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ABSTRACT Acoustic word embeddings (AWEs) have been popular in low-resource query-by-example
speech search. They are using vector distances to find the spoken query in search content, which has
much lower computation than the conventional dynamic time warping (DTW)-based approaches. The AWE
networks are usually trained using variable-length isolated spoken words, while they are applied to fixed-
length speech segments obtained by shifting an analysis window on speech content. There is an obvious
mismatch between the learning of AWEs and its application on search content. To mitigate such mismatch,
we propose to include temporal context information on spoken word pairs to learn recurrent neural AWEs.
More specifically, the spoken word pairs are represented by multi-lingual bottleneck features (BNFs) and
padded with the neighboring frames of the target spoken words to form fixed-length speech segment pairs.
A deep bidirectional long short-term memory (BLSTM) network is then trained with a triplet loss using
the speech segment pairs. Recurrent neural AWEs are obtained by concatenating the BLSTM backward and
forward outputs. During QbE speech search stage, both spoken query and search content are converted into
recurrent neural AWEs. Cosine distances are then measured between them to find the spoken query. The
experiments show that using temporal context is essential to alleviate the mismatch. The proposed recurrent
neural AWEs trained with temporal context outperform the previous state-of-art features with 12.5% relative
mean average precision (MAP) improvement on QbE speech search.

INDEX TERMS Acoustic word embeddings, temporal context, bidirectional long short-term memory
network, spoken word pairs, query-by-example spoken term detection.

I. INTRODUCTION
Query-by-Example (QbE) speech search or spoken term
detection (STD) is the task of searching for the occurrence
of a spoken query in a collection of audio archives [1], [2].
This task has received much attention as it involves matching
spoken queries directly on speech, without the need of a
large vocabulary continuous speech recognition (LVCSR)
system. The spoken query is an audio example of the keyword
of interest. Besides, the system building does not neces-
sarily need language-specific knowledge, such as phoneme
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definition and pronunciation lexicon. Hence the task is par-
ticularly promising for low-resource speech search scenarios.
In such scenarios, we do not have a sizable amount of labeled
data to build a decent speech recognizer. A series of related
benchmark evaluations, such as spoken web search (SWS)
[3]–[5] and QbE search on speech task (QUESST) [6], [7],
have recently focused on this low-resource task.

In low-resource settings, a typical approach for QbE
speech search is to learn efficient frame-level feature rep-
resentations and perform dynamic time warping (DTW) to
find the matching spoken query [8], [9]. However, DTW is
inefficient to do the search on massive audio archives. As an
alternative to DTW, acoustic word embeddings (AWEs) are
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becoming more and more popular. They aim to map variable-
length speech segments in a fixed-dimensional vector space
where the word discrimination power of these speech seg-
ments is preserved as much as possible [10], [11]. For the
QbE speech search task, a neural network is usually trained
with a set of spoken word examples to embed both the spoken
query and search content into the same space [12], [13]. With
AWEs, a simple vector distance (e. g., cosine distance) can be
measured between the spoken query and search content with
much lower computation than DTW.

One of the keys to such an AWE-based QbE approach is
how to achieve effective embeddings. Studies have shown
that learning AWEs with deep neural architectures has been
successful in isolated word discrimination [10], [11]. With
the recent advance in acoustic modeling, recurrent neural
networks (RNNs) have been proven to be more capable of
capturing temporal dependency with variable-length sequen-
tial speech data in a fixed-dimensional space, leading to good
performances in downstream speech applications [14]–[17].

Another key factor to the success of AWE-based QbE
approach is to find an appropriate way to embed both the
spoken query and search content. In previous study, AWEs
are usually learned using isolated spoken words [10], [11],
[14], [18]. As the word boundaries are not readily available
in QbE speech search, a sliding window is usually applied to
search content to get a sequence of fixed-dimensional speech
segments. Without a speech recognizer or a segmentation
technology, it is hard to segment search content into isolated
words or other meaningful units to generate AWEs. These
fixed-dimensional speech segments, without clear bound-
aries, unavoidably contain a partial word and more words.
Hence there is an obvious mismatch between the learning of
AWEs and its application on search content, which affects the
search quality.

To mitigate the mismatch, in this paper, we propose to
include the neighboring frames of each target spoken words
as temporal context to learn recurrent neural AWEs. With the
temporal context, we learn the important neighboring infor-
mation around the target words in recurrent neural AWEs.
Our approach only requires a limited amount of spoken word
pairs (pairs of different realizations of the same spoken word)
as weak supervision. These spoken word pairs are much
easier to access in low-resource settings. Feeding the AWE
network with paired examples from the same and different
context-padded spoken words, we enable the network with
desired discriminative ability.

In our AWE-based QbE approach, the spoken word
pairs are firstly represented by multi-lingual bottleneck fea-
tures (BNFs) as they capture rich information of phonetic
discrimination that is even useful for an unseen language.
Then, these spoken word pairs are padded with the same
length of temporal context on both sides to form fixed-length
speech segment pairs. A deep bidirectional long short-term
memory (BLSTM) network is trained with a triplet loss using
the fixed-length speech segment pairs. Our proposed recur-
rent neural AWEs are learned by concatenating the BLSTM

backward and forward outputs. During QbE speech search
stage, both spoken query and search content are converted
into recurrent neural AWEs, and then cosine distances are
measured between them to find the spoken query.

Experiments show that using temporal context is essential
to alleviate the mismatch. As compared with the previous
state-of-art features, the proposed recurrent neural AWEs
achieve superior performance in terms of both search accu-
racy and search time. Our study also indicates that suffi-
cient speech segment pairs with rich vocabulary coverage
and discriminative input features are both important to learn
recurrent neural AWEs for QbE speech search.

The rest of this paper is organized as follows. Section II
reviews the prior works on QbE speech search and AWEs.
Section III details our proposed method of learning recur-
rent neural AWEs with temporal context for QbE speech
search. Section IV reports the experimental results and
describes the significance of our findings. Section V con-
cludes the paper and shows our future work.

II. RELATED WORKS
A. QUERY-BY-EXAMPLE SPEECH SEARCH
In low-resource settings, many approaches perform acoustic
pattern matching with DTW on frame-level feature represen-
tations for QbE speech search. The feature representations
can be learned in an unsupervised or supervised manner.
In unsupervised manners, many studies investigated learning
posteriorgrams from Gaussian mixture models (GMMs) [2],
[19]–[21], deep Boltzmann machines (DBMs) [8] and acous-
tic segment models (ASMs) [22]–[25]. These generated
posteriorgrams can discriminate phoneme patterns more
accurately than spectral features including mel-frequency
cepstral coefficients (MFCCs), perceptual linear predic-
tion (PLP) and filter-bank (Fbank) features. In supervised
manners, studies have shown that BNFs extracted from a
bottleneck-shaped deep neural network (DNN) with phonetic
targets outperformed the above spectral features by a large
margin in phonetic discrimination [26], [27]. Thus some stud-
ies investigated cross- or multi-lingual BNFs for QbE speech
search with promising results [9], [28], [29]. The BNFs are
usually extracted from a supervised DNN which is trained
using a sizable amount of labeled data from resource-rich
non-target languages.

In practical low-resource scenarios, it is easy to access a
limited amount of paired word examples, no matter whether
they are obtained from annotation [11], [30] or unsupervised
clustering [31]–[33]. Previous studies show that using limited
paired examples with deep neural architectures can learn
efficient feature representations [34]–[36]. Learning repre-
sentations from paired examples is originally proposed in
computer vision [34], and it has been adopted in natural lan-
guage processing [35] and speech processing [36]. As for our
low-resource QbE speech search scenario, the same spoken
words are naturally set as paired examples. Learning frame-
level feature representation with spoken word pairs has been
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successfully used in phonetic or word discrimination [11],
[30], [31], [37] and QbE speech search [29] as well.

B. ACOUSTIC WORD EMBEDDINGS
Acoustic embeddingswere originally proposed in [18], where
Laplacian eigenmaps were used to learn variable-length
speech segments in a fixed-dimensional space where the
learned compact vectors have a reasonable discriminative
ability. Later, acoustic embeddings have been successfully
applied in lexical clustering [38], unsupervised ASR [39],
[40] and QbE speech search [41]. When the embedding unit
is a word or word-like unit, we refer to such acoustic embed-
dings as AWEs.

Recently, many neural networks have been intensively
used to learn AWEs. For example, deep convolutional neu-
ral networks (CNNs) have been used to learn AWEs for
isolated word discrimination [10], [11] and ASR lattice
rescoring [42], [43]. These previous works have shown that
convolutional neural AWEs are able to achieve superior per-
formance over the frame-level representation based DTW
approaches. To take advantages of important temporal depen-
dency in speech, RNNs have been adopted for learning AWEs
as well. Studies have demonstrated that RNNs are more
flexible to deal with variable-length input sequences. They
can discriminate isolated spoken words more accurately than
DTW-based approaches with frame-level speech representa-
tions [14], [15], [44], [45].

There are three prior approaches that are most related to
our study of QbE speech search. In [46], an LSTM network
is used with an analysis window on search content to gen-
erate AWEs for finding the speech keyword. This approach
requires a large amount of transcribed speech data from the
target language for training the LSTM network. Hence it can-
not be applied in low-resource settings. In [12], the authors
proposed a siamese network to learn AWEs using limited
isolated spoken words with word labels, and search content is
spliced into a large number of overlapping speech segments
to generate AWEs. However, these speech segments may
contain a partial word, one or more isolated words, there is a
mismatch between the learning of AWEs and its application
on search content. Tomitigate suchmismatch, in our previous
work [13], we introduced that including temporal context
information to learn CNN-based AWEs was helpful, but the
embeddings were not much better than frame-level feature
representations. Hence it is still plenty of space to improve
the performance of learning AWEs with temporal context for
QbE speech search.

III. METHODS
A. TASK DESCRIPTION
In low-resource scenarios, although we usually do not have a
sizable amount of labeled speech data, phoneme definition,
and pronunciation lexicon, we are still able to get limited
word-like pairs from annotation [13] or unsupervised term
detection (UTD) [31]. As for our case, we only knowwhether

FIGURE 1. The diagram of temporal context padding. We also depict zero
or no padding as a contrast.

the two speech segments belong to the same word-like unit
or not. Based on the idea that different examples of the same
word should have similar feature representations, we can use
spoken word pairs to learn discriminative AWEs [10], [11].
However, as the word boundaries are not available in QbE
speech search, shifting analysis window to generate speech
segments unavoidably contain a partial word andmore words.
Hence there is a clear mismatch between the learning of
AWEs and its application on search content. Temporal con-
text padding is a feasible way to mitigate such kind of
mismatch.

B. TEMPORAL CONTEXT PADDING
Temporal context padding adopts the neighboring frames of
each variable-length target word xw as the temporal context to
form a fixed-length speech segment. Following our previous
study [13], multi-lingual BNFs are used to represent the
speech segment, and the fixed length is set to the maximum
duration of all target words in the training set. As shown
in Figure 1, for each target word xw, temporal context padding
is to add its original previous information (denoted as xw+) in
front and its subsequent information (denoted as xw−) behind
with the same number of frames. Notice that the temporal
context may contain a partial word (e. g., ‘‘wi-’’ in ‘‘with’’),
a whole word (e. g., ‘‘here’’), or even multiple words (e. g.,
‘‘We’ve got’’). It is also used together with the target word
xw to train the neural networks. With the temporal context,
we can reduce the mismatch between the learning of AWEs
and its application on search content, leading to improved
search performance.

As a contrast, zero padding is to directly pad zeros on
both sides of each target word xw to form a fixed-length
input sequence, which has been previously used to learn
AWEs with feed-forward neural networks for isolated word
discrimination [10], [11]. In addition, when a BLSTM net-
work is used for learning recurrent neural AWEs, each
variable-length target word xw can be directly taken as an
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FIGURE 2. The diagram of learning recurrent neural AWEs with temporal context. Recurrent neural AWEs are learned by concatenating the BLSTM
backward and forward outputs (the blue box) from the first and last frames of target spoken word (the red box) respectively in the speech segments.

input sequence. We refer to this approach as no padding.
Notice that there is no temporal context in both zero padding
and no padding. The three different padding methods are
investigated for QbE speech search in the experiments.

C. RECURRENT NEURAL ACOUSTIC WORD EMBEDDINGS
Through temporal context padding, we aim to let the BLSTM
network learn the previous and subsequent speech sequences
(xw−, xw+) of the target word xw and then alleviate the mis-
match between the learning of AWEs and its application on
search content. As shown in Figure 2, the input of the BLSTM
network is a triplet of 3 examples (xp, xa, xn). We use a pair
of speech segments as an anchor example xa and a positive
example xp, respectively. At the beginning of each training
epoch, we randomly sample another speech segment that is
different from the anchor example in the training dataset as a
negative example xn. In this way, the speech segment xa and
xp contain the same target word (e. g., ‘‘problem’’ in the red
box of Figure 2) in the middle, while the speech segment xn
contains a different target word (e. g., ‘‘nowadays’’).

The BLSTM network stacks multiple bidirectional LSTM
layers, and each bidirectional LSTM layer consists of a for-
ward layer and a backward layer. The forward and backward
layers access different portions of input speech segments.
The length of each portion T of input speech segments, also
refered to as the effective input length, is calculated by:

T =

{
len(xw) no padding
(L−len(xw))/2+len(xw) zero/context padding

(1)

where len(xw) is the length of the target word xw. L is the
length of speech segment x. Here L is set as the maximum
length of all target words in the training set. (L − len(xw))/2
frames with zeros or temporal context are padded with zeros

or temporal context on both sides to form each speech seg-
ment x with the fixed-length L.

The forward layers compute from the first vector of the
fixed-length speech segment (x1), and reach the last vector of

the target word (xT ). Thus the forward hidden sequences
→
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On the other hand, the backward layers compute from the last
vector of the fixed-length speech segment (xL), and reach the
first vector of target word (xL+1−T ). The backward hidden

sequence
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to L + 1− T are calculated by:
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where σ denotes the hyperbolic tangent function, and i, f ,
o and c are the inputgate, forgetgate, outputgate and cell
vectors. All theW or U , and b denote the weights and bias of
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the BLSTM network respectively. ynt represents the BLSTM
outputs at the layer of n and the time step of t , which is
calculated by:

ynt =

{
xt n = 0

[
→

hnt
←

hnt ] 1 ≤ n ≤ N − 1
(4)

where y0 corresponds to input sequence x. [] represents the
vector concatenation operation. Notice that the effective input
length T is computed in each hidden layer by iterating the
forward layer from t = 1 to T and the backward layer from
t = L to L + 1 − T , and the other hidden sequences are set
to zeros for simple calculation.

In the last layer of BLSTM network, the forward and
backward directions with the time step t from t = 1 to T

are computed to obtain the forward hidden sequence
→

hNT and

backward hidden sequence
←

hNL+1−T respectively. Then the
hidden sequences from both directions are concatenated as
our learned recurrent neural AWEs f (x).

f (x) = [
→

hNT
←

hNL+1−T ] (5)

Using such concatenation of BLSTM outputs as the final
recurrent neural AWEs f (x) can retain important sequential
context information of speech, leading to improved QbE
speech search. We have used the BLSTM outputs with one or
the last few time steps as in [46], but the resulting recurrent
neural AWEs do not bring improvement in our preliminary
test.

After forwarding the BLSTM network, a triplet loss [47] is
employed to generate recurrent neural AWEs. The triplet loss
is defined as

Loss(xp, xa, xn) = max{0, δ + d+ − d−} (6)

d+ =
1− f (xp)∗f (xa)

‖f (xp)‖2‖f (xa)‖2

2
(7)

d− =
1− f (xn)∗f (xa)

‖f (xn)‖2‖f (xa)‖2

2
(8)

where δ is a margin constraint that regularizes the gap
between the cosine distance of same speech content d+ and
the cosine distance of different speech content d−. After
training the deep BLSTM network, it can be used as an
extractor to generate recurrent neural AWEs for QbE speech
search.

D. EMBEDDINGS BASED QBE SPEECH SEARCH
Figure 3 illustrates the process of QbE speech search stage
based on the recurrent neural AWEs. A fixed-length analysis
window (the black box) is shifted on the search content y
along the time axis. The size of the fixed-length analysis
window is the same as the training speech segment pairs. The
window shift size is set to 5 frames as it is the optimal choice
of efficiency in our preliminary test.

For the input sequence in the analysis window, word
boundaries (the red box) are not available to obtain the length

FIGURE 3. The process of QbE speech search based on recurrent neural
AWEs.

of target word len(ywi ), so that the effective input length T
cannot be calculated by Eq. 1. In our experiments, len(ywi ) is
set as the average length of all target words in the training set
(63 frames). Then the speech segment with the constant effec-
tive input length T in the analysis window is converted into
recurrent neural AWEs via the trained deep BLSTM network.
As a result, search content is represented by a sequence of
recurrent neural AWEs as (f (y1), . . . , f (yi), . . . , f (yn)). The
whole process of generating recurrent neural AWEs on search
content (the black dashed line) can be pre-calculated to save
search run-time.

As no context information is available in the spoken query
x, zeros are padded on both sides of x to form the same length
as the analysis window. This operation is also to mitigate the
mismatch between the learning of AWEs and its application
for the spoken query x and it is an inevitable mismatch in
our approach. The padded spoken query is then converted
into recurrent neural AWEs f (x) via the same deep BLSTM
network. In this way, cosine distances over the recurrent
neural AWEs can be measured between the spoken query and
search content. A minimum cost is calculated by:

Cost(x, y) = min(1−
f (x) ∗ f (yi)
‖f (x)‖2‖f (yi)‖2

), i = 1, . . . , n (9)

Finally, given a spoken query x, all the minimum distance
costs in search content are returned by the QbE speech search.

IV. EXPERIMENTS AND DISCUSSION
A. EXPERIMENTAL SETUP
In our experiments, English is considered as the low-resource
target language. In such a low-resource scenario, only lim-
ited spoken word pairs are available to train the recurrent
neural AWEs for QbE speech search. Following our previ-
ous study [13], [29], these spoken word pairs are from the
English Switchboard telephone speech corpus (LDC97S62).
We regarded Mandarin Chinese and Spanish as the resource-
rich non-target languages for multi-lingual bottleneck feature
extraction. The Chinese data is from the HKUST Mandarin
Chinese telephone speech corpus (LDC2005S15) and the
Spanish data is from the Fisher Spanish telephone speech
corpus (LDC2010S01). With the Chinese and Spanish data,
a multi-lingual BNF extractor is trained using a feed-forward
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FIGURE 4. Comparison the effect of different temporal padding in the learning of recurrent neural AWEs for QbE speech search.

network with the node configuration of 1500-1500-40-1500-
[412,420], where 39-dimensional FBanks with pitch features
are used as network input and [412,420] denotes the number
of tied triphone states of Mandarin Chinese and Spanish,
respectively. The bottleneck layer with the size of 40 is in
the middle of the feed-forward network.

In order to compare the proposed approach with our pre-
vious best deep CNN approach [13], experiments are con-
ducted on the same two training sets (named as Set 1 and
Set 2 respectively). Set 1 has the same vocabulary size (the
number of unique spoken words) of 1,687 as in [11], and
it involves 37k spoken word instances. Set 2 increases the
vocabulary size to 5,476 and it involves 53k spoken word
instances. Each instance has the speech duration between
0.5 and 2 seconds, and it is padded to 2 seconds with the
same length of its original temporal context on both sides to
form the fixed-length speech segment. Both sets can make up
to 500k speech segment pairs. Five subsets are also selected
from each training set. These subsets consist ofN = [M , 10k ,
100k , 250k , 500k] speech segment pairs, whereM represents
the minimum number of speech segment pairs in Set 1 and
Set 2 respectively. The speech segment pairs are represented
by multi-lingual BNFs that were extracted from the bottle-
neck layer of a previously trained extractor.

Our deep BLSTM network consists of 2 layers with
512 hidden units per direction and per layer. The CNN net-
work [13] consists of two convolutional layers, two max
pooling layers, one fully connected layer with 2,048 hidden
units and one fully connected layer with 1,024 hidden units.
Both networks take a triplet of speech segments as input. The
number of parameters in the BLSTM network is kept as com-
parable to that of the CNN network. Our proposed BLSTM
network was implemented using the Tensorflow toolkit [48]
with the configuration based on [15]. The network weights
were initialized from −0.05 to 0.05. Adam optimizer [49]
was used for updating the weights with the mini-batch size
of 100 and the initial learning rate of 0.0001. The dropout
rate was set to 0.4 at each layer and the margin in our triplet
loss was 0.4. The performance of BLSTM network was fine-
tuned using the development set of 10,966 speech segments
every five epochs. The BLSTM network which gave the
best performance on the development set was used to extract
recurrent neural AWEs. After training the BLSTM network,

both the keywords set of 346 spoken queries and the search
content of 10 hours are used for QbE speech search stage.
The duration of all the spoken queries is also between 0.5 and
2 seconds.

As the same in [23], [29], [50], the performance of search
accuracy in QbE speech search stage is evaluated by three
different metrics: 1) mean average precision (MAP), which
is the mean of average precision for each query in search
content; 2) Precision of the top N utterances in search content
(P@N), where N is the number of target utterances involving
the query term; 3) Precision of the top 5 utterances in search
content (P@5). High precision represents better performance.
In addition, the search time is recorded during QbE speech
search stage, which is used to calculate the minimum cost
by Eq. 9 between all the spoken queries and search content
using the learned feature representations. All the tests were
performed by using a computation thread on a workstation
equipped with an Intel Xeon E5-2680 @ 2.7GHz CPU.

B. COMPARISON OF DIFFERENT PADDINGS
To validate the efficiency of our proposed temporal context
padding in the learning of recurrent neural AWEs, three dif-
ferent padding methods were compared on Set 2 for both iso-
lated word discrimination task and QbE speech search task.
The isolated word discrimination task aims to calculate the
distance between speech segment pairs and decide whether
they contain the same or different words in the middle.
We used average precision as the evaluation metric and con-
ducted the experiments on the same test set of 11,024 speech
segments as in [13].

The evaluation results on both tasks are shown in Figure 4.
With limited speech segment pairs (≤ 250k), the perfor-
mance of recurrent neural AWEs trained with zero padding is
slightly better than those trained with no padding in terms of
MAP/P@N/P@5, but their results get a little bit worse when
speech segment pairs are increasing from 250k to 500k .

Most importantly, with sufficient speech segment pairs
(≥ 10k in MAP/P@N, or ≥ 250k in P@5), if zero padding
is replaced by temporal context padding, we notice a large
improvement with the best performance in QbE speech
search. The relative improvements in MAP/P@N/P@5 are
up to 9.3%/8.7%/4.6%, respectively. Similar results are also
obtained in Set 1 with a small vocabulary. The experimental
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TABLE 1. Comparison of different feature representations for QbE speech search.

.

results suggest that using temporal context padding with suf-
ficient speech segment pairs is the most efficient way to learn
recurrent neural AWEs for QbE speech search. This observa-
tion is consistent with our previous approach to convolutional
neural AWEs [13].

Although the recurrent neural AWEs trained using tempo-
ral context padding perform better than those trained with
zero/no padding in the QbE speech search task, they achieve
the worst results in the isolated word discrimination task.
This result confirms our argument that there exists a clear
mismatch between the learning of AWEs and its application
on search content, where the actual units used for embeddings
are quite different. The addition of temporal context infor-
mation increases the confusion of discriminating isolated
spoken words, while this information is very useful for QbE
speech search instead. With the temporal context, the impor-
tant neighboring information around the target words is also
learned in recurrent neural AWEs via a deep BLSTM net-
work, which reduces the mismatch for QbE speech search
considerably.

C. COMPARISON OF DIFFERENT FEATURE
REPRESENTATIONS
The performance of different feature representations was also
compared in QbE speech search. These representations can
be classified as frame-level and word-level feature repre-
sentations. The frame-level feature representations include
40-dimensional multi-lingual BNFs and 100-dimensional
autoencoder features. They rely on DTW at run-time QbE
speech search. Learning autoencoder features is the same
as [29]. The word-level feature representations include con-
volutional neural AWEs learned from [13] and our proposed
recurrent neural AWEs, where cosine distances over these
fixed-dimensional AWEs can be measured to find the match-
ing spoken query. Here, 500k speech segment pairs in Set
2 were used for obtaining these pairwise learned feature
representations. The performance of both search accuracy
and search time are summarized in Table 1.

Multi-lingual BNFs were used as the initial input features
to learn efficient frame-level or word-level feature represen-
tations. When paired examples on the target language are
used as weak supervision, the learned feature representations,
including autoencoder features, convolutional neural AWEs,
and recurrent neural AWEs, bring significant performance
improvements as compared with the baseline DTW approach

with multi-lingual BNFs. This demonstrates that using paired
examples as weak supervision can learn efficient frame-level
or word-level feature representations.

More promisingly, when speech segment pairs are used
to encode a word or segmental level speech, the generated
AWEs, including both convolutional neural AWEs and recur-
rent neural AWEs, outperform the initial frame-level feature
representations by a large margin. Meanwhile, they signif-
icantly reduce a lot of search run-time because they avoid
time-consuming DTW in QbE speech search.

Most importantly, recurrent neural AWEs outperform con-
volutional neural AWEs on QbE speech search no matter
what temporal padding is used. The relative improvements in
MAP/P@N/P@5 are up to 12.5%/13.6%/6.9%, respectively.
This suggests that recurrent neural AWEs are more capable of
modeling temporal dependency in speech than convolutional
neural AWEs and thus result in better performance in QbE
speech search.

Moreover, our proposed recurrent neural AWEs trained
with temporal context padding hold the best performance in
terms of both search accuracy and search time. The rela-
tive improvements in MAP/P@N/P@5 are 8.7%/8.7%/4.5%,
respectively. The small reduction of search time (from 823 to
718 seconds) is due to fewer speech segment candidates
generated by the temporal context padding when shifting on
search content. In summary, the experiments demonstrate that
the temporal context is critical to the use of recurrent neural
AWEs for QbE speech search.

D. EFFECT OF NUMBERS OF SPEECH SEGMENT PAIRS
We further investigated how the number of speech segment
pairs affect the performance of our proposed recurrent neural
AWEs for QbE speech search. The evaluation results of all
the subsets from both Set 1 and Set 2 are plotted in Figure 5.

With more speech segment pairs, the learned AWEs have a
better performance for QbE speech search in most instances.
More importantly, no matter how many numbers of speech
pairs are used, our proposed recurrent neural AWEs consis-
tently outperform convolutional neural AWEs [13]. When
the number of speech segment pairs is fixed (e. g., ≥10k
QbE speech search), the recurrent neural AWEs trained on
Set 2 outperform those trained on Set 1. These observations
suggest that it is important to use more speech segment pairs
with a larger vocabulary size for learning recurrent neural
AWEs.
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FIGURE 5. Comparison the effect of using different speech segment pairs in the learning of AWEs for QbE speech search.

FIGURE 6. Comparison the effect of using different input features in the learning of recurrent neural AWEs for QbE speech search.

E. BNFs VS MFCCs AS NEURAL INPUT
Finally, we compared 40-dimensional multi-lingual BNFs
with 39-dimensional MFCCs to investigate how the network
input features affect the learned recurrent neural AWEs.
Notice that the MFCCs are commonly used as features in
acoustic modeling. Results in Figure 6 show that multi-
lingual BNFs consistently perform MFCCs in the learning
of recurrent neural AWEs for QbE speech search, no matter
the training data size. These results suggest that choosing
efficient input features is also important. Multi-lingual BNFs,
which have more capability in phonetic discrimination than
MFCCs, result in better recurrent neural AWEs for QbE
speech search.

F. DISCUSSION
Our above findings suggest that leanring recurrent neural
AWEs with temporal context is beneficial to QbE speech
search. It learns the important neighboring information
around the target word, by reducing the mismatch between
the AWE network training and its application on search
content. As compared with the previous state-of-art features,
the proposed recurrent neural AWEs achieve superior perfor-
mance in terms of both search accuracy and efficiency.

V. CONCLUSION
We have proposed to include the temporal context informa-
tion in a deep BLSTM network to learn recurrent neural
AWEs with strong discrimination ability for QbE speech
search. The introduction of temporal context aims to reduce
the mismatch between the AWE network training and its
application on search content. More specifically, the AWE

networks are usually trained using isolated spoken words,
while without the word boundary information during speech
search, a fixed length window, which may contain a partial
word or more words, is used to slide over the search content
for similarity measure. Our study has shown that leanring
recurrent neural AWEs with temporal context is essential to
alleviate the mismatch. Our study has also indicated that suf-
ficient speech segment pairs with rich vocabulary coverage
and more discriminative input features are both important to
the AWE based QbE speech search. In the future, we will
try learning AWEs using word pairs discovered in an auto-
matic manner from untrascribed speech corpus. In this way,
the AWEs can be learned in a fully unsupervised way for QbE
speech search.
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