
SPECIAL SECTION ON EMERGING TRENDS, ISSUES AND CHALLENGES
IN UNDERWATER ACOUSTIC SENSOR NETWORKS

Received May 6, 2019, accepted May 20, 2019, date of publication May 23, 2019, date of current version June 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2918506

Reinforcement Learning-Based Adaptive
Modulation and Coding for Efficient
Underwater Communications
WEI SU , JIAMIN LIN, KEYU CHEN , LIANG XIAO, (Senior Member, IEEE),
AND CHENG EN , (Member, IEEE)
Key Laboratory of Underwater Acoustic Communication and Marine Information Technology, Xiamen University, Xiamen 361000, China
Department of Communication Engineering, Xiamen University, Xiamen 361000, China

Corresponding author: Wei Su (suweixiamen@xmu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61671398, Grant 61871336,
and Grant 61671396.

ABSTRACT In this paper, we propose a reinforcement learning-based adaptive modulation and coding
scheme for underwater communications; more specifically, based on the network states such as the quality of
service requirement of the sensing message, the previous transmission quality, and the energy consumption.
This scheme applies reinforcement learning to choose the modulation and coding policy in a dynamic under-
water communication system. We provide the performance bound of this scheme and perform experiments
in both pool and sea environments. The experimental data were collected and post-processed. Compared
with the benchmark schemes, this scheme can improve the throughputs and reduce the BER with less energy
consumption.

INDEX TERMS Reinforcement learning, adaptive modulation and coding, underwater communication.

I. INTRODUCTION
Underwater acoustic communications suffer from the fast
time-variant channel states, the limited bandwidth, Doppler
effect and sometimes low signal-to-noise ratio (SNR) [1], [2].
Adaptive modulation and coding (AMC) scheme that
can improve the communication efficiency and reliabil-
ity, depends on the predicted channel state to determine
the modulation and coding policy from the feasible candi-
dates at the transmitter. Being critical for the data through-
put, the bit error rates (BERs) and the transmit energy
consumption in the underwater acoustic communications,
the modulation and coding policy must be optimized accord-
ing to the communication performance of different mod-
ulation and coding methods under the current channel
state.

For instance, an AMC scheme as presented in [3] named
SB estimates the channel impulse response (CIR) and SNR of
each received data block based on a deterministic prediction
model, evaluates the current BER of each modulation and
coding policy to choose the modulation and coding policy
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in terms of the throughput and the BER requirement. How-
ever, an underwater acoustic transmitter can rarely determine
such information in time, especially under variant quality of
services (QoS) requirements.

Reinforcement learning algorithms are useful to these
problems [4]–[7]. For instance, a Q-learning-based AMC
scheme as presented in [4] named QLM uses Q-learning
to maximize the utility as a function of the SNR, the BER
and the transmission time. However, this scheme does not
improve the QoS of the messages in the underwater acoustic
communications.

In this paper, we propose a reinforcement learning-based
adaptive modulation and coding scheme. More specifically,
this scheme applies reinforcement learning to choose the
modulation and coding policy to optimize the long-term
expected utility of the underwater transmitter, including
the BERs, the energy consumption, the transmission time
and the QoS requirements without knowing the underwater
channel model.

Performance experiments are conducted in both pool and
sea areas to evaluate its performance and compared with the
SB scheme and the QLM scheme. Experimental results show
that this scheme converges to the theoretical performance
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bound, decreases the BERs, the transmission time, the energy
consumption and increases the utility of the transmitter.

The rest of this paper is organized as follows. In Section II,
the related work is introduced. In Section III, the communica-
tionmodel is presented. In Section IV,we propose a reinforce-
ment learning-based modulation and coding scheme, and in
Section V, present experimental results in both the pool and
sea tests. In Section VI, the conclusions are drawn.

II. RELATED WORKS
Some underwater communication nodes, which install both
underwater acoustic and optical modems, are reported
in [8], [9]. They provide a flexible way to switch from a long-
distance but relatively low-data-rate underwater acoustic link
to a short-range but high-data-rate underwater optical link.
In [10]–[13], the AMC schemes are designed under similar
policy as presented in [3]. In these schemes, the BER of the
future data package is predicted on the basis of the current
channel state such as SNR and CIR with deterministic mod-
els. In [10], the future BER is predicted from the SNR of the
current data package and the SNR is estimated before demod-
ulation at the receiver. In [11], the future SNR is estimated
after equalization and decoding at the receiver. In [12], both
the SNR and the CIR are used to predict the future BER. The
policy of this scheme is to maximize the throughput while
maintaining a target average BER. In [13], pool experiments
are conducted to verify the performance of AMC schemes.
In [14] and [15], decision tree models are used to predict
the future BER on the basis of the CIR and the SNR. The
performance of this scheme is testified by post-processing sea
experiments (REP15-Atlantic).

In [16], a reinforcement learning-based routing strategy
called MARLIN is presented. The transmitters can use
MARLIN to select optimal forward relay and the most suit-
able communication device for a reliable and low latency
underwater networking. In simulation experiments, two com-
munication devices, both operating on binary phase shift key-
ing (BPSK) but at different central frequency are considered.
In [17], an energy efficient and QoS-aware routing algorithm
called EEQA is presented. This algorithm can ensure that
different types of data are forwarded to the optimal relay node
under the data requirements. In [18], a data collection scheme
is presented for underwater wireless sensor networks. In this
scheme, a trajectory adjustment mechanism and a reliable
time mechanism are proposed respectively to address the
high energy consumption problem in ‘‘hot region’’ and guar-
antee reliable data transmission. In [19], a high-availability
data collection scheme based on multiple AUVs (HAMA) is
proposed.

Reinforcement learning can be used to solve optimal
problems in dynamic and complicated environments [5].
Q-learning has been successfully used to select the optimal
channels for spectrum sensing and data transmission in cog-
nitive radio networks [20], improve the anti-jamming trans-
mission performance of wireless communications [5]–[7],
minimize the total electricity cost [21], deal with the optimal

FIGURE 1. Communication modes. (a) Light-weight mode. (b) Fast mode.

battery management problem in smart residential environ-
ments [22], design the routing protocol in acoustic-optical
underwater sensor networks [23] and so on. These systems
can achieve goals with optimal or near-optimal policies
through online learning. Moreover, they do not need to know
the exact model and full prior knowledge of the environment.

III. SYSTEM MODEL
In this section, two communication modes with different
bandwidth efficiency are introduced. The uncertainty of chan-
nel states prediction is analyzed and modeled. An overall
performance optimization model is established.

A. COMMUNICATION MODEL
Two communication modes, the light-weight mode and the
fast mode are shown in Fig. 1a and Fig. 1b. In both modes,
the transmitter and the receiver move randomly. The distance
between them is defined as d(t). The time needed to transmit
a task is defined as Tζ , which is divided into fixed time
slots. The time of each time slot is defined as Ts. In each
time slot, a flexible-size data package is transmitted. The
CIR estimation signals are inserted at the beginning, middle
and the end of each time slot. Because of the channel reci-
procity, we have h(t) = hT−R(t) = hR−T (t + 1t) in a very
small time1t , where hT−R(t) is the CIR from the transmitter
to the receiver at time t [24].
In the light-weight mode as presented in Fig. 1a, after a

package is transmitted, the transmitter waits for the feedback
message from the receiver. This time is defined as Tw. Fixing
d(t) to D, we get Tw ≈ 2Dc, where Dc = D/Cν and
Cν ≈ 1500 m/s. In underwater acoustic channels, such
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feedback operations will seriously affect the bandwidth
efficiency.

Compared with the light-weight mode, the feedback chan-
nel in Fig. 1b is independent of the data channel. For example,
the feedback channel is set to a lower central frequency with
a slow bps. Using the fast mode, the data packages can be
transmitted continuously, which makes it more bandwidth
efficient compared with the light-weight mode.

In order to choose a most suitable modulation and coding
method for the current time slot k , the current channel state
must be predicted at the transmitter from the previous channel
states. For example, the estimated CIR at the receiver of time
slot k − 1 is ĥk−1 = [h(Tk−1), h(Tk−1 + Ts/2), h(Tk−1 +
Ts)]T. In light-weight mode, the transmitter will wait for the
knowledge of ĥk−1 from the receiver. In [12], the ĥ(Tk ) is
predicted by a deterministic linear model, which is ĥ(Tk ) =
whT

k−1, where the weights w are calculated and updated by
recursive least squares (RLS) algorithm.

But in the fast mode, the data packages are transmitted
continuously. When predicting the h(Tk ), the available
knowledge is [hk−a,hk−a−1, · · ·], where a changed with
distance d(t) and a > 1, which makes the prediction much
harder compared with that in the light-weight mode. If the
time delay is larger than the channel coherent time, the perfor-
mance of deterministic CIR prediction models will degrade.
Considering the uncertainty of prediction, the CIR of time
slot k is modeled as

h(Tk ) = f (hk−a,hk−a−1, · · ·)+ ϒ(T ), (1)

where f () represents a deterministic CIR prediction model
and ϒ(T ) is the uncertainty caused by time T . For light-
weight mode, we get a = 1 and T = 2Dc. And for fast mode,
we get a > 1 and T > 2Dc. In this work, in order to improve
the bandwidth efficiency, the fast mode is selected.

B. OPTIMIZATION MODEL
The QoSs of the AMC schemes are determined by the opti-
mization policy.

The set of modulation and coding methods is defined
as 4 = [ξ1, · · · , ξJ ]. The modulated signal is defined as
skj , 1 ≤ j ≤ J , where j is the serial number of the modulation
and codingmethods and k is the serial number of the time slot.
The target of the overall performance optimization policy is s

min [
∑
k=1

min
∣∣∣2k

l,j�
T
∣∣∣],

1 ≤ k ≤ ∞, 1 ≤ l ≤ L, 1 ≤ j ≤ J

s.t 2k
l,j(i) ≤ 9l(i) (2)

where 2k
l,j = [ρkj ,Tj,l, p

k
j , · · · ]

T is the performance set of
the modulation and coding method ξj at time slot k . l is the
serial number of tasks. ρkj is the BER performance. Tj,l is
the transmission time of lth task using a specific modu-
lation and coding method ξj. pkj is the energy consump-
tion. �T

= [ωρ, ωT , ωp, · · · ]T represents the costs of 2l,j.
9l = [ψ1, · · · , ψi] is the lth QoS of message.

TABLE 1. Symbols and notations.

In this work, the QoS of message is set to three levels,
which are [0, a,∞]. When 9l(i) = 0, this QoS of message
must be satisfied. When 9l(i) = a, for example, a specific
BER can be tolerated. When 9l(i) = ∞, we can ignore
this requirement. In addition, for ease of reference, important
notations are summarized in Table 1.

IV. ADAPTIVE MODULATION AND CODING SCHEME
In this section, a reinforcement learning-based AMC under-
water acoustic communication scheme named RLMC is
presented. Specifically, the hot-booting Q-learning algo-
rithm is used to solve the optimization problem pro-
posed by equation (2). The utility function and the cost
function corresponding to equation (2) are designed for
underwater acoustic communication environments. The per-
formance bound of this optimization problem is calculated
and analyzed.
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A. REINFORCEMENT LEARNING-BASED MODULATION
AND CODING
The CIR and SNR are estimated at the receiver and quanti-
fied to several levels, which are defined as h and r . These
messages are fed back to the transmitter, which can be used
to estimate the quantified BER ρ.
The quantified channel states are discrete and complete.

Thus, the channel state can only transfer from one existing
state to another existing state. Moreover, the current quan-
tified channel state is transferred from and only related to
previous quantified channel states. For example, the state of
the quantified CIR hk is only related to [hk−n, hk−n−1, · · · ],
where n > 1 in the fast communication mode, which means
the state of hk is random and occurs with a probability
Pr(hk

∣∣ hk−n, hk−n−1, · · · ). Therefore, the transitions of the
quantified channel states can be modeled as a Markov chain
and the problem expressed in equation (2) can be solved
by reinforcement learning. More specifically, in this work,
the hot-booting Q-learning algorithm is used.

The presented RLMC scheme can be divided into two
stages: virtual learning stage and online learning stage.

In the virtual learning stage, we conducted numerous sea
experiments in similar sea areas. These results are used to
build a virtual Q-table named Q∗-table in order to acceler-
ate the convergence speed of the online learning stage. The
virtual learning stage includes two steps, the preparation step
and the Q∗-table building step.

In the preparation step, firstly, a number of sea experiments
are conducted using different modulation and coding meth-
ods. Then, each received signal is divided into fixed time
slots. The SNR and the CIR of each time slot are estimated
and the BER performance is calculated. After that, according
to the requirements of QoS of message, they are quantified to
several levels. From this step, we can connect the quantified
BER performance with the quantified channel states.

In the Q∗-table building step, at the beginning, we ini-
tiate the Q∗-table Q∗(3k

j , s
k
j ) to zero, where k = 0, j is

the serial number of modulation and coding methods and
3k
j = [9k

l , ρ
k
j ,Tj,l

k , pkj ] is the transmitter state, including
the current QoS of message, the BER, the transmission time
and the energy consumption of the current action. Then,
an iterative process is performed to update the Q∗-table.
At k − 1th time slot, the transmitter chooses its action

sk−1j ∈ 4, a task and a virtual quantified channel randomly.
The signal is transmitted through this virtual channel. Then,
the quantified CIR and the quantified SNR are estimated and
calculated at the receiver and fed back to the transmitter.

At kth time slot, the transmitter uses the quantified hk−1

and rk−1 to obtain the BER (i.e.,ρkj ) of each available action.
In the RLMC scheme, the BER service quality is consid-

ered according to the current QoS of message. If the chosen
action could not meet the corresponding BER service quality,
it would get an extra punishment, which is

Pkζ = (ωζl )ig(ρ
k
j , 9

k
i ), (3)

where 9k
i ∈ 9l is the QoS of message presented in

equation (2). (ωζl )i is the corresponding punishment. g(x, y)
is an indicator function. If x ≥ y, returns 1 and if x < y,
returns 0.

Then, the transmitter calculates its utility and chooses its
virtual action skj ∈ 4. The long-term expected utility is
calculated by

uk = −(ωρρkj + ωpp
k
j + ωTTl,j + P

k
ζ ), (4)

where ρ is BER, p is the energy consumption, and Tl,j is the
transmission time. ωρ , ωp and ωT are their costs.

Let V ∗(3k
j ) denote the maximum value of the Q∗-table,

the Q(3k
j , s

k
j ) and V (3

k
j ) are updated by [4]:

Q(3k
j , s

k
j ) = (1− α)Q(3k

j , s
k
j )

+α(uk + δV (3k+1
j )) (5)

V (3k
j ) = max

skj ∈4
Q(3k

j , s
k
j ), (6)

where the α ∈ (0, 1] is learning rate, which shows the weight
of the current experience. δ ∈ (0, 1] is the discount factor,
which corresponds to the uncertainty about rewards to be
received in the future.

At k + 1th iteration, the transmitter chooses its action sk+1j
randomly again. After enough iteration steps, the Q∗-table is
stabilized and be saved.

In the online learning stage, the Q-table is initiated by
Q∗-table at the beginning. At each time slot, the transmitter
chooses its action based on the current state 3k

j and the
updated Q-table. Specifically, the transmitter tries all the
possible actions under each channel state repeatedly. Then,
the transmitter chooses its action based on the ε-greedy
policy [20]. The action which can maximize the Q value
occurs with a large probability 1 − ε and the other actions
occur with a small probability ε/(|4|−1). The probability of
action s∗j is given by

pr (skj = τ ) =

1− ε τ = s∗j
ε

|4| − 1
o.w.

(7)

The optimal action s∗j is given by

s∗j = argmax
s′j∈4

Q(3k
j , s
′
j) (8)

The proposed RLMC scheme is summarized in
Algorithm 1.

B. PERFORMANCE BOUND
If the future channel states can be perfectly predicted, we can
get the performance bound of the optimization problem estab-
lished in equation (2). At the kth time slot, the state of
the transmitter is 3k

j = [9k
l , ρ

k
j ,Tj,l, pj]. If the transmitter

knows the state 3k
j precisely, we can find an optimal action
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Algorithm 1 RLMC Algorithm
Stage 1: Virtual learning stage
Initialized α, δ, ε,Q∗(3j, sj) = 0,V ∗(3j) = 0,∀sj ∈
4,3j
for i = 1, 2, 3..., I do

Emulate a similar environment
for k = 1, 2, 3...,K do

Chooses sk−1j ∈ 4 randomly
ifModulation or coding method changes then

Inform the receiver
end if
transmitter send modulated signals sk−1j to receiver
Receive message {hk−1, rk−1}
Calculate ρkj , p

k
j and Tl,j

k

3k
j = [9k

l , ρ
k
j ,Tj,l

k , pkj ]
Evaluate uk via(4)
Q∗(3k

j , s
k
j ) = (1 − α)Q∗(3k

j , s
k
j ) + α(uk +

δV ∗(3k+1
j ))
V ∗(3k

j ) = max
skj ∈4

Q∗(3k
j , s

k
j )

end for
end for
Save Q∗(λj, sj)
Stage 2: Online learning stage
Q(3j, sj) = Q∗(3j, sj),V (3j) = 0
for k = 1, 2, 3... do

Choose sk−1j ∈ 4 via (8) and send it to receiver
Update 3k

j
Evaluate uk via(4)
Update Q(λkj , s

k
j ) via(5)

Update V (λkj ) via(6)
Choose skj ∈ 4 via (8)
3k+1
j = [9k+1

l , ρk+1j ,Tj,l k+1, p
k+1
j ]

end for

which could satisfy the QoS of message and maximize the
utility u.

u = E
∣∣∣ukj ∣∣∣

= E
∣∣∣max[−(ωρρkj + ωpp

k
j + ωTTl,j + P

k
ζ )]
∣∣∣ (9)

The probability of ζl is defined as Pr(ζl) and the probability
of ρkj is defined as Pr(ρkj ). The performance bound is

u =
∞∑
k=1

ukj Pr(ζl)Pr(ρ
k
j ) (10)

The optimal theoretical values u can be calculated by the
Monte Carlo method using equation (10). We assume that
each channel and each type of task occur with equal prob-
ability. First, all the received signals are divided into fixed
time slots. Second, the channel states and the communication
performance are quantified to some levels. Then, a Monte
Carlo simulation is started. At each time slot, every possible

modulation and coding method is tried, and the optimal val-
ues are saved. Then, their mean values are calculated. After
a certain number of time slots, the mean values converged to
the optimal values.

V. EXPERIMENTAL RESULTS
In this work, the fast variant channel states, the compu-
tational complexity and the robustness of channel predic-
tion algorithms under severe channel states are considered
when selecting the set of modulation and coding methods.
Frequency modulation methods have low computational
complexity. In addition, these methods can work well with-
out CIR estimation results. Thus, even if the bandwidth
efficiency of the frequency modulation methods are less
than 0.5, these modulation methods are still a research
interest and is used in underwater acoustic communication
modems [25], [26]. In [25]–[27], multiple frequency shift
keying (MFSK) modulation methods with different orthogo-
nal or semi-orthogonal codingmethods are presented. In [25],
the Hadamard-MFSK is used in underwater acoustic modem
ATM-850. In [26], a joint time-frequency coding method is
presented. In [27], the complementary-code-keying is used.
In [28], [29], a pattern-time-delay-shift coding method is
presented. The performance of these methods is testified by
pool and sea experiments.

In [30], the single-carrier-phase-coherent underwater
acoustic communication method using decision-feedback-
equalizer with a second-order digital phase-locked-loop
(DFE+PLL) is presented, the bandwidth efficiency of which
can be large than 1. This technique has been successfully
used in a recently developed underwater acoustic commu-
nication modem [31]. The performance of CIR estimation
and CIR updating algorithms are essential to phase coher-
ent underwater acoustic communication. Compared with
block processing methods, such as single-carrier-frequency-
domain-equalization (SCFDE), orthogonal frequency divi-
sion multiplexing (OFDM), affected by the peak-to-average
ratio problem and the orthogonal signal-divisionmultiplexing
(OSDM) [32], [33], the CIR can be updated much faster
when using [31], which makes it more suitable for fast variant
underwater acoustic communication environments. In recent
years, semi-blind and blind CIR estimation and equalization
methods are researched in order to improve the bandwidth
efficiency when block processing is used. But their perfor-
mance is extremely dependent on accurate channel updating
results. Thus, MFSK and single carrier coherent modulation
methods are selected in this paper. In both pool and sea exper-
iments. TheMFSK signals were modulated by 1-of-4 method
presented in [26] with different coding methods [27]. The
symbol duration was 100 ms. The number of subcarriers
was 160, and the bandwidth was 3.2 kHz (18.4- 21.6 kHz).
The central frequency of MPSK was set to 20 kHz, and
the symbol duration was set to 0.5 ms. The sampling
rate was fixed to 100 kHz. Each modulation method had
uncoded and different coded versions in the pool and sea
experiments.
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FIGURE 2. Pool experiments environments. (a) Pool experiment.
(b) Network topology.

A number of sparse channel estimation algorithms have
been presented in recent years [34]–[36]. But in this study,
considering that the sparsity of the channel changed with
time and only the quantified channel characters were fed back
to the transmitter, the modified least square (LS) channel
estimation algorithm proposed in [32] was used.

In the pool and sea experiments, the performance of the
RLMC scheme was compared with the SB scheme, the
QLM scheme and the theoretical solutions.

A. POOL EXPERIMENTS
The pool experiments were conducted in a 25-m-long,
6-m-wide, and 1.6-m-deep static non-anechoic water
pool (Fig. 2).

In the experiments, the water depth was approximately 1 m
and the depth of the transmitter and receiver was approx-
imately 0.45 m. The locations of the transmitter and the
receiver were alongside the pool wall as shown in Fig. 2b.
During the pool experiments, the location of transmitter was
fixed at d. The receiver moved and the experimental data were
collected between d1 and d5 for the virtual learning stage.

In the online learning stage, the receiver randomly moved
between the five locations d1, d2, d3, d4, and d5. The voltages
applied to the transducer were changed from 0.5 V to 10 V.
At each location, all types of modulation and coding meth-
ods with different transmitting powers were transmitted. The
performance of the proposed RLMC scheme was testified by
post-processing.

Fig. 3 showed the CIR h(t, τ ) estimated at locations d1 and
d3 every 0.15 s. The amplified figures in Figs. 3a and Fig. 3b
respectively corresponded to t = 0.15 s and t = 0.45 s.
In the pool environments, the channel didn’t change at a
fixed location. However, at different locations, the channel
changed considerably. This would have a strong impact on
the communication performance. The BER performance of
different modulation and coding methods at d1 and d3 was
presented in Fig. 4. The different SNRs were obtained by
changing the voltage applied to the transducer.

FIGURE 3. CIR estimation at pool. (a) CIR estimation at d1.
(b) CIR estimation at d3.

The performances of the presented RLMC scheme were
analyzed and compared in Figs.5 and Fig. 6. In the pool
experiments, we set ωp = 0.1, ωT = 0.1, ωρ = 3, the BER
service quality level vector 9k

i ∈ [0.02, 0.05, 0.08], and
(ωζl )i ∈ [1, 2, 3].
In Fig. 5, the BER performance, the energy consumption,

the transmission time and the utility were given at each time
slot. In Fig. 5, the red dotted lines represent the optimal
theoretical values obtained by equation (10). The green lines
represent the performance of the SB scheme presented in [3].
The blue lines represent the performance of the QLM scheme
presented in [4]. The red lines represent the performance
of our presented RLMC scheme. We can get the following
results from Fig. 5:
(1): The BER performances were shown in Fig. 5a.

Because the policy of the SB scheme was to maximize
the throughout while maintaining the BER under a certain
value (0.02) without considering the QoS of message and the
energy consumption, the BERs obtained by the SB scheme at
each time slot were below this value and fluctuating (shown
by the green line).
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FIGURE 4. BER performance at d1 and d3. (a) Receiver at d1. (b) Receiver
at d3.

(2): The BERs of the presented RLMC scheme can con-
verge to sub-optimal values, which were just a little bit
higher (0.0005) than the theoretical value. The presented
RLMC scheme had the fastest learning speed (converged after
200 time slots in Fig. 5a).

(3): The performance curves of the transmission time,
the energy consumption and the utility also showed the same
results. For example, the utility learning speed of RLMC
schemewas 45% higher than the QLM scheme, and the utility
converged to sub-optimal values after 1400 time slots (below
the theoretical value of approximately 0.05, in Fig. 5d). At the
same time, the energy consumption and the transmission time
decreased by approximately 23.5% and 53.6% respectively
compared with the SB scheme.

The learning speed of BER, the transmission time, and the
energy consumption were different because their costs were
set manually.

Furthermore, the performance of these schemes in differ-
ent underwater acoustic communication environments were
analyzed and the results were shown in Fig. 6. In this experi-
ment, the underwater acoustic communication environments
were classified based on the BER performance. The BER of
different modulation and coding methods under a specific
channel state with a certain SNR was defined as rm =
[r1,m, · · · , rj,m, · · · , rJ ,m], where j was the serial number of

FIGURE 5. The performance of AMC schemes in pool experiments.
(a) BER. (b) Energy consumption. (c) Transmission time. (d) Utility.
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FIGURE 6. The performance of AMC schemes in different underwater
acoustic communication environments. (a) Average BER. (b) Average
energy consumption. (c) Average transmission time. (d) Average utility.

FIGURE 7. Sea experiments environment. (a) Sea environment. (b) Part of
equipments. (c) Received signal.

modulation and coding method and m was the serial number
of channel state. The median value of rm was calculated and
defined as ṙm. In this experiment, the environments were
classified into five levels from severe to good ([ss, s, m, g,
gg]) by sorting the ṙm in descending order.

In each communication environment, the average BER,
transmission time, energy consumption and utility were
calculated after convergence and shown in Fig. 6. From
Fig. 6, we can see the performance decreased in severe
communication environments. However, in each communi-
cation environment, the presented RLMC scheme always had
the best performance. For example, the average utility of the
RLMC scheme shown in Fig. 6d was 0.05 higher than the
QLM scheme in a very severe communication environment.

B. SEA EXPERIMENTS
The sea experiments were conducted in a shallow water
area (Wuyuan Bay, Xiamen, China). The distance between
the transmitter and the receiver was about 640 m. Both the
transmitter and the receiver drifted with sea current. Under
the influence of tide, the sea depth changed from 6 m to 9 m
during the experiments.

Because the channels were variant in the sea experi-
ments, the data of different modulation and coding methods
could not be collected at continuous location and depth.
We designed a special sea experiment to ensure that the
experimental results can prove the effectiveness of the pro-
posed RLMC scheme. This sea experiment consists of two
steps. In the first step, the data were collected from a number
of communication experiments. Using these data, we can
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FIGURE 8. CIR estimation in sea environments. (a) CIR estimation at
location A. (b) CIR estimation at location B.

calculate the performance of each modulation and coding
method under a specific quantified channel state. In the sec-
ond step, the transmitter transmitted the channel estimation
signals continuously. At the same time, the receiver moved
randomly. Using these received data, we can determine the
estimated channel states at each time slot. In post-processing,
the changing channel states were obtained from continu-
ous mobile communication experiments. Also, the perfor-
mance of different modulation and coding methods on a spe-
cific quantified channel was known. Thus, all the conditions
required to prove the performance of the RLMC algorithm
were guaranteed.

Fig. 8 presented the CIRs estimated every 0.15 s. The
amplified figures of Fig. 8a and Fig. 8b respectively corre-
sponded to t = 0.15 s and t = 0.45 s. From the amplified
figures, we can see that the CIRs changed even in a small-
time window (0.3 s). We can also see that only parts of the
CIRs have changed and the future CIRs were not totally
uncorrelated with the current CIRs. Thus, the future CIRs
can be modeled by equation (1). Fig. 9 presented the BER
performance of the selected modulation and coding methods

FIGURE 9. BER performance at A and B. (a) At location A, t = 0.15 s.
(b) At location A, t = 0.45 s. (c) At location B, t = 0.15 s. (d) At location B,
t = 0.45 s.
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FIGURE 10. The performance of AMC schemes in sea experiments.
(a) BER. (b) Energy consumption. (c) Transmission time.
(d) Utility.

FIGURE 11. The performance of AMC schemes in typical sea
environments. (a) Average BER. (b) Average energy consumption.
(c) Average transmission time. (d) Average utility.
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under different channel states. The performance of a specific
modulation and coding method varied under these channels.

In sea experiments, we set ωp = 0.1, ωT = 0.1, ωρ = 2,
9k
i ∈ [0.005, 0.01, 0.05, 0.08] and (ωζl )i ∈ [1, 2, 3, 4].

In Fig. 10, the BER performance, the energy consumption,
the transmission time and the utility were given at each time
slot.

From Fig. 10 we can see that the BERs of the presented
RLMC scheme converged to sub-optimal values and just
a little bit higher (0.0015) than the theoretical value; The
energy consumption and the transmission time were 5% and
0.25% higher than the theoretical values. Moreover, the pre-
sented RLMC scheme had a higher learning speed than the
QLM scheme. Compared with pool experiments, the perfor-
mance curves fluctuated stronger in sea environments. The
reason was that the channel states changed much faster in sea
environments.

Furthermore, the performances of these schemes in typ-
ical sea environments were analyzed, and the results were
shown in Fig. 11. The average BER, transmission time,
energy consumption and utility were calculated after con-
vergence. In Fig. 11a, the average BER, transmission time
and the energy consumption increased under severe chan-
nel conditions, and the utility decreased. However, in each
sea environment, the presented RLMC scheme had the
best performance. For example, the average utility of the
RLMC scheme shown in Fig. 11d was 0.05 higher than the
QLM scheme.

In general, all the performance curves of sea experimental
results converged to sub-optimal values and the results of
sea experiments were similar to pool experiments. All of
these experimental results can prove the performance of the
proposed RLMC scheme.

VI. CONCLUSIONS
In this paper, we have proposed a reinforcement learning-
based adaptive modulation and coding scheme to improve the
efficiency of underwater communications in terms of BER,
transmission time and the energy consumption of the trans-
mitter according to the QoS requirements. We proved that
this scheme enables an underwater transmitter to jointly opti-
mize its modulation and coding policy without being aware
of the underwater channel model and provided its conver-
gence performance bound. Experiments performed both in
a static non-anechoic water pool and a bay area to eval-
uate its performance and compared with two benchmark
schemes. Experimental results verify the analysis results and
show that our proposed scheme increases the throughput,
decreases the BER and the transmission time, and saves
the energy consumption compared with the SB scheme
and the QLM scheme. For instance, the proposed scheme
reduces the BER by approximately 44%, saves the trans-
mission time by approximately 53%, saves the energy con-
sumption by approximately 25%, thus increases the utility
by approximately 63% compared with SB scheme in pool
experiments
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