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ABSTRACT Burn-in is an effective and widely used means to improve product reliability by eliminating
weak units before they are distributed in the market. Traditional burn-in that distinguishes weak units by
failure during testing is inefficient and incompetent for degradation-failed products in which weak units
degrade faster than normal individuals. Hence, the manufacturers have to turn to the degradation-based
method. The mean lifetime to failure (MTTF) of a burnt-in population is diminished because of this type
of burn-in increases the degradation level of all tested units. Ignoring the impact of burn-in leads to inferior
test decisions. This study develops a multi-objective burn-in method that can simultaneously minimize the
burn-in cost andmaximize the burnt-in population’sMTTF.We employ the time-transformedWiener process
with random effects to model the nonlinear degradation path of products and develop a burn-in scheme with
two decision variables, namely, test duration and screening cutoff level. Cost expression and lifetime-based
optimal objective are analytically developed. The optimal test policy is determined using the multi-objective
evolutionary algorithm based on decomposition. A simulation study is conducted to demonstrate the usage
and effectiveness of the multi-objective burn-in method.

INDEX TERMS Degradation, Wiener process, burn-in, expectation-maximization algorithm, multi-
objective optimization.

I. INTRODUCTION
With increasing market competition, reliability has been
regarded as one of the important quality indicators for modern
products and exerts great effects on product price and man-
ufacturer reputation. Therefore, manufacturers have great
impulsion to design and produce products with high relia-
bility to maintain market competitiveness. However, a small
portion of poorly manufactured products, which are collec-
tively called a weak subpopulation, inevitably exists due
to the inherent variability in raw materials and accuracy
fluctuation in the production process. These weak individ-
uals are expected to fail earlier than normal individuals [1].
Although the proportion of the weak subpopulation can be
reduced by improving the manufacturing technology and
management level, these methods would entail high costs
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and long cycles. In comparison, burn-in has been proven to
be one effective and low-cost means to identify weak units
and improve products’ onsite reliability from the customer’s
perspective [2], [3].

Burn-in test can be classified into two types according to
the failure mechanism. Traditional burn-in, which is based
on catastrophic failure, is conducted by subjecting all units
to normal or accelerated working load for a suitable duration.
Then, the failed subjects are screened to prevent these weak
subjects from being shipped to customers. Detailed discus-
sions on the optimization of this type of burn-in policy can
be found in Sheu and Chien [4], Cha and Finkelstein [5],
Cha [2], and Ye et al. [6]. In reality, however, there exists a
broad category of products or components whose reliability
is directly related to the degradation of some quality char-
acteristics [7]. Take the high-power laser diode (HPLD) as
a example, which is widely used in laser processing indus-
tries. HPLD’s main quality characteristic, the output optimal
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power, will constantly declines over time. If its output optimal
power become less than the pre-specified level, the process-
ing quality will no longer be able to meet the initial require-
ment, then it is regarded to have failed and should be replaced.
With the aid of modern measurement techniques and Inter-
net of Things, degradation data have become increasingly
accessible at a relative low cost, and there will be a growing
number of products whose failure can be defined by their
degradation level [8]. For these degradation-failure products,
although weak units have higher degradation rates than nor-
mal ones, they can still survive for a relatively long duration
in traditional burn-in testing. Therefore, manufactures have to
resort to the degradation measurement, that is, degradation-
based burn-in, to perform screening.

The Wiener process and its extensions have been widely
adopted to model degradation characteristics [9]–[13], and
also successfully employed to construct degradation-based
burn-in models. For example, Tseng and Peng [14] con-
structed a burn-in model using the integrated Wiener process
and discussed burn-in scheme optimization. Ye et al. [15]
studied the burn-in planning of products with two competing
risks. Ye et al. [16] applied the Wiener process to model the
measured degradation and discussed the optimal burn-in plan
by jointly considering the burn-in test cost and maintenance
expense. In the work of Peng [17], a degradation model with
that considers random effects and measurement errors was
proposed and the burn-in test is extended into a classification
problemwith several subpopulations. Zhai et al. [18] recently
studied the optimization of degradation-based burn-in plan
with considering the measurement errors. Moreover, gamma
process has also been used in degradation-based burn-in opti-
mization [1].

In many studies, test duration was considered as a main
determinant of the burn-in scheme [1], [14], [18]. Long test
duration increases the test cost and improves the burn-in
effect and vice versa. However, on the other aspect, burn-in
test will also increase the degradation level, thereby decreas-
ing the remaining useful lifetime in field use. Its impact on the
mean lifetime to failure (MTTF) of the burnt-in population
should thus be taken into account. In addition, the previ-
ous studies usually adopted the single-objective optimization
method from cost perspective, in which the test effect is mea-
sured by the misclassification probability [1], [14], [17], [18].
And the test expense and the misclassification probability
are combined into a composite cost function. Nevertheless,
as argued by Wang and Pham [19], specifying the weights of
each sub-objective in the final composite objective remains
challenging for decision makers. In fact, burn-in optimiza-
tion essentially consists of two individual objectives, namely,
minimizing the cost and maximizing the effect. The effect of
burn-in test lie in the reliability improvement of the tested
population, which include such aspects as increased MTTF,
improvement of consistency and quality, enhancement of
goodwill, etc. MTTF and quality are both two frequently
used measures of reliability, and they are very useful in their
respective application scenarios. When the warranty policy

has been formulated before burn-in test, quality would be
a feasible measure of the burn-in effect. However, when
there is not yet an existing warranty or the manufacture tries
to formulate a more optimal warranty policy than before,
MTTF would play an important role in the decision-making
process of the warranty period. In this study, we employ the
Wiener process as a basic to develop the degradation model
of the testing population, which consists of two sub-groups
with different degradation rates. Then we develop a multi-
objective optimization model for burn-in. We chose the per-
unit cost increment and the burnt-in population’sMTTF as the
two objectives, and derive expressions for them. Additionally,
a feasible multi-objective optimization method has also been
studied.

The rest of the paper is organized as follows. In Section 2,
we employ the Wiener process with random effects to
model the performance degradation path of a type of prod-
uct whose reliability is directly determined by the degrada-
tion level. Then, we derive the formulation of the product’s
lifetime distribution. Moreover, the burn-in test scheme is
discussed, and parameter estimation using the expectation-
maximization (EM) algorithm is presented. In Section 3,
we briefly state the optimization problem from the two
aspects of decision variables and objectives and derive the
formulation of the burn-in cost and MTTF of the burnt-in
population. The multi-objective optimization of the burn-in
test scheme is established through an evolutionary algo-
rithm. Section 4 provides a simulated example to demon-
strate the availability and benefits of the proposed models.
Section 5 presents the conclusion of the study and possible
future work directions for this topic.

II. DEGRADATION-BASED BURN-IN MODEL
A. DEGRADATION PROCESS MODELLING
TheWiener process and its extensions have been widely used
to describe performance degradation in reliability engineer-
ing practice and survival analyses. In this study, we adopt
the non-homogeneous Wiener process to model degradation
data, as it has been proven to be sufficient for describing
the quality characteristics of many products with linear or
nonlinear degradation paths. Let {Y (z), z > 0} denotes the
observed degradation values of a product’s performance at
time z. We assume that

Y (z) = α3 (z)+ σB (3 (z)) , (1)

where α is the drift rate parameter, σ is a diffusion parameter,
and B(·) is the standard Brownian motion which is used to
represent the temporal variability of the degradation process.
3(z) is a monotonically increasing function with respect to
time z and is specified according to the physical progress
of degradation, such as fatigue growth, corrosion, and oxi-
dation. This function is commonly referred to as a trans-
formed time scale function [9], [11], that determines the path
pattern of the degradation process. For example, the power
low form of 3(z) is often used to describe the degradation
of HPLD, and the linear form is widely adopted in many
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studies as well. Degradation process Y (z) has independent
increments1Y (z) = Y (z+1z)− Y (z), and1Y (z) follows
a normal distribution as follows:

1Y (z) v N
(
α13(z) , σ 213(z)

)
,

where 13(z) = 3(z+1z)−3(z).
Due to the variability of raw materials quantity and manu-

facturing accuracy, it is common to see that the degradation
rates of individuals in a population may show notable unit-
to-unit variability [20]. This type of characteristic in the
population’s degradation pattern can be solved by introducing
the random effect parameter into the Wiener process [11].
In this study, we assume that α v N (µ, γ 2) to capture the
heterogeneity across individuals in the same population,
which means that random effect parameter α is fixed for
each unit, but unknown, and follows a normal distribution.
This type of normality assumption is widely adopted by
many studies [20]–[22]. Conditional on the drift rate α,
degradation increment 1Y (z) follows the normal distribu-
tion N

(
α13(z) , σ 213(z)

)
. To obtain the unconditional

distribution of1Y (z), we first derive the moment generating
function(MGF) of 1Y (z), which is given by

M1Y (z)|α(s) = exp
(
α13(z) s−

1
2
σ 2s213(z)

)
. (2)

Integrating α out of (2), we can obtain the unconditionalMGF
of 1Y (z) as

M1Y (z)(s)

= Eα(M1Y (z)|α(s))

= exp
(
−
1
2
σ 2s213(z)

)∫
+∞

−∞

exp (α13 (z)) f (α) dα

= exp
(
µ13(z) s−

1
2
s2
(
σ 213(z)+ γ 2132 (z)

))
,

(3)

where f (α) is the probability distribution function (PDF) of
random variable α. Therefore, from the MGF in (3), it is
easily known that the unconditional distribution of 1Y (z)
is also normally distributed, and the distribution of 1Y (z)
is given by

1Y (z) v N
(
µ13(z) , σ 213(z)+ γ 2132 (z)

)
. (4)

It is noticed that the introduction of random effect increases
the variance, and the degradation model used by Ye et al. [16]
can be treated as a special case of the proposed model when
α is fixed.

B. LIFETIME DISTRIBUTION
When a product’s degradation level reaches the per-defined
threshold, which is denoted by Yth, the product is considered
to have failed [23]. Take HPLD as an example, when the
laser’s accumulated degradation level of output optical power
exceeds 30% of the initial value, it is regarded as not qualified
for field use because its performance can no longer meet the

original design requirement [24]. This situation also exists
in the pantograph of high-speed rail. When the thickness of
the pantograph pan is less than the required minimal value,
it must be treated as having failed and replaced to prevent
catastrophic failure. Therefore, we can derive the product life-
time distribution from above mentioned degradation model
with the introduction of failure thresholdYth, which is usually
given by industrial standards. The product lifetime is merely
the first passage time (FPT) of the degradation process [25].
It has been proved that the FPT of the standardWiener process
follows the famous IG distribution [22].

As proposed by Wang in [26], with a time transformation
function, the non-homogeneous Wiener process in (1) can be
treated as a time-transformedWiener process. Assuming that
t = 3(z), where z is the actual operating calendar time, while
t denotes a new chosen time scale for making the derivation
process tractable, then it is readily obtained that Y (z) =
L (t) = αt+σB (t), where L (t) is a standard Wiener process
with drift and diffusion parameters α and σ respectively.
Failure occurs when the accumulated amount of degradation
reach the preset critical value Yth. Let Z = inf{z : Y (z) ≥
Yth} and T = inf{t : L (t) ≥ Yth} denote the FPTs of Y (z)
and L (t) respectively. Owing to the monotonically increas-
ing characteristic of 3(·), there is a one-to-one relationship
between each realization of Z and T , as Z = 3−1 (T ) [11].
Thus the PDF of Z is fT (3(z))3′(z) for z ≥ 0, where fT (·)
is the PDF of T . Particularly, the linear degradation model
in [18] and [16] can be treated as a special case of this model.
In this study, we will discuss the lifetime distribution and
burn-in plan under the new t time scale to make the derivation
process tractable.

Conditional on α, it is readily obtained that T follows the
inverse Gaussian (IG) distribution IG

(
Yth/α, Yth

2/σ 2
)
with

mean Yth/α and variance Yth · σ
2/α3. The conditional PDF

and cumulative distribution function (CDF) are defined as

fT |α (t | α) =
Yth

√
2πσ 2t3

exp

(
−
(αt − Yth)

2

2σ 2t

)
,

and

FT |α (t | α)=8
(
αt−Yth

σ
√
t

)
+exp

(
2Ythα

σ 2

)
·8

(
−
αt+Yth

σ
√
t

)
,

respectively, where 8(·) is the CDF of the standard normal
distribution. Given the normal prior distribution of α, we can
further obtain the following marginal PDF and CDF of T by
integrating α out of the joint distribution of α and T as

fT (t) =
∫
�

fT |α (t | α) f (α) dα = Eα
[
fT |α (t | α)

]
,

and

FT (t) =
∫
�

FT |α (t | α) f (α) dα = Eα
[
FT |α (t | α)

]
,

where � and f (α) represent the support set and PDF of α,
respectively. As given in [27], when α v N

(
µ, γ 2

)
and
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A,B,C ∈ R, then the following two results hold.

Eα

[
exp

(
−
(A− Bα)2

2C

)]

=

√
C

B2γ 2 + C
· exp

(
−

(A− Bµ)2

2
(
B2γ 2 + C

)) ,
Eα
[
exp (Aα) ·8(B+ Cα)

]
= exp

(
Aµ+

1
2
A2γ 2

)
·8

(
B+ Cµ+ ACγ 2√

1+ C2γ 2

)
,

where Eα[·] is the expectation operator with respect to α.
Then the PDF and CDF of T can be obtained as

fT (t) =
Yth√

2π
(
γ 2t4 + σ 2t3

) · exp
(
−

(Yth − µt)2

2
(
γ 2t2 + σ 2t

)) ,
(5)

and

FT (t)= 8

(
µt − Yth√
σ 2t + γ 2t2

)
+exp

(
2µYthσ

2
+2Yth

2γ 2

σ 4

)

· 8

(
−
2tDγ 2

+ σ 2 (Yth + µt)

σ 2
√
σ 2t + γ 2t2

)
. (6)

C. BURN-IN TEST MODEL BASED ON DEGRADATION
We consider a type of product whose degradation level
{Y (z) ; z ≥ 0} follows the time-transformed Wiener process
described in (1). After the manufacturing process of a prod-
uct, the performance of a small portion called the inferior
group deteriorates faster than that of normal ones. This infe-
rior group always exists due tomaterial defects or deviation in
the manufacturing process. Hence, the product population is
commonly assumed to consist of two groups with different
degradation rates, i.e., normal and inferior subpopulations,
as indicated in [14], [16], [18], [28]. Before the product
population leaves the manufacture, burn-in test can be carried
out to identify the inferior units from themain population, and
prevent the inferior units from being delivered to customers.
In this paper, normal and inferior group are assumed to share
the same degradation model aside from the drift parameter
that determines the degradation rate. Specifically, the time
transformation function 3(·) and variance coefficient σ are
identical for these two subpopulations. We assume that the
drift parameter of the normal group is α1, which follows
N (µ1, γ

2), and the drift parameter of the inferior group is α2
which follows normal distribution N (µ2, γ

2), where µ2 >

µ1 > 0. Before the burn-in test, the proportions of the normal
and inferior groups are assumed to be fixed and known,
as p1 and p2, respectively, where p1 + p2 = 1. This pair of
value (p1, p2) is determined by the manufacturing technology
level. For example, manufacturers with high manufacturing
accuracy or raw material quality are likely to obtain a higher
p1 compared with their competitors.

We here construct a burn-in test model under the t time
scale. For the degradation process {L (t) ; t ≥ 0}, we sup-
pose that L (0) = 0 without loss of generality. Hence,
after the burn-in test with duration b under t time scale,
the performance degradation increment is L(b) which follows
a Gaussian mixture model (GMM) and is given by

L (b)vp1N
(
µ1b, σ 2b+ γ 2b2

)
+p2N

(
µ2b, σ 2b+γ 2b2

)
.

Let η denotes the cutoff point of degradation level to
identify weak items from the main population. After the test,
the probability of a tested unit being regarded as an acceptable
one is

Pr (L (b) < η) = p181 (b, η)+ p282 (b, η),

where 81 (b, η) = 8

(
η−µ1b√
σ 2b+γ 2b2

)
, and 82 (b, η) =

8

(
η−µ2b√
σ 2b+γ 2b2

)
. In the accepted population after burn-in,

the proportions of normal and inferior units, denoted by pb,1
and pb,2, respectively, can be calculated by the condition
probability method as

pb,1 = Pr (normal unit | accepted unit)

=
p181 (b, η)
Pr (L (b) < η)

, (7)

pb,2 = Pr (weak unit | accepted unit)

=
p282 (b, η)
Pr (L (b) < η)

. (8)

In general p1 > p2, thus there exist pb,1 > p1 and
pb,2 < p2. This condition means that the normal unit propor-
tion increases from original p1 to pb,1 through the burn-in test,
and the inferior units proportion decreases from p2 to pb,2.
As proposed by Ye [16], an interesting index called screening
strength exists, and it is defined as the proportion of identified
weak units through burn-in. Obviously, the screening strength
is determined by cutoff η and test duration b and it can be
calculated as

SS(η, b) =
p2 − pb,2

p2
.

Another index of interest is the ratio of mis-rejection, which is
defined as the normal unit proportion in the rejected subjects
and given by

MS (b, η) = Pr (normal unit | rejected unit)

=
p1 (1−81 (b, η))
Pr (L (b) > η)

.

The manufacturing cost of normal units that have been mis-
rejected makes up the main component of the burn-in cost.

D. PARAMETER ESTIMATION
In actual application, model parameters should be estimated
before burn-in. Two procedures are used to obtain the max-
imum likelihood estimator (MLE) of the parameters. First,
the parametric form of 3(·) should be determined based on
degradation data or prior knowledge. If the information about
the degradation pattern and physics of this type of products
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is sufficient, the parametric form of 3(·) can be constructed
by prior knowledge. As argued by Kawakubo et al. [29],
analysis of the wear physics of the magnetic head in hard disk
drivers reveals that its degradation level follows a power-law
function. Meanwhile, if prior information is lacking, we can
specify the function form for3(·) based on degradation data.
The previous discussion indicates that the mean path of Y (z)
is µ3(z). Therefore, we can obtain the estimated mean path
by averaging the degradation observations of all testing items
and then employ a specific parametric form for 3(z) to fit
the mean path. In addition, as proposed in [10], the semi-
parametric inference method for Wiener process can also be
used to determine the 3(·) function type.
The second procedure is statistical inference for model

parameters 2, that are µ1, µ2, γ, σ, p and 3 which repre-
sents the parameters involved in the time transform function.
Suppose that N units are subject to a degradation test. For
simplicity, in this study we only discuss the case when all
testing units are inspected with the same inspection times. For
the case of different inspection times among various units,the
inference method proposed in [26] can be employed to obtain
parameter estimations. Assume that the i-th unit is inspected
at time zj with observation Yi

(
zj
)
, i = 1, . . . ,N , j = 1, . . . , J .

Let yij = yi
(
zj
)
− yi

(
zj−1

)
be the degradation increments

and λj = 3
(
zj
)
− 3

(
zj−1

)
be the time increment in z time

scale. Then, yij is independent and follows mixed Gaussian
distribution. The PDF of yij is

f
(
yij | 2

)
= p1f1

(
yij | 2

)
+ p2f2

(
yij | 2

)
,

where f1 (·) and f2 (·) denote the PDF of normal and weak
subpopulations, respectively. Considering that the PDF of yij
is in the form of a sum, the corresponding log-likelihood
function, which is composed of this type of PDF, can not be
directly maximized for MLE. Here, we will introduce a latent
variable and employ the EM algorithm to find MLE itera-
tively. We define a random vector hi =

(
hi,1, hi,2

)
,where hi1

and hi2 are class indexes for the i-th unit, hi,1, hi,2 ∈ {0, 1}
and hi,1 + hi,2 = 1. For example, Pr {hi1 = 1, hi2 = 0} = p1
indicates that the i-th unit is a normal itemwith probability p1.
With the help of latent variable hi, the joint density function
of complete data

(
yij, hi

)
can be obtained as follows:

f
(
yij, hi | 2

)
=

2∏
k=1

pk J∏
j=1

fk
(
yij | 2

)hik

.

Hence, we can form the log-likelihood function for 2 up
to a constant as

L(2 |yij, hi) =
N∑
i=1

2∑
k=1

hik

ln pk+ J∑
j=1

ln fk
(
yij | 2

)
∝

N∑
i=1

2∑
k=1

hik

ln pk−
1
2

J∑
j=1

(
ln
(
σ 2λj+γ

2λ2j

)

+

(
yij − µkλj

)2
σ 2λj+γ 2λ2j

)

E-step According to the definition of latent variable hi,
we have

E
(
hik | yij, 2̂(m)

)
= Pr

{
hik = 1 | yij, 2̂(m)

}
=

p̂k
(m)∑J

j=1 fk
(
yij | 2̂(m)

)
∑2

k=1 p̂k
(m)∑J

j=1 fk
(
yij | 2̂(m)

) . (9)

Then, the Q-function can be obtained by taking the condi-
tional expectation of log-likelihood function with respect to
hik as follows:

Q(2|2(m))=E
(
L (2) | yij, 2̂(m)

)
=

N∑
i=1

2∑
k=1

E (hik) ln pk−
1
2

N∑
i=1

2∑
k=1

J∑
j=1

E (hik)

·

(
ln
(
σ 2λj + γ

2λ2j

)
+

(
yij − µkλj

)2
σ 2λj + γ 2λ2j

)
. (10)

M-step Through maximizing the Q-function (10) with
respect to 2, we can obtain the 2̂(m+1) for the next iteration.
As we can see, pk in (10) is only involved in the first term on
the left hand side, denoted by Q1(pk | yij,2(m)). Analytically
maximizing this term yield

p̂(m+1)k =

∑N
i=1 E (hik)
N

.

The other parameters are all involved in the second part of
the Q-function. Hence we can obtain the remaining solutions
by minimizing the second part, denoted by Q2(µk , σ, γ,3 |
yij,2(m)). All test units are assumed to share the same
inspection times, which is easily to meet in the degradation
test by manufacturers. Under this assumption, when 3(t)
take a certain parametric form, such as linear, power law
or exponential function, the parameter of 3(·) can be eas-
ily and simultaneously obtained with the other ones. Here,
we employ a multi-dimensional unconstrained optimization
algorithm(‘‘fminsearch’’ function in MATLAB) to obtain
µ̂
(m+1)
k , σ̂ (m+1), γ̂ (m+1) and 3̂(m+1). Specifically,(
µ̂
(m+1)
k , σ̂ (m+1), γ̂ (m+1), 3̂(m+1))

= arg max Q2

(
µk , σ, γ,3 | yij,2(m)

)
Substituting these MLEs into (9), the updated value of E(hik )
is acquired. Accordingly, the new Q-function is obtained.
Therefore the EM algorithm can be performed by iteratively
processing the E-step and M-step until all MLEs converge.
Additionally, the bootstrap method can be used here to assess
the uncertainty of these parameter estimators [26].

III. MULTI-OBJECTIVE OPTIMIZATION
OF THE BURN-IN SCHEME
A. ASSUMPTIONS
To further specify the application scenario of the burn-
in scheme optimization, the following explanations are
established.
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(1) Burn-in is an essential classification problem based on
the degradation level of tested units. Burn-in duration b is
a key decision variable. If the test duration is inadequate,
degradation measurements of the weak units will be close
to that of the normal ones. Hence, achieving a presentable
classification result is difficult, especially when the products
exhibit low degradation rates. By contrast, if the test duration
is too long, the normal population will waste its lifetime in
the burn-in test althoughmany weak units can be successfully
removed.

(2) After burn-in duration b, optimal cutoff value η is
another key decision variable that determines the screening
strength. Units whose degradation level exceeds cutoff level η
will be regarded as inferior individuals and disposed without
any reward. Therefore, a low η represents a strict standard for
accepting a tested unit as a qualified item.

(3) The principal aim of burn-in is to improve field-use
reliability. In this study, we choose the burnt-in population’s
MTTF, which is crucial to product price and brand value,
to assess the burn-in effect. On the other side, burn-in cost,
including the test expenditure itself and the manufacturing
cost of those rejected units, is another important factor to
be considered. Burn-in optimization is to balance the test
effect with the incurred cost, and offers support means for
decision-making.

B. BURN-IN COST FORMULATION
From the manufacturer’s point of view, burn-in cost mainly
consists of two parts. The first part, which is the direct test
cost, is the burn-in test expense. It is calculated by c0 +
ct3−1(b), where c0 is the fixed burn-in cost for each unit,
ct represents the unit time burn-in cost for individuals on
the average, and b is the burn-in duration under t time scale.
In practice, c0 and ct are determined by the test method that
is conducted according to corresponding industrial standards.
For a given class of products, these two cost parameters are
constant; thus the direct test cost is directly proportional to
the test duration. The second part is called the indirect burn-in
cost, which is defined as the per-unit cost increment incurred
by the burn-in test. Assuming that the original per-unit man-
ufacturing cost is cm and increase to cm/(1−MS(b, η)) after
burn-in, hence the indirect cost for each unit is cm/(1 −
MS(b, η))−cm, and the per-unit burn-in cost can be calculated
as follows:

Cb (b, η) = c0 + ct3−1(b)+
cm ·MS(b, η)
1−MS(b, η)

. (11)

According to (11), the direct test cost increases as the test
duration b increases. The indirect cost is jointly determined
by test duration b and classification cut-off η. A small η
results in the removal of many tested units, indicating a
rigorous screening standard and high corresponding test cost
of burnt-in units.

C. MTTF OF BURNT-IN UNITS
The advantage of burn-in is its capability to pick out weak
units and increase the burnt-in population’s MTTF. In this

section, we derive the field-use reliability from the customer’s
point of view. We let random variable u be the degradation
level of an accepted unit right after the burn-in test with
duration b and screening cutoff η. It can be verified that u
follows the truncated normal distribution, and the PDF is
given by

gk (u) =
1

σb ·8
(
η−µkb
σb

) · φ (u− µkb
σb

)
, (12)

where σb =
√
σ 2b+ γ 2b2 is the degradation variance of the

units right after burn-in, and k is an index for normal (k = 1)
and weak (k = 2) units. We discuss the lifetime under t
time scale. Let Tb represents the remaining lifetime of the
burnt-in population, and Tb,k is the corresponding lifetime of
the normal or weak subpopulation. Conditional on the initial
degradation level u, the PDF and CDF of Tb,k , written as
fTb,k (t|u) and FTb,k (t|u), can be obtained by replacing µwith
µk and Yth with Yth − u in (5) and (6) respectively. Then the
PDF of Tb,k is given by

fTb,k |u (t|u)=
Yth − u√

2π
(
γ 2t4+σ 2t3

) · exp
(
−
(Yth−u−µk t)2

2
(
γ 2t2+σ 2t

) ).
By using the law of total probability, themarginal PDF of Tb,k
can be derived as

fTb,k (t)=Eu
[
fTb,k (t, u)

]
=

∫ η

−∞

fTb,k (t|u) · gk (u) du. (13)

The lifetime PDF of the burnt-in subjects then can be
calculated by conditional on the class index of this subject,
which is given by

fTb (t; b, η) =
2∑

k=1

(
pb,k · fTb,k (t)

)
. (14)

The PDF of Tb then can be obtained by substituting (7), (8)
and (13) into (14) as follows:

fTb(t;b,η)=
1

σbPr (L (b) < η)

2∑
k=1

pk·
∫ η

−∞

(Yth − u)√
2π
(
γ 2t4+σ 2t3

)
· exp

(
−
(Yth−u−µk t)2

2
(
γ 2t2 + σ 2t

))·φ (u−µkb
σb

)
du. (15)

Let Zb denotes the burnt-in population lifetime under the
actual operating calendar time scale of z. As proposed by
Wang in [11], considering the monotonically increasing char-
acteristic of3(·), the function relationship between Zb and Tb
can be obtained as

Zb = 3−1 (b+ Tb)−3−1 (b) .

Eventually, the actual operating calendar time MTTF of
burnt-in units can be calculated as

MTTF (b, η)=
∫
∞

0

(
3−1 (b+ t)−3−1 (b)

)
fTb (t; b, η) dt.

(16)
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Equation (16) have no close-form expression. Here we
use the numerical integration method to calculate the MTTF
under a specific burn-in scheme (b, η). For each t with a
fixed value, fTb (t; b, η) in (15) can be effectively computed
using some well-developed numerical meanings, such as the
Riemann-Stieltjed method [30] and the integral method pro-
vided in [16]. It is not difficult to verify that, under an appro-
priate burn-in scheme, the MTTF of burnt-in units will gain a
significant increment compared with the original population
and the mean lifetime increment can be regarded as the profit
of the burn-in test.

D. MULTI-OBJECTIVE OPTIMIZATION DESIGN
As discussed above, the burn-in scheme involves two decision
variables: burn-in duration b and degradation cut-off η; and
its scheme optimization consist of two individual objectives:
minimizing per-unit the cost increment caused by burn-in
and maximizing MTTF of the burnt-in population, which
can be regarded as reliability improvement through burn-in
application. These objectives are in conflict with each other.
Hence, there does not exist a single feasible solution that
can simultaneously make all objectives absolutely optimal.
Optimization aims to seek out the trade-offs for balancing
the cost increment and burn-in effect under some resource
restrictions and provide decision makers with a non-inferior
solution set, which is called the Pareto optimal solutions
in the multi-objective optimization problem (MOP) [19].
Then manufactures can select a proper scheme from the non-
inferior solution set according to their own situation, such as
market positioning and competitiveness. The expected MOP
problem can now be formulated as

Min Cb (b, η) and Max MTTF (b, η)

Subject to: b ≤ Tmax

Cb (b, η) ≤ Cmax

MTTF (b, η) ≥ MTTF0

where Tmax is the maximum test duration in t time scale,
Cmax is the affordable maximum cost for the burn-in test,
and MTTF0 is the required minimum mean lifetime. The
solutions out of these three constraint conditions are use-
less for the field application. The optimization algorithm
is not an important topic in this study, and many existing
methods can be used to perform optimization efficiently.
Evolutionary algorithms are proved to be highly effective
in multi-objective optimization [31], [32]. In this study,
we will solve the burn-in scheme optimization problem using
the multi-objective evolutionary algorithm based on decom-
position (MOEA/D) which has been verified as an excel-
lent representative of evolutionary algorithms and is famous
for its low computational complexity and even distributed
solutions [33]. The source codes and application note of
the MOEA/D algorithm are available on the its homepage
(https://dces.essex.ac.uk/staff/zhang/webofmoead.htm).

IV. ILLUSTRATIVE EXAMPLE
In this section, the MEMS device example provided by
Peng et al. [34] is utilized for illustration. The MEMS device
equipped with a micro-engine is a typical product that suffers
from degradation-type failure. Similar to Ye et al. [16] and
Zhai et al. [18], we assume that the MEMS device population
consists of two subpopulations, namely, majority of normal
units with the proportion p1 = 0.85 and a small part of
inferior units with the proportion p2 = 0.15. We assume that
the degradation path of the two subpopulations can be mod-
eled by the time-transformed Wiener process with a distinct
drift rate that is represented by the random effect parameter.
We here set the two subpopulation’s random effect parame-
ters α1 and α2 in accordance with the normal distribution with
mean µ1 = 0.54× 10−4 and µ2 = 1.28× 10−4 respectively,
and the common variance coefficient γ = 0.12× 10−4. The
two subpopulations share an identical diffusion coefficient
with σ = 1.82 × 10−4. We adopt the power law time trans-
form function as 3(z) = zq and let q = 1.3. The degradation
failure threshold Yth is 6.8. Fig. 1 shows the degradation path
simulation result of 100 units.

FIGURE 1. Simulated degradation paths.

It is obvious noticed that there are a small proportion
degrading faster than the majority of the population, and the
units in this population cannot meet the application require-
ment due to their short service life, which will compromise
the manufacture’s brand reputation. Therefore, burn-in test
is essential for manufacturers to eliminate weak units and
increase the field-use lifetime of their products from the cus-
tomer’s perspective. The following cost profiles are adopted
to construct the burn-in cost formulation: c0 = 5$ /unit,
ct = 0.3$ /unit time, and cm = 2000$ /unit.

A. PARAMETER ESTIMATION
To assess the performance of the proposed parameter estima-
tion algorithm, a Monte Carlo simulation study is carried out.
We use the identical values of model parameters as given in
above section, and choose the number of sample units N =
30, 60, and 90, respectively. The number of observation
J = 500, the observation interval λj = 2. We generate
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TABLE 1. Bias and RMSE of the MLE estimates based on 2000 simulation
replications.

the degradation paths and then perform the EM algorithm to
estimate the parameters. Under each setting of sample size,
the simulation is respectively repeated 2000 times, based on
which the bias and the root mean square errors (RMSE) of the
estimations are obtained. The results are presented in Table 1.
It can be observed that the estimation accuracy is quite high,
and the estimation biases and RMSEs decrease as the sample
size increases. From the results of subsection IV-C,we further
know that the biases of estimated parameters could meet the
requirement of burn-in scheme optimization with a reason-
able quantity of testing units.

B. OPTIMAL BURN-IN SCHEME
We employ theMOEA/D algorithm provided in [35] to obtain
the optimal burn-in test scheme. The MOEA/D algorithm
decomposes an MOP into a number of scalar single-objective
optimization subproblems by using the Tchebycheff aggrega-
tion approach. These subproblems are simultaneously opti-
mized based on the information of their neighborhood with
a relatively low computational cost. In the implementa-
tion, the algorithm settings are as follows: population size
Np = 100, neighborhood size T = 20, the probability
of selecting mating parents from the neighborhood is 0.9,
the crossover rate is 1.0, and the mutation rate is 0.5. The
initial populations are generated by performing uniform ran-
dom sampling from the feasible search space, and the initial
weight vectors λ1, . . ., λNp are generated by using the method
provided in subsection IV-E of [35]. The simulated binary
crossover method and polynomial mutation are used to pro-
duce the new generation of population. The achieved popu-
lation size is set to 30, and the maximal generation number
is 300. MOEA/D algorithm is able to search out the non-
inferior solutions from a given solution space. In practice,
the solution space should be specified by the decision makers
based on the realistic restriction of decision variables, such as
the physical meaning, the actual Implementation conditions.
In this study, the required mean lifetime MTTF0 is set to
7600 hours, and the affordable burn-in duration and test cost
are 500 hours and 200$, respectively.

The obtained Pareto solutions that simultaneously mini-
mize the burn-in cost and maximize theMTTF of the burnt-in
population are indicated in Fig. 2. It is clear that the obtained
solutions are evenly distributed, and these 30 solutions are

FIGURE 2. Pareto solutions.

TABLE 2. Selected Pareto solutions.

called the Pareto frontier. For illustrative purposes, we evenly
sample 10 solutions from the Pareto frontier to further demon-
strate the usage of the optimization result. The selected
solutions are denoted by a red star in Fig. 2 and presented
in Table 2.

As shown in Fig. 2, this type of multi-objective opti-
mization is only able to provide a decision set which is
consist of Pareto solutions. The final decision will be made
by the decision makers based on their own specific situa-
tion. Specific to the burn-in test, manufacturers could finally
make the test scheme based on their products’ circumstances,
such as market positioning, cost, and their profit, etc. For
example, in cases where manufacturers focus on product
MTTF, selecting the first solutionwith 165.7 test duration and
0.065 classification cutoff is feasible. Accordingly, the burnt-
in population MTTF will reaches to 8172.1 hours and the
burn-in cost is 193.6$. By contrast, if the test cost is limited,
selecting the 10th solution it is suggested to improve the field-
use MTTF to 7649.1 hours with a relatively low burn-in cost
of 38.8$.

In addition to MTTF, the proportion of weak individuals
in the burnt-in population is another important factor to be
considered. The SS of the first solution is as high as 97.27%,
which means that the most weak units has been picked out.
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FIGURE 3. PDF and CDF of products without burn-in.

FIGURE 4. PDF and CDF of products with 1st burn-in policy.

FIGURE 5. PDF and CDF of products with 10th burn-in policy.

With the 10th solution, the SS is 49.15%, indicating that only
half of the weak units can be eliminated.

We further demonstrate the burn-in effect from the product
lifetime distribution aspects. In accordance with the simu-
lation assumption, we draw the lifetime PDF and CDF of
the products before the burn-in test in Fig. 3. A relatively
high proportion of weak units exists, and their MTTF is
approximately 4000 hours. The lifetime distributions of the
burnt-in population under the 1st and 10th solutions in Table 2
are presented in Figs. 4 and 5 respectively. It is readily seen
that the 10th test policy with a cost of 38.8$ effectively
decreased the weak unit proportion, and the 1st policy with
a cost of 193.6$ is able to pick out almost all weak individu-
als. Additionally, manufacturers could significantly improve
their products’ consistency on field use lifetime with the
1st test policy, which is very useful in formulating warranty
policies.

TABLE 3. Sensitivity of optimal policies considering the estimation biases
for µ1,2, γ , and σ .

C. SENSITIVITY ANALYSIS
The optimal policy is obtained depending on the true values of
the model parameters. However, the parameter values would
be subject to estimation bias especially when the degrada-
tion observation is inadequate in the pilot study. Hence this
type of estimation errors must be considered, and sensitivity
analysis should be carried out to observe the robustness of
the optimal burn-in. The parameter vector 2 can be divided
into two groups, the first group is model-related, µk , γ ,
and σ ; the other parameters, p1 and p2, are determined by
the manufacturing technology which is generally considered
to be stable for some time. We here only conduct sensitivity
analysis for the model parameters. Without loss of generality,
we assume that ε1, ε2, and ε3 denote the estimation bias for
µ1,2, γ , and σ , respectively. Under the 1st and 10th policy,
burn-in tests are re-conducted for various model parameter
combinations of (1+ ε1) µ1,2, (1+ ε2) γ , and (1+ ε3) σ .
Table 3 presents the cost, MTTFs, and SS for each parameter
combination. From these results, see the burn-in policy is
quite robust for the estimation bias on γ and σ , and relatively
sensitive to µ1,2 departure.

V. CONCLUSION
With the rapid development of measurement techniques and
further understanding of failure mechanisms, a growing num-
ber of products will be subjected to burn-in tests via the
degradation-based method, which can significantly improve
test efficiency with a relatively low cost. In this type of
degradation-based burn-in, the test duration is an important
contributor to the burn-in effect. An extremely long test
duration will considerably increase the degradation level of
test units and hence shorten their remaining useful lifetime.
Therefore, burn-in optimization should consider its negative
effect on the remaining mean lifetime of the burnt-in popula-
tion aside from the classification result. This work proposes a
degradation-based burn-in model and constructs a test policy
with two individual objectives. The first objective is the test
cost, which includes the direct test expenditure and the cost
increment caused by those rejected units. The other objective
is the MTTF of the accepted population, which represents
the burn-in profit. The optimal solution set of test duration
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and classification cutoff is obtained using the MOEA/D algo-
rithm. The results of this study can provide manufacturers a
decision set and help them design an appropriate burn-in test
according to their own product strategy.

Future work could tackle several topics of interest. In the
case where the degradation path is monotonic, the gamma or
inverse Gaussian process is highly suitable for degradation
modeling, and the corresponding burn-in policy optimiza-
tion deserves further investigation. In practice, besides of
faster degradation rate, the weak subpopulation would also
suffer from larger degradation variance than normal ones.
In such situation, the method of using different γ for two
subpopulations would become a reasonable choice. The pro-
posed burn-in optimization should be classified as an off-line
method, in which the test duration is determined based on
the burn-in model before testing. Online optimization, which
utilizes field degradation data during a test to obtain the
minimal duration, is another topic of interest. In this study,
only the degradation value at the end time point are utilized
to perform burn-in screening, this may result in the loss of
substantial information on degradation process characteris-
tics. By contrast, the burn-in method of using the measured
degradation sequence may be a valuable direction for further
research, which would further shorten the test duration and
obtain more accurate burn-in result.
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