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ABSTRACT In the coming decades, it is a universal consensus that autonomous vehicles (AVs) and human-
driven vehicles will share the traffic roads. Trajectory planning of AVs has been extensively studied from the
perspective of driving safety and riding comfort. However, human-like trajectory planning has rarely been
studied. In this paper, we characterize and model human driving trajectories using real vehicle field test data
collected on five two-way and two-lane urban curved roads with 20 experienced drivers and 3 experimental
vehicles. A differential global positioning system (GPS) and an inertial navigation system (INS) are used
to measure the vehicle positions and velocities in high precision. We study the trajectory characteristics of
experienced drivers on curved two-lane roads, especially the relationships between the vehicle trajectories
on bidirectional two lanes. Based on long short-term memory neural network (LSTM NN), we develop
a data-driven trajectory model to generate human-like driving trajectories. By comparing with other three
modeling methods, the LSTM NN model was validated and tested in various cases with promising perfor-
mance.

INDEX TERMS Human-like trajectory planning, LSTM NN, data-driven trajectory model, two-way &
two-lane curved roads, experienced drivers.

I. INTRODUCTION
At present, autonomous vehicles (AVs), intelligent vehicles,
advanced driving assistant systems (ADAS), and intelligent
transportation systems (ITS) are developing rapidly and have
made tremendous achievements [1]. The test fields of AVs
have also been upgraded from proving grounds to actual
roads [2]. At this time, more and more attention has been paid
to the truth that AVs and human-driven vehicles will share
roads in the coming decades [3]. Faced with this fact, we need
to consider the human drivers’ behavior when developing
autonomous driving systems [4], i.e., the driving maneuvers
of AVs should be as similar as possible to human drivers,
otherwise it will easily lead to traffic accidents and arouse
people’s disgusts and worries about AVs. Human-like driv-
ing will provide passengers with comfortable riding, and
confidence that the car can drive independently [5]; more-
over, human-like driving enable surrounding drivers to better
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understand and predict autonomous vehicle’ behavior so that
they can interact with it naturally [6].

In fact, researchers have gradually begun to consider the
habits and characteristics of human drivers in the studies
of car-following model [7], automatic parking system [8],
adaptive cruise control (ACC) [9], and so on. Combining the
studies of human driving behaviors, an important research
hotspot is trajectory prediction and planning of AVs on
curved roads. The human-like trajectory prediction and plan-
ning methods of AVs can be classified into types: model-
driven approaches and data-driven approaches. Model-driven
approaches represent vehicles as dynamic models (e.g. bicy-
cle model) or kinematic models. By giving an initial state of
the vehicle and sample a set of end points, candidate trajec-
tories are generated with consideration to the vehicle kine-
matic, dynamic and driving maneuver constraints [10]. In the
process of trajectory generation, it is also very important
to detect or estimate the obstacles’ statuses (e.g. positions,
velocities, accelerations, moving directions) accurately and
in real time. Then, candidate trajectories are evaluated by a
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cost function, and the optimal one is selected for the vehicle
to execute [11]. Cost functions are carefully designed by con-
sidering efficiency, comfort and safety of AVs [5]. Kalman
Filter, Monte Carlo and hiddenMarkovmodels are frequently
used methods to predict a vehicle’s trajectory either from a
known current state or from an uncertain current state [12].
Unfortunately, the afore-mentioned methods may have heavy
computation load due to generating a very large number
of prototype trajectories; moreover, further difficulties can
arise when adapting to different roads as humanization has
been ignored. Unlike model-driven approaches, data-driven
approaches usually require naturalistic driving data collection
and analysis. The main methods used for acquiring vehicle
trajectories are global positioning system (GPS) [13], cam-
eras [14], and LIDAR [15]. Trajectories of human-driven
vehicles are collected and clustered (typical trajectory clus-
tering methods include hidden Markov models [16], self-
organizing maps [17], and neural networks [18]) to determine
typical behaviors. To reflect individual driving styles, inverse
reinforcement learning [19], [20], deep belief network [21]
and other deep learning techniques are adopted to distill
human driving patterns from different driving conditions.
However, human drivers’ decision making of driving maneu-
ver in complex scene is far from being rigorously studied.

In this paper, we characterize the vehicle trajectories of
experienced drivers on 5 two-way & two-lane curved roads.
Twenty participants conducted the field tests with 3 exper-
imental vehicles which are equipped with high-precision
GPS/INS system. By placing virtual landmarks on the exper-
imental roads and defining Cartesian coordinate systems,
we transform the original vehicle trajectory data into lat-
eral positions and vehicle speeds at each virtual landmark.
We combine the lateral positions in the two driving directions
together by defining two operations (termed as ‘‘Dsum’’ and
‘‘Dave’’), and their changing rules on the 5 experimental roads
are studied. Finally, we establish a human-like trajectory
planning model using LSTM NN. This research proposes
a trajectory planning method by learning from experienced
drivers aiming at human-like autonomous driving on curved
roads. The contributions of this paper include the following:

1) A comprehensive field test with 20 experienced drivers
is conducted on 5 curved roads with different cur-
vatures and the extensive data are able to reflect the
characterization of human driving on curved roads.

2) A novel virtual landmarkmethod is proposed to process
the trajectory data, and we find that the trajectories of
experienced drivers on curves have strong similarities
under 4 specified speeds.

3) With the help of LSTM NN, we develop a human-like
trajectorymodel on curved roads. Themodel can gener-
ate human-like trajectories based on vehicle speed and
road curvature and its performance is proven on 2 test
roads.

The remainder of the paper is organized as follows.
Section II outlines related studies. The experiment setup
and details for driving data collection are introduced

in Section III. Section IV presents the data processing
and interesting findings of lateral positions. In Section V,
we establish a human-like trajectory planning model on
curved roads and validate as well as test its effectiveness.
Finally, concluding remarks are made in Section VI.

II. RELATED WORK
Due to model predictive control (MPC) based methods have
the capabilities of handling system nonlinearities and control
constraints, MPC has become a well-known method to solve
trajectory generation and tracking control problems [22].
Henzler et al. [23] proposed a novel approach to online veloc-
ity trajectory planning for manual energy efficient driving
with MPC. Qian et al. [24] used MPC to generate refer-
ence path with consideration of user preferences and coop-
erative maneuver requirements. Rapidly exploring random
tree (RRT) and lattice planner are two popular planning
paradigms in the field of robotics. Trajectory planning of a
car-like mobile robot tracking a moving target by avoiding
dynamic obstacles was developed in [25] by using smoothed
RRT and smoothed bidirectional RRT. Kothari et al. [26]
presented an algorithm using RRT to generate suboptimal
paths in real time. An expansion of the state lattice framework
that allowed users to incorporate controller-based motion
primitives and external perceptual triggers directly into the
planning process was presented in [27]. Oliveira et al. [28]
proposed an interleaved execution of path planning and path
optimization combining lattice-based planning. Because of
the advantages of exploring the feasible trajectories in a quick
and safe way, RRT and lattice planner have been successfully
applied in AVs [29].

It is noteworthy that the reasons why human drivers
generate these trajectories are not considered in the afore-
mentioned researches. Understanding the principles behind
the human driver’s handling behavior may bemore conducive
to the trajectory prediction and planning of the human-like
AVs. As we all know, the trajectories of human drivers can
be effected by numerous factors (including the driver with
his psychological-physical makeup [30], vehicle speeds [31],
road geometric features [32], road vegetation [33], and
weather variables [34]). Sun and Das [35] found that while
driving on a curved road segment, drivers tend to move
closer to the centerline when driving in the outer line, and
closer to the road edge when driving in the inner lane.
From three experiments, Cooper et al. [36] found robust
effects of cognitive workload on lateral position variability
and eye movements play a limited role in terms of influ-
encing lateral position variability. It was concluded in [37]
that chevrons induced drivers to move closer to the edge line
and away from vehicles traveling in the opposing direction.
Donnell et al. [38] found that wide edge lines on horizontal
curves make drivers shift lateral vehicle positions to the right
on the tangent section during day and night. The experi-
mental results conducted in [39] indicated that professional
drivers performed more cautiously than non-professional NP
drivers as the fog density increased and the standard deviation
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of professional drivers’ lane positions were less than (NP)
drivers in S-curve driving. Based on the above findings,
different kinds of human drivers’ trajectory models on curved
roads were proposed. Stodart and Donnell [40] investigated
vehicle lateral position during nighttime conditions on 23 hor-
izontal curves, and an ordinary least-squares(OLS) regression
model was developed to predict the vehicle lateral position
at the center of the curves. Through naturalistic driving data
collection and treatment, Cerni and Bassani [41] proposed a
local trajectory curvaturemodel based on the curve radius and
central angle. Using regression techniques, human drivers’
path deviation index (PDI) model and the path trajectory
ratio (PTR)model in [42] are represented by deflection angles
and horizontal curve radius.

The above studies have made meaningful attempts to
model the driving trajectory of human drivers on curved
roads. However, these models are developed upon special
position of curves that are not applicable to generate human
drives’ complete trajectories on the whole road segments.
In most studies, when modeling vehicle trajectories, the inter-
nal relationship between the front and back of the trajectory
points has been neglected. What’s more, few studies have
focused on the trajectory characteristics of human drivers
when driving on curved two-lane roads, especially the rela-
tionships between the vehicle trajectories on bidirectional
two lanes. Another thing worth noting is that the
afore-mentioned trajectory modeling methods are belong to
parametric techniques. Machine learning, especially deep
learning, has made great progress in image recognition [43],
[44], target detection [45]–[47], language identification [48],
and data mining [49], [50]. With the recent advances in data-
driven model [51] and machine learning [52], one prevailing
non-parametric technique is the NN-based approach, due to
its accurate performance and convenient model structure.
What’s more, the generalization ability of NN-based model
is excellent.

III. FIELD TEST
To understand the characteristics of experienced drivers’ driv-
ing trajectories and further develop the human-like trajectory
planning model, we conduct a field test that is detailed in the
following subsections.

A. PARTICIPANTS
We recruit 5 driving instructors, 5 bus drivers and 10 taxi
drivers as the representatives of experienced drivers, all with
driver’s license of the People’s Republic of China. Expe-
rienced drivers have excellent driving ability and relatively
stable driving style. More importantly, compared with novice
drivers’ trajectories, the randomness and occasionality of
experienced drivers’ trajectories are smaller. The age, gen-
der, driving experience, and annual vehicle kilometers trav-
eled (AVKT) are presented in Table 1.
The average age of the 20 experienced drivers is about 41.7,

and 4 participants are female. The average AVKT of all the

TABLE 1. Details of the participants.

FIGURE 1. Experimental vehicles and GPS/INS.

FIGURE 2. Test fields with 5 two-lane experimental roads.

participants is 4.5 × 104 km/year and the average driving
experience is about 16.8 years.

B. EXPERIMENTAL VEHICLE & NAVIGATION AND
POSITING SYSTEM
In this study, one SKODAOctavia, one HONDAAccord, and
one MG ZS are used as the experimental vehicles, and the
number of each experimental vehicle is shown in Figure 1.
To record vehicle trajectories in high precision, a differential
GPS system is installed on the top of experimental vehicles.

The navigation and positing system consists of a combina-
tion of GPS and INS (SDI-600GI). The acquisition accuracy
can reach to ± 0.01 m when the signal is good and the
sampling frequency of this system is 20 Hz. The speed,
longitude, latitude, time, row, pitch as well as other data could
be collected through the NovAtelConnect_1.4.0 software.

C. TEST FIELDS
The experiments are conducted on 5 two-lane roadways, with
one lane in each direction. The moving directions of inside
and outside lane are illustrated in Figure 2.
The actual road is not a very regular arc, but each exper-

imental road can be assumably partitioned into three road
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TABLE 2. Details of the five experimental roads.

FIGURE 3. Representations of virtual landmarks and definitions of lateral
positions.

segments, which are two straight line segments and one cir-
cular curve segment. The radius of curvature and deflection
angle of each experimental road are illustrated in Table 2.

There were slight differences between the starting and
ending points of each vehicle trajectory. Additionally, due to
the differences of vehicle speeds, there is a certain degree of
inconsistency between each original trajectory (e.g. trajectory
1 and trajectory 2 in Figure 3). So we place a lot of virtual
landmarks along the separation line of each experimental
road. The virtual landmarks are only used for calculation and
they are not really set on the roads during field test. The
distance between two neighboring virtual landmarks of each
experimental road is equivalent and the average distance of 5
experimental roads is about 4.4 m.

Figure 3 also illustrates a partial enlarged view at the virtual
landmark. Specifically, at each virtual landmark, we define a
Cartesian coordinate system with Y axis being tangent to the
road curve and X axis perpendicular to Y axis. Different stud-
ies have used different definitions of the lateral position. For
the present study, lateral position is defined as the distance
between virtual landmarks and the vehicle center of gravity.
As illustrated in Figure 3, the lateral position on the inside
laneD is positive, and the lateral positions on the outside lane
D′ is negative.

D. PROCEDURE
Each experimental road has two moving directions, experi-
enced drivers drive on each moving direction 5 times with
4 specified vehicle speed, 20 km/h, 30 km/h, 40 km/h, and
50 km/h, respectively. Before each test, the experienced
drivers are informed about the required vehicle speed for
the current test and asked to keep this speed as much as

FIGURE 4. Average speed and average SD of experienced drivers on
experimental road R4 (inside lane).

possible during their driving. All participants are explicitly
informed about the contents of the experiment. Since there
are 3 experimental vehicles and the experimental roads are
separated, the participants take turns to carry out their tests
and each participant’s total test time is about 7 hours. During
the course of the experiment, the participants can ask for rest
at any time. Throughout the experiment, perceptual blindness
and drowsiness did not occur on any driver.

IV. EXPERIMENTAL RESULTS
The field test collects a total of 12000 pieces of data, among
which the valid data are 11085 pieces. Each piece of data
records one trajectory, and the calculation results of vehicle
speeds and lateral positions are depicted in the following
subsections.

A. VEHICLE SPEED
When analyzing vehicle speeds, the speed data are processed
by averaging:

V =
1

N · T

T∑
i=1

N∑
j=1

vTN , (1)

where T is the number of tests at one specified speed, and N
is the virtual landmark number. Meanwhile, average standard
deviation (SD) is introduced to facilitate the expression:

SD =
1
N

N∑
i=1

SDi, (2)

where SDi is standard deviation of all the vehicle speeds at
i-th virtual landmark.

Figure 4 and Figure 5 show how experienced drivers
change their speeds on experimental road R4 when driv-
ing experimental vehicle C2. The abscissas in these two
figures are virtual landmark number, and the ordinates are
average vehicle speed. What’s more, the specified speeds are
also marked by dotted lines.

As can be seen from Figure 4 and Figure 5, the aver-
age speeds of experienced drivers are close to the specified
speeds, and the average SDs are not big.

Table 3 gives detailed information of vehicle speeds on
5 experimental roads. When the specified speeds are 20 km/h
and 30 km/h, the average speeds of the experienced drivers
are almost the same as the specified speeds; but when the
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FIGURE 5. Average speed and average SD of experienced drivers on
experimental road R4 (outside lane).

TABLE 3. Average speed and average SD of experienced drivers on five
experimental roads.

specified speeds are 40 km/h and 50 km/h, the average speeds
are slightly smaller than the specified speeds. The maximum
value of average SD is 5.56 and the minimum value is 1.93.
It can be seen that the speed control of experienced drivers
is accurate and stable, and it basically meets the experiment
requirements.

B. LATERAL POSITION
In order to calculate the lateral position at each virtual land-
mark, the GPS sampling point closest to the virtual landmark
is selected as the feature point. As an example, see Figure 6
for two sample trajectories, {· · · ,Pi−1,Pi,Pi+1, . . .}, and
{. . . ,Qj−2,Qj−1,Qj,Qj+1,Qj+2, . . .}.
For each virtual landmark VLk , k = 1, 2, . . . ,N , we define

the following neighborhood:

Dk := {s|||VLk − s|| ≤ r}, (3)

where r is the radius and we choose r = 5m in this study.
Then we searched for all GPS sampling points in the calcula-
tion domain.

Trajectory {· · · ,Pi−1,Pi,Pi+1, . . .} has only one GPS
sampling point in the computation domain and the lateral

FIGURE 6. Calculations of lateral positions.

position at virtual landmark VLk is:

DPk = PiP
VLk
i , (4)

where Dpk is the lateral position at the k-th virtual landmark.
The point PVLki is obtained by perpendicular line from point
Pi to the Y axis.

For trajectory {· · · ,Qj−2,Qj−1,Qj,Qj+1,Qj+2, . . .}, it has
two sampling points in the calculation domain. Multiple sam-
pling points may also occur during the actual calculation.
When two or more sampling points appear, the linear distance
between each sampling point and virtual landmark VLk is
calculated first. And it is found that:

Qj+1VLk < QjVLk . (5)

So Qj+1 is selected as the feature sampling point. The
lateral position is:

DQk = Qj+1Q
VLk
j+1 . (6)

Through the above calculation, each vehicle trajec-
tory can be expressed by a series of state variables:
{VL tn1 ,VL

tn
2 , . . . ,VL

tn
k , . . . ,VL

tn
N }. VL

tn
k contains three ele-

ments [ρk , v
tn
k ,D

tn
k ], k is visual landmark number and tn is

the n-th test; ρk , v
tn
k , and D

tn
k are the road curvature, vehicle

speed, and lateral position of the n-th trajectory at the k-th
virtual landmark.

Partial lateral positions of one experienced driver when
driving experimental vehicle C1 on road R3 (both the inside
and outside lanes) are illustrated in Figure 7.

It appears from Figure 7 that whether on inside or out-
side lane, the trends of lateral positions are similar even
at different specified speeds. Horizontal comparisons of the
lateral positions between the inside and outside lane show
that the magnitude of the lateral positions are different, but
the differences are very small. Another interesting finding
is that the widths of the experiment vehicle is 1.7 m, which
indicates that experienced drivers have different degrees of
deviation into the opposite lane. Similar results are found in
other trajectories.
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FIGURE 7. Lateral positions of one experienced driver on experimental
road R3.

TABLE 4. DTW of experienced drivers’ trajectories.

After collecting the trajectory data, we find that the simi-
larities between all the drivers’ trajectories are very high on
each experimental road. In our paper, the vehicle trajectories
are transformed into sequential data by data process. For
sequential data, dynamic time warping (DTW) is an effective
and simple method for calculating similarity [53], [54] and
it does not require preset parameters. Before comparing two
sequential data under DTW, we normalize them to have the
same mean and variance. For T = t1, t2, . . . , ti, . . . , tm, the
z-normalization algorithm:

t̂i =
ti − µ
σ

, (7)

where µ and σ donate mean and standard deviation of T . The
normalization result of T is T̂ = t̂1, t̂2, . . . , t̂i, . . . , ˆtm.

Suppose we have two sequential data of trajectories
T = t1, t2, . . . , ti, . . . , tm and C = c1, c2, . . . , cj, . . . , cn.
The DTW distance between T and C is denoted by
DTW (T ,C):

DTW (T ,C) =
√
D(T ,C), (8)

D(T ,C) = dist(ti, cj)+ min


D(ti−1, cj)
D(ti, cj−1)
D(ti−1, cj−1)

(9)

where D(t0, c0) = 0, D(ti, c0) = D(t0, cj) = ∞,
i = 1, 2, . . . ,m, and j = 1, 2, . . . , n. Typically the Euclidean
distance is used, so dist(ti, cj) = (ti−cj)2. In this paper, on the
same road, the lengths of T and C are the same (i.e. m = n).

The calculation results of all the trajectories collected on
experimental road R1 are illustrated in the following table.
Each value in the table is an average value of DTW .

When the specified travel speed is 30 km/h, the DTW
reaches the minimum value of about 1.3787. It shows that the
similarities of experienced drivers’ lateral positions are high.
It also indicates that experienced drivers maintain a relatively
stable driving behavior during the driving on the curves.

FIGURE 8. The average and SD of Dsum on experimental road R2.
(a) Specified speed: 20 km/h. (b) Specified speed: 30 km/h. (c) Specified
speed: 40 km/h. (d) Specified speed: 50 km/h.

To be more precise, the differences in the personalization of
experienced drivers has little effect on their trajectories in the
experimental scenario of this paper.

C. SUM AND AVERAGE OF LATERAL POSITIONS
To combine the lateral positions on the inside and outside
lane together, two operations (termed as Dsum and Dave) are
introduced, and their arithmetic expressions are presented in
(10) and (11):

Dsum = |D| + |D′|, (10)

Dave =
(D+ D′)

2
, (11)

where D is the lateral position on the inside lane, and D′ is
the lateral position on the outside lane.

Figure 8 illustrates the calculated results of the sums of
lateral positions on experimental road R2.

We include all Dsum in one data band (termed as ‘‘sum
band’’), and we find that the height of ‘‘sum band’’ is relative
narrow. We use gray shadows to represent ‘‘sum band’’ in
above four figures and the height of each ‘‘sum band’’ is
0.5 m. The average SDs of Dsum in Figure 8 are 0.3691 m,
0.3945 m, 0.3970 m, and 0.4433 m.

The average and SD of Dave on experimental road R2 are
illustrated in Figure 9.
Each curve in Figure 9 is termed as an ‘‘average line’’.

On the whole, all ‘‘average lines’’ indicate very little differ-
ence in amplitude from No.1 to No.91 virtual landmark. The
average SDs of Dave are 0.1709 m, 0.1975 m, 0.2160 m, and
0.2334 m. From the average SDs of Dsum and Dave, it can be
seen that there are strong internal relationships between the
trajectories in the two directions. There are slight differences
between the width of ‘‘sum band’’ and the trend of ‘‘average
line’’ in different curve driving conditions, but combined with
the calculation results of DTW, it can be concluded that:
The trajectories of experienced drivers on curves have very
strong similarities, and the trajectories are with regularity to
conform to.
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FIGURE 9. The average and SD of Dave on experimental road R2.
(a) Specified speed: 20 km/h. (b) Specified speed: 30 km/h. (c) Specified
speed: 40 km/h. (d) Specified speed: 50 km/h.

V. MODEL ESTABLISHMENT
After converting the trajectory data that are previously diffi-
cult to unify into state variables, we obtain a lot of sequence
data with the characteristics of experienced drivers’ trajec-
tories. Recurrent neural network (RNN) has unique advan-
tages in modeling sequential data and it has the ability to
memorize long-term dependencies. However, with time lags
increasing, gradients of RNN may vanish through unfolding
RNN into very deep feed forward neural networks. In order
to overcome the disadvantages of traditional RNN, LSTM
NN is proposed in this study to establish the trajectory model
of experienced drivers based on field test data. LSTM NN
now is wildly used in the prediction of sequence data (e.g.
pedestrian trajectory prediction [55], intrusion detection [56],
traffic speed prediction [57], and traffic flow prediction [58]).
Although the object of our research is human drivers’ trajec-
tories on curves, based on the successful experience of afore-
mentioned papers, we believe we can also use LSTM NN to
build a human-like trajectory model with data-driven method.

A. LSTM
The typical structure of LSTM NN cells is illustrated in Fig-
ure 10. LSTMNNhas a gating control mechanism that allows
the network to forget past state in the memory or learn when
to update its state given new information.

Let us denote the input sequence as x = (x1, x1, . . . , xn, ),
output sequence as y = (y1, y1, . . . , yn, ). LSTMNN does the
computation as follows:

in = σ (Wxixn +Whihn−1 + bi), (12)

fn = σ (Wxf xn +Whf hn−1 + bf ), (13)

on = σ (Wxoxn +Whohn−1 + bo), (14)

gn = tanh(Wxcxn +Whchn−1 + bc), (15)

cn = fn � cn−1 + in � gn, (16)

hn = on � tanh(cn), (17)

yn = Whyhn + by, (18)

FIGURE 10. Structure of LSTM NN.

where � represents Hadamard product, Wxi, Whi, Wxf , Whf ,
Wxo,Who,Wxc,Whc, andWhy are coefficient matrixes, bi, bf ,
bo, bc, and by are bias vectors, in is input gating vector, fn
is forget gating vector, on is output gating vector, gn is state
update vector, hn is hidden state of memory cells.
σ (·) denotes the standard logistics sigmoid function

defined in (19):

σ (x) =
1

1+ e−x
. (19)

tanh(·) the hyperbolic tangent function:

tanh(x) =
ex − e−x

ex + e−x
. (20)

The square loss function is used as the objective function:

u =
1
n
6n
i=1(yi − pi)

2, (21)

where y is the real output and p is the predicted value of lateral
positions.

LSTM NN is composed of 1 input layer, 2 LSTM layers
with memory blocks, and 1 output layer. We design two kinds
of LSTM layers, one’s each hidden layer has 150 neurons
(donated as h150 × h150) and the other one’s each hidden
layer has 300 neurons (donated as h300 × h300). There are
two kinds of inputs and outputs for LSTM NN: one’s inputs
are

[ ρk−1 vk−1
ρk vk

]
(ρk−1 and ρk are road curvatures at virtual

landmark k−1 and virtual landmark k , vk−1 and vk are vehicle
speeds at virtual landmark k − 1 and virtual landmark k),
the output is [Dk ] (lateral position at virtual landmark k),
and this kind of inputs and outputs is donated as I2O1; the

other one’s inputs are

[ ρk−4 vk−4
ρk−3 vk−3
ρk−2 vk−2
ρk−1 vk−1
ρk vk

]
, and the outputs are[

Dk
Dk+1

]
(donated as I5O2). When modeling human drivers’

trajectories with LSTM NN, we do not directly set the speed
and road curvature as fixed values, the actual speeds and
road curvatures in each set of state variables are used. Before
training, min-max normalization is applied to scale the fea-
ture data linearly between 0 and 1. Based on back propaga-
tion through time, LSTM NN is trained by Adam optimizer.
Besides, the learning rate is 0.001, and the number of epoch
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TABLE 5. Hyperparameter settings.

is 3000. Programming language is Python 3.5 with scientific
computing library ‘‘Tensorflow’’ (1.9.0) and deep learning
library ‘‘Keras’’ (2.2.2). The summary of hyperparameter
settings is shown in Table 5.

B. PERFORMANCE INDEX
The models’ prediction performances are evaluated by mean
bias error (MBE), mean absolute error (MAE), and root mean
squared error (RMSE):

MBE =
1
n

n∑
i=1

(ŷi − yi), (22)

MAE =
1
n

n∑
i=1

|ŷi − yi|, (23)

RMSE =

√√√√1
n

n∑
i=1

(ŷi − yi)2. (24)

MBE indicates if the observed lateral positions are overes-
timates or underestimated.MAE and RMSEmeasure residual
errors, which give a global idea of the difference between the
observed and predicted values.

C. RESULT AND DISCUSSION
We use 80% of the field test data for training, and the remain-
ing 20% for validation. In order to illustrate the prediction
effect of LSTM NN, three comparative models are estab-
lished: autoregressive moving average model with exogenous
inputs model (ARMAX) [59], back propagation neural net-
work (BPNN) [60], and nonlinear autoregressive networks
with exogenous inputs (NARX) [61].

1) PREDICTION PERFORMANCES IN VALIDATION PERIOD
For ARMAXmodel, one order difference is used to transform
lateral positions into stationary sequence. We design two
kinds of hidden layer structures of BPNN: the first kind has
only one hidden layer, the number of nodes is 20, which
is denoted as h20; the second kind has two hidden layers,
and the number of nodes are 4 and 25, which is denoted
as h4 × h25. The input of BPNN are [ρkvk ] and output is
[Dk ]. The input delay orders of NARX is 2, and NARX
has the same hidden layer structure as BPNN, which are
denoted as h20 and h4 × h25. The training step of BPNN and

TABLE 6. Prediction performances of the ARMAX, BPNN, NARX, and LSTM
NN models in validation period.

NARX is 1000 and the learning rate is 0.005. The prediction
performances of the ARMAX, BPNN and NARX models
are illustrated in Table 6. The algorithm with the best per-
formance and the one with the second best performance are
marked in bold and italics, respectively.

The minimum absolute value of MBE on inside lane
is 0.0163. For MAE and RMSE, the minimum values are
0.1080 and 0.1478, respectively. On outside lane, the mini-
mum RMSE is 0.1481 and it belongs to LSTM NN. From
Table 6, it is clear that LSTM NN has the best prediction
performance. With the increase of the hidden layers’ nodes
and historical input steps, the prediction accuracy of LSTM
NN is generally getting higher and higher. Higher accu-
racy of predictions means that the trajectories generated by
LSTM model are similar to those of experienced drivers.
For BPNN, with the increased number of hidden layers and
nodes, the prediction effect has slightly improved. NARX
has the second best performance and NARX can be regarded
as an optimized version of BPNN in modeling sequence
data. NARX not only establishes the non-linear relationship
between inputs and outputs, but also considers the past value
of outputs. LSTMNNandARMAXalso add past information
of output in different ways when modeling. An interesting
finding is that ARMAX’s RMSE are a little smaller than
BPNN’s on both lanes and it indicates that the overall perfor-
mance of ARMAX is a little better than BPNN. Combining
the common characteristics of ARMAX and NARX, one
possible reason is that there is indeed a internal relationship
between the front and back of the trajectory points. BPNN
model splits the relationship between the trajectory data,
which makes its overall prediction performance is worse than
the traditional ARMAX model.

2) PREDICTION PERFORMANCES IN TESTING PERIOD
For testing the generalization ability of lateral position model
on other curved roads, data acquisition are carried out again
on two test roads. The participants, experimental vehicle and
equipments, experimental procedures, and data processing
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FIGURE 11. Test roads.

TABLE 7. Prediction performances of the ARMAX, BPNN, NARX, and LSTM
NN models in test period.

method are the same as those described in section II and
section III. As illustrated in Figure 11, the deflection angels
of test road 1 and test road 2 are 27.4 ◦ and 48.7 ◦ (donated
as α) and radius of curvature are 137 m and 292m (donated
as r).

After selecting the valid data, the experienced drivers’
trajectories on the test roads are regarded as ground truth,
and ARMAX model, BPNN model, NARX model as well as
LSTM NN model are used to predict the trajectories on the
test roads respectively. Figure 12 (a) illustrates one piece of
the prediction results of different models on test road 1 and
Figure 12 (b) illustrates one piece of the prediction results of
different models on test road 2.

As shown in Figure 12, the prediction results of LSTM
NN are the closest to the ground truth. The results of MAE,
MBE, and RMSE in Table 7 show the predicted results under
4 specified speeds on the 2 test roads.

Similar to the prediction performance in validation period,
LSTM NN (h300× h300, I5O2) has the best prediction perfor-
mance. However, it is noted that the values ofMBE,MAE and
RMSE reflect that ARMAX, BPNN, NARX and LSTM NN
perform slightly worse in test period than validation period.
So far, the validity and generalization performance of LSTM
NN-based human-like trajectory planning model have been
tested.

FIGURE 12. Comparison of prediction results of ARMAX, BPNN, NARX and
LSTM NN (specified speed: 30 km/h). (a) Prediction results on test
road 1 and (b) prediction results on test road 2.

By comparing the prediction results of different models,
we find that there is an internal relationship between the front
and back of the trajectory points. By virtue of the unique
advantages of LSTMNN in modeling sequential data, a data-
driven human-like trajectory planningmodel for curved roads
is established. For different curved roads, continuous trajec-
tory planning can be realized by this model. In short, given
road curvatures and vehicle speeds, the obtained model can
generate a trajectory that is similar to experienced human
drivers, enabling human-like driving experience.

VI. CONCLUSION
In this study, we collected vehicle trajectories on 5 two-
way & two-lane curved roads with 20 experienced drivers
under 4 specified speeds. We processed the driving data with
artificial landmarks along the separation line of each experi-
mental road. Each piece of trajectory data was converted into
state variables at each virtual landmark. To find the internal
relationships between the trajectories in two driving direc-
tions, two customized formulas were introduced. From them,
we found that experienced drivers follow certain boundary
constraints in their driving on specific curves, and experi-
enced drivers’ trajectories on curved roads are with regularity
to conform to.

Then, based on LSTM NN, we developed a human-
like trajectory model by learning from experienced drivers.
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The comparisons between ARMAX, BPNN, NARX and
LSTM NN show that, LSTM NN has the best prediction
performance in validation period. For testing the generaliza-
tion performance of each model on other curved roads, data
acquisition were carried out again on two test roads. The cal-
culation results of performance index show that, the human-
like trajectory planning model established in this paper can
generate continuous trajectories. In reality, the trajectories
of human drivers can be effected by numerous factors, and
it is difficult to take all factors into account in a trajectory
model. What we built using LSTM NN is a basic trajectory
model. For different application scenarios, this model can add
more kinds of inputs and outputs. For example, in the traffic
scene of overtaking, the accelerations of ego vehicle and lead
vehicle are of course very important factors, wemay also need
to consider time-to-collision (TTC) and so on. The obtained
model can be used for free-road trajectory planning and the
application scenario can be described as follows: Given the
time required from the beginning to the end of the curved
road, the average speed will be calculated; then a human-like
trajectory under this speed can be generated according to the
approach in our paper, and this trajectory will be used as the
desired trajectory for trajectory tracking control.
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