, except for the length and number of bins,
are based on the statistical properties of the recorded data

and, thus, adaptive to differences in data. The length of the
bin should be chosen based upon the sampling rate of the
force sensor, rate of change of force dynamics, and the com-
putational power required to process the data. The number
of bins was used to select the sensitivity of the proposed
algorithm. Its effect on the performance of the algorithm was
studied using the ROC analysis. A larger number of bins
reduced the sensitivity and a smaller number of bins increased
the sensitivity of the algorithm. The analysis showed that
the number of required bins differs across speed configura-
tions, however the same number of bins produce consistent
detection performance within the same configuration. This
finding is important as only one bin number can be used for
processing data for a given configuration. We recommend the
use of 3 to 6 bins.

The walking speed of the participant on the split-belt tread-
mill did not have an effect on the performance of the algo-
rithm in general. The significance of this result is amplified
by the fact that same number of bins was used for all the data
files for a given speed configuration. Thus, in future applica-
tion, one can expect generally high detection and correction
performance from the proposed algorithm without tuning its
parameters for each data file. However as a few large outliers
were observed in the speed versus performance analysis, fine
tuning of parameters might be inevitable in some instances.
A quick diagnostic tool to help this process is the scatter
histogram plot of the outcome variable (e.g. step length) as
shown in Figure 5. This plot gives a comprehensive overview
of the performance of the algorithm and can be used to decide
if the algorithm is performing well for the given data file with
the selected parameters without the need to scroll through
long raw force data. If there are outliers and the distribution
of the outcome variable is not as expected, the parameters of
the algorithm can be readjusted till desired performance is
achieved.
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Another important consideration for processing of force
sensor data and 3-D marker data is the selection of the cut-off
for the low pass filter. In the past, researchers have used vary-
ing cut-offs depending on the sensor characteristics, task and
the population. For example, for force sensor data, cut-offs at
50 Hz and 20 Hz have been used [24], [38]. Whereas for 3-D
marker data, cut-offs at 6 Hz, 7 Hz 10 Hz and 12 Hz were
used [24], [25], [31], [41], [42]. In this study we used 10 Hz
cut-off for force sensor data and 25 Hz cut-off for 3-D marker
data. These cut-offs may compromise the performance of the
proposed method in a different population or task. Therefore
fine tuning of the cut-offs is suggested for future application
in accordance with the sensor characteristics, the task and the
population.

We used a 3D marker system to replace invalid gait events
from force data or add gait events not detected altogether.
Whilst we used the coordinate-based treadmill algorithm to
detect gait events from 3D markers, the proposed algorithm
can be used with any other algorithm which suits the needs
of the researcher. Furthermore it can also be used in combi-
nation with an algorithm which detects gait events from other
sensors such as accelerometers [26].

The findings of this research should be considered in light
of a number of factors. The algorithm uses square of the accel-
eration derivative to transform the force values into noise lev-
els. Force values with high noise level are labeled as invalid.
Mean and standard deviation of the noise levels are used for
this purpose. The algorithm also uses these noise levels to
estimate swing and stance phases. Those stance phases which
are longer than twice the time for most of the stance phases
are also labeled as invalid using the mode statistic. Therefore
the performance of the algorithm is expected to deteriorate
under extremely high prevalence of invalid force wheremean,
standard deviation and mode can not adequately represent the
data characteristics.

A. SOFTWARE AVAILABILITY
The MATLAB (MathWorks, Inc., Natick, MA, USA) based
implementation of the proposed algorithm, the graphical user
interface tool for visual examination and example data files
have been made available online.1 These tools can be used to
import force plate and 3-D marker data from Vicon Nexus,
process the data using the proposed algorithm and visualize
the invalidated and corrected gait events.

V. CONCLUSION
We have proposed an algorithm which accurately detected
invalidated force during an instrumented split-belt treadmill
task due to placement of both feet on the same belt. Cou-
pled with a secondary sensor, 3-D markers in this study,
the proposed algorithm can automatically replace invalidated
gait events in force data with gait events detected from the
secondary sensor. ROC curve analysis on data collected from
healthy participants in both the same speed and differential

1https://github.com/GallVp/knkTools

speed configurations showed that the proposed algorithm
has good to excellent detection and correction capacity. Its
performance was also robust to walking speed.
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