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ABSTRACT Detecting the transportation mode of an individual’s everyday travel provides useful informa-
tion in urban design, real-time journey planning, and activity monitoring. In existing systems, the accelerom-
eter and GPS are predominant signal sources which quickly drain the limited battery life of the wearable
devices. In this paper, we present an alternative approach for fine-grained transportation mode detection
using kinetic energy harvester (KEH). We demonstrate the feasibility of using the output signal from the KEH
device as the information source to achieve transportation mode detection. The proposed system is motivated
by the fact that different transportation modalities produce distinctive motion patterns which are expected
to leave distinctive patterns for context detection. To achieve fine-grained transportation mode detection,
we design a transportation detection framework based on attention-based Long Short Term Memory (LSTM).
We evaluate our approach using 38.6 hours of transportation data, which is collected from a total of six
volunteers in three months’ time using our prototype. The evaluation results show that our approach is
able to reach an overall accuracy of over 97% to detect fine-grained transportation modalities. In addition,
our measurements show that the power consumption of the sampling KEH signal is only 460uW which
significantly outperforms the existing transportation mode detection systems.

INDEX TERMS Transportation detection, energy harvesting, accelerometer, deep learning.

I. INTRODUCTION individual’s traveling pattern is extremely useful in many

With the prevalence of wearable devices such as smart
watches and fitness bands, physical activity recognition using
wearable sensing units has attracted lots of attention from
both academic and industry which brings many context-
aware applications. Examples such as Google Now which
tracks user’s activity to provide better localization services,
and augmented reality applications like PokeFit! that utilizes
continuously user activity monitoring to ensure better user
experience. Transportation mode detection is a special case of
context-awareness where wearable devices are able to under-
stand user’s traveling mode intelligently. The information of

The associate editor coordinating the review of this manuscript and
approving it for publication was John Tadrous.
IPokeFit: http://pokefit-app.com/

research and application fields. For instance, in urban sensing
and planning [1], the profiling of a large group of user’s daily
routine and traveling modes can help urban planners to gain
insight of people’s everyday movement patterns and propose
better urban planning. In addition, information of individual
transportation dynamics can be used to provide individual-
oriented service, such as location-based service [2], everyday
traveling route planning [3].

However, profiling of an individual’s transportation habit
usually involves long-term continuous sensing, which arises
a critical issue on the limited battery life of today’s wear-
able devices. The problem becomes more severe given the
fact that existing transportation detection systems are largely
rely on energy-hungry sensors, such as GPS [4] or Wi-Fi/
Cellular signal [5]. Another predominantly used sensor is

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

66423

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0001-9741-5912
https://orcid.org/0000-0002-2208-962X
https://orcid.org/0000-0003-2308-2259
https://orcid.org/0000-0003-0293-0781

IEEE Access

W. Xu et al.: Energy Harvesting-Based Smart Transportation Mode Detection System via Attention-Based LSTM

accelerometer [6], [7], though the power consumption of
accelerometer is relatively low (typically in the order of a few
milliwatts), long-term continuous monitoring still drains bat-
tery life quickly. Although, the power consumption incurred
by accelerometer may be not a big issue for mobile devices
with large batteries such as smart phones, for other wearables
like wristband and smart watches, the critical aspect of battery
life remains pretty much unchanged. Since for most wearable
devices, they can hardly take advantage from large size bat-
teries due to the requirement of small form factor and light
weight. For instance, the maximum battery-life reported for
Apple Watch is approximately 8 hours with sensors enabled,
and further reduced to 5 hours if the built-in GPS is activated.”

To address the limited battery life of wearable devices,
a current trend in the literature is to investigate kinetic energy
harvesting (KEH) solutions to power the wearables [8], [9].
KEH is the process of converting energy released from human
or machine motions into usable electrical energy to power
the wearable devices so that devices can function continu-
ously without battery recharge. Recent efforts in academic
such as the backpack-based and insole-like energy harvester
proposed in [10] is able to power wearable electronics, similar
work like the piezoelectric energy harvester-based pedometer
system proposed in [11], as well as the work proposed in [12]
where the power generated by the insole energy harvester are
used to power accelerometer and wireless radio. Examples of
current advancements in the industry, such as AMPY? has
released the world’s first wearable motion-charger which can
transform the kinetic energy from user’s motion into battery
power, and SOLEPOWER* have developed smart boots that
use user’s steps to power embedded sensors.

Unfortunately, though we have witnessed and believe
energy harvesting based solutions will be used to augment or
substitute batteries in the near future, KEH is still at its early
stage of development in practice. The fundamental problem in
using KEH to power wearable devices and achieve long-term
transportation mode detection is that the amount of energy
that can be practically harvested from human motions can
hardly meet the energy requirement of the system. For exam-
ple, the average power consumption of the accelerometer-
based transportation mode detection system [6] is 85 mW,
in which 21 mW results from accelerometer sampling. The
result becomes even worse if GPS signal is used, as a typical
GPS-based system [4] could consume up to 240 mW. On the
contrary, the harvested power from human motion is in the
order of microwatts [8], [9], especially in the case where
people may be stationary in most of the time (i.e., stationary
and sitting/standing in the moving vehicles).

To address the energy consumption issue, in this paper,
we investigate the feasibility of using the output voltage
generated by the KEH as the signal source to achieve energy-
efficient transportation context detection. The proposed idea

2Apple Watch: http://www.apple.com/au/watch/battery.html
3 AMPY Move: http://www.getampy.com/ampy-move.html
4SOLEPOWER: http://www.solepowertech.com/
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is based on the intuition that the vibrations experienced by the
passenger during motoring of different transportation modes
are different. Thus, voltage generated by the energy harvester
should contain distinctive features to classify different trans-
portation modes. Although the proposed idea looks promis-
ing, it is nontrivial to achieve high system performance.
Unlike accelerometer which is able to capture acceleration
signal in 3 different axes, KEH signal is single axis. As a
result, KEH-based context detection systems usually suffer
from accuracy lost [13]-[15].

In this paper, we address this challenge by conducting
a detailed feature selection study and designing a Recur-
rent Neural Network (RNN)-based classification framework.
To the best of our knowledge, this is the first work that detects
transportation modes by exploiting harvested voltage from
the KEH wearable devices as the signal source. The main
contributions of this paper are as follows:

« We propose a novel transportation detection system,
which uses only KEH voltage signal as the source
information to achieve fine-grained transportation mode
detection.

« We build a prototype based on piezoelectric energy
harvester (PEH). Using the prototype, we evaluate the
proposed system using 38.6 hours of transportation data
collected from 6 volunteers. Results show that the pro-
posed system can reach > 97% classification accuracy.

o We design a RNN based framework to classify different
vehicle modes. Evaluation results show our approach
improves recognition accuracy by over 16% compared
to traditional classification algorithms such as SVM,
KNN and Naive Bayes.

« Finally, using measurements, we demonstrate that the
power consumption of sampling KEH signal is only
480uW which significantly outperforms existing trans-
portation mode detection systems which uses GPS,
WiFi/Cellular, accelerometer and barometer.

The rest of the paper is structured as follows. We discuss
related work in Section II. Then, we provide an overview
of the proposed system in Section III and present the design
details in Section IV. Section V introduces prototype design
and data collection. Section VI presents the evaluation results.
Finally, we conclude our work in Section VIIIL.

Il. RELATED WORK

A. TRANSPORTATION MODE DETECTION

USING WEARABLE SENSORS

Based on the types of sensors used, previous studies can be
broadly grouped into four categories: GPS, Wi-Fi/Cellular,
accelerometer, and barometer based systems.

1) GPS

GPS is a powerful sensor for activity detection because it
can provide useful information including the location and the
speed of movements. Zheng et al. [16] use solely GPS to
detect the modes walking/driving/bike. However, GPS-based
solution only works well for coarse grained transportation
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mode detection, it performs poorly when classification of
travel modes involve similar speed, such as running, biking
and slow motorized motions. It is possible to use a combina-
tion of sensors to provide more detailed information about the
user’s activities. For instance, Reddy ez al. [4] use GPS in con-
junction with accelerometer to infer user’s movements such
as idel/walking/bike/vehicle. Stenneth et al. [17] proposed the
use of smartphone GPS sensor together with the knowledge of
underlying transportation network to achieve transportation
mode detection. The main limitation of GPS-based system
is the high power usage. Additionally, it cannot be used in
indoor and underground environments.

2) Wi-Fi/CELLULAR

The variations in the radio signal can also be explored to
infer user’s movements. Sohn et al. [5] identified activities
of walking, driving, and staying at the same place (dwelling)
by using the GSM traces only. Anderson and Muller [18]
used fluctuations in GSM cell tower observations to estimate
whether a user is still, walking or in motorized transport.
In [19], Wi-Fi signals were used to infer whether the user is
moving or stationary. Similarly, in [20], a hybrid approach
utilizing both Wi-Fi and GSM signals were used to detect the
transportation mode.

3) ACCELEROMETER

According to a recent survey [21], accelerometer is the pre-
dominant sensor used for detecting transportation modes.
Exisitng works such as that proposed by Randell et al. [22]
uses a single accelerometer to detect stationary, walking and
running activities. Miluzzo et al. [23] use the three-axis
accelerometer on Nokia N95 mobile phone to infer the differ-
ent classes of walking motions (e.g., walking, in conversation,
at the gym). For accelerometer-based system, a large number
of features should be extracted and selected carefully [6].
Different from Wi-Fi and Cellular, accelerometer is able to
achieve fine-grained transportation mode detection. Although
the power consumption of accelerometer is low, continuously
detection still consumes large amount of energy thus reducing
battery life [7].

4) BAROMETER

In a recent study, Kartik et al. [24] proposed to detect trans-
portation mode using mobile phone barometer. The main
advantage of barometer is the position-independent char-
acteristic, as it measures the variation of air pressure dur-
ing movement instead of acceleration changes. However,
the barometer can only be used for coarse-grained trans-
portation detection as it is not sensitive to speed and height
changes [24].

B. USING KEH AS LOW POWER MOTION SENSOR

Kinetic energy harvesting is the process of generating electri-
cal energy from ambient vibration sources. The most widely
used energy conversion techniques are the piezoelectric, elec-
tromagnetic, and electrostatic. Among them, piezoelectric
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energy harvesting (PEH) has been widely shown the great-
est potential to achieve better performance (higher voltage
and power density levels) in harvesting energy [25]. Recent
efforts in the literature are applying PEH as a low power
vibration sensor to replace conventional motion sensors, such
as activity recognition [26], health monitoring [27], gait-
based user authentication [14], and sports training [28]. The
prototype designed in this paper is based on piezoelectric
technique.

TABLE 1. Comparison of existing work and KEH.

Sensors c Puwcr. Limitations
Susceptible to obstructions
GPS 240mW Unavailable indoor/underground
High power consumption
WiFi/Cellular 230mW Susceptible to access pm‘ms
and cellular towers density
Accelerometer 85mW . Dlrecnor? dependent .
Continuously sampling reduces battery life
Barometer 88mW Only achieve coarse grained classification
Ultra low power
KEH 480uW Direction independent
- (sampling only) Usable everywhere
Fine grained classification

Table 1 summaries the power consumption and limita-
tions of previous sensor-based transportation mode detection
systems, and the corresponding advantages of the proposed
KEH-based system. The system power consumption listed in
the table are derived from the measurement results reported
in [4], [6], [24]. The power consumption of the KEH-based
system is based on our measurements in Section VII.

C. STUDIES ON KEH

The first idea of using energy harvesting as a sensing technol-
ogy was proposed in [13], [26], where the authors investigated
the feasibility of using the voltage signal of energy harvester
for daily activity classification. Their results showed that the
proposed system can achieve 83% classification accuracy.
Since then, a number of work have been done to explore the
feasibility of using harvested energy to monitor human activ-
ity. For instance, the authors of [27] carried out the first study
of estimating calorie expenditure of different daily activities
from output voltage of piezoelectric energy harvester. Their
results show that KEH is a promising technology to replace
accelerometer. In another recent work, the authors of [14] pro-
posed an authentication system which uses energy harvesting
signal to authenticate the user based on gait analysis. Their
main claim is that the proposed system can save significant
energy by using energy harvester to replace accelerometer.
Indeed, their evaluation results show their system can save up
to 78% energy compared to traditional gait recognition sys-
tem. In this paper, we propose to detect user’s transportation
mode by utilizing the voltage signal generated by the kinetic
energy harvester. By doing so, the proposed system is able
to reduce the power consumption of the transportation mode
classification in the wearable device by not using any energy-
hungry sensors like accelerometer and GPS.

D. DEEP LEARNING
Deep learning has achieved great success over the past
several years for the excellent ability on high-level feature
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(a) (b)

©) (d)

FIGURE 1. A comparison of the voltage signal from different transportation modalities. Figures in the first row plots the voltage signal in
the time domain; figures in the second row indicate the frequency domain features; figures in the last row show the corresponding

spectrogram. (a) Walking. (b) Running. (c) Car. (d) Train.

learning and representative information discovering. Specif-
ically, deep learning has been widely used in a number
of areas, such as computer version [29], activity recog-
nition [30], sensory signal classification [31], and brain
computer interface [32]. Wen et al. [29] propose a new
supervision signal, called center loss, for face recognition
task. The proposed center loss function is demonstrated to
enhance the discriminative power of the deeply learned fea-
tures. Measurement Unit signals. Zhang et al. [31] combine
deep learning and reinforcement learning to deal with multi-
modal sensory data (e.g., RFID, acceleration) and extract the
latent information for better classification. Recently, deep
learning involves in the brain signal mining in brain computer
interface (BCI). Zhang et al. [32] propose an attention-based
Encoder-Decoder RNNs (Recurrent Neural Networks) struc-
ture in order to improve the robustness and adaptability of the
brainwave based identification system.

There are also several works that apply deep learning
techniques in embedded devices. Lane and Georgiev [33]
propose low-power Deep Neural Network (DNN) model for
mobile sensing. CPU and DSP in one mobile device are
exploited for activity recognition. Lane et al. [33] also design
a DNN model for audio sensing in mobile phone by using
dataset from 168 places for the training purpose. A frame-
work DeepX is further proposed for software accelerating on
mobile devices [34]. In this work, we apply an attention-based
LSTM network to achieve accurate transport mode detection.

lll. SYSTEM OVERVIEW

In this section, we introduce the intuition of proposed
KEH-based transportation mode detection, and the system
architecture.
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A. INTUITION BEHIND THE PROPOSED SYSTEM

The intuition behind the proposed system is that different
transportation modes produce distinct vibrations caused by
speed, roads, height and different motor types. The KEH is
sensitive enough to capture such dynamics when the user or
vehicle is moving. As an example, Figure 1 compares the
voltage signal generated by the KEH from different trans-
portation modalities in the time domain, frequency domain,
and spectrogram. We can see that different transportation
modes exhibit distinguishable time domain and frequency
domain features. Intuitively, running produces larger voltage
as it is a more vibrant activity than walking. In comparison,
the generated voltage signal when the user is traveling by a
vehicle like car and train is much moderate, since the user is in
stationary mode when they take vehicles. This figure demon-
strates the feasibility of using voltage signal generated by the
KEH device to classify different transportation modes.

B. SYSTEM ARCHITECTURE

Figure 2 gives a high-level overview of the KEH-based trans-
portation mode detection system. The whole system consists
of two parts: a wearable device and a remote server. The
wearable device is embedded with a KEH and will be carried
by the user in daily life. The wearable device collects the
output voltage signal of the energy harvester and sends the
voltage samples to the server where data processing and
context detection algorithm are running.

Instead of relying on any accelerometer or GPS signal,
the wearable device exploits the AC voltage generated from
the KEH to achieve transportation mode detection. In the
server, our system process the signal as follows. First, the raw
voltage signal from the KEH device is going through the
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FIGURE 2. Overview of KEH-based transportation mode detection.

data pre-processing which applies a low-pass filter to elim-
inate possible noise. In addition, during data pre-processing,
we have designed a stop-detection algorithm to detect and
filter the stop/pause segments out from the voltage signal
profile. Then, the processed signal is feed into the RNN
classification module to determine the exact motion which
the person is performing. The transportation activities consid-
ered in this paper include seven normal daily transportation
modes: bus, train, car, ferry, light rail, running and walking.

IV. SYSTEM DESIGN

A. SIGNAL PRE-PROCESSING

The real time data from an energy harvester contains much
noise that needs to be filtered out before using it for trans-
portation mode detection. Thus a moving average filter of
order 3 is applied for noise removal. After noise reduction,
continuous voltage data is segmented into 7 seconds sliding
windows with 50% overlap. The window size T is chosen
to balance between classification accuracy and latency as
evaluated in Section VI-A.1. The overlap in sliding window
is used to capture changes or transitions around the window
limits. In the following, we use voltage signal in the windows
to detect transportation mode.

B. STOP DETECTION AND REMOVAL
During traveling, a vehicle has to make some stop/pauses
due to traffic congestion, traffic light, or arriving at the bus
stop. Similarly, for pedestrian traveling, people may also
have some stationary periods. The stop detection is usu-
ally regarded as one of most fundamental context in motion
tracking, which provides the binary information of the user’s
motion state (i.e., moving or stationary). By tracking the
number of stops, such information can be greatly useful for a
variety of positioning and navigation systems [35].

For accelerometer-based system, the stop of the vehicle is
detected by comparing the average acceleration magnitude
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FIGURE 3. Example of stop detection.

within a certain time window to a pre-defined threshold,
or by using a probabilistic model of the acceleration mag-
nitude to determine the status of the vehicle. Similar to
the accelerometer-based stop detection algorithms, the idea
underlying in the detection of the stop/pause periods is based
on the fact that the AC voltage signal from the KEH device
is fluctuating while traveling, whereas it is very stable during
the stop/pause periods. Based on this observation, we apply
a thresholding algorithm to identify the stop periods from the
AC voltage signal. For a given voltage sample s; generated at
time ¢, we calculate the standard deviation of the previous
k samples that observed before s;. The value of k equals
to the sampling frequency used during the data sampling.
If the stand deviation is smaller than a predefined threshold,
we consider it as a voltage sample generated in the stationary
period, and filtered it out from the signal trace.

As an example, Figure 3 shows a trace of the voltage signal
recored during a car trip. The upper plots show a time series
of the AC voltage signal generated by our KEH prototype
during traveling by car. The lower graph indicates the stand
deviation of the corresponding voltage signal. We can clearly
observe that there exists several periodic slots in which the
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TABLE 2. List of features and RMI.

Statistical Features RMI RMI
Length 2.7% 1 and 3 Quartile 10.6% v
Min 154% v Skewness 4.6%

Mean 1.4% Kurtosis 7.2%
Median 0.7% Absolute area 147% v
Max 149% v Mean of peaks 164% v
STD 143% v Mean of distance between peaks  14.8% v
RMS 3.4% Max distance between peaks 134% v
Mean of absolute value 13% v’ Max of peaks 163% v
Number of samples higher than threshold 1,2,3 19.4% v Peak to peak 124% v
spectral entropy 9.4% Peak to peak difference 10.7%
Spectrum peak position 179% v Frequency domain features

FFT coefficients (1-50Hz) 153% v 2 Dominant frequencies 16.8% v
Time domain features Dominant frequency ratio 124% v
Range 2.5% Mean of power spectrum 4.5%

Mean of absolute deviation 6.4% Total energy of spectrum 8.9% v
Number of datapoint cross mean 3.2% Min of power spectrum 3.6%
Coefficient variation 1.6% Max of power spectrum 2.7%
Interquartile range 7.4% v

values of the voltage signal are much smaller and more stable
than those of the other periods. These slots correspond to the
stop periods of the vehicle. Intuitively, this is because during
the stop/pause of the vehicle, the vibration applies to the KEH
device is quite small and stable, and as a result, these features
are reflected on the voltage signal.

C. FEATURE SELECTION

Feature selection is crucial for a classification system for two
reasons: (a) it can help us select the best features when the
whole feature set is high-dimensional and (b) it is able to
gain better insights into why this feature works. Therefore,
in this section we will first describe different types of fea-
tures, explain the reason behind each choice. Then we will
determine the quality of features according to the information
they reveal about the transportation mode. It is worth men-
tioning that although feature selection is usually unnecessary
in deep neural network, we find that using raw KEH signal
as input does not produce high prediction accuracy. Instead,
the system can achieve high accuracy by extracting features
to represent the raw signal.

D. FEATURE TYPES

After stop detection and removal, we extract a set of features
from each window. The features used in this paper can be
broadly classified into two types: window-based features and
peak-based features. Below we detail each feature set and
describe their function in the system. A complete list of
features are summarized in Table 2.

1) WINDOW-BASED FEATURES

From each window, we extract 27 window-based features
from voltage data. The features we extract include statisti-
cal features (e.g., min, variance and kurtosis), time-domain
features (e.g., range, number of datapoint cross mean) and
frequency-domain features (e.g., spectral entropy and FFT
coefficients). The features considered in our study were cho-
sen based on the analysis by [6]. The window-based features
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are able to effectively capture the general characteristics of
different vehicles.

2) PEAK-BASED FEATURES

While the window-based features can effectively capture the
overall patterns of different vehicles, they do not represent
the information of movements with lower frequencies, such
as acceleration and breaking periods of motorised vehicles.
These changes are reflected as peaks and troughs in the
voltage data. To represent these key periods of vehicular
movement, we extract a set of peak-based features such as
mean of peaks, peak to peak difference.

E. FEATURE SELECTION PROCESS
There are a number of techniques that can be used to deter-
mine feature quality and select features, such as information
gain [36] and ReliefF algorithm [37]. In the proposed system,
we choose to use the mutual information (MI) to determine
the quality of features because they can measure the amount
of information about the transportation mode revealed by
each feature. In order to measure the mutual information
relative to the entire amount of uncertainty, we use the relative
mutual information (RMI) which measures the percentage of
entropy that is removed from the transportation mode when a
feature is known. The RMI is calculated as follows:
RMI(id,F)zw (1)
H(id)
where H(F') is the entropy of F, and H(id|F') is the entropy
of id conditioned on F. A high RMI indicates that the feature
is distinctive on its own, but it is crucial to consider the
correlation between features as well when choosing a feature
set. For example, several features that are not particularly
distinctive on their own may be more useful when combined.
Table 2 lists the RMI of each features. In order to deter-
mine the optimal feature set, we apply the Minimum Redun-
dancy Maximum Relevance (mRMR) algorithm [38]. This
algorithm selects those features that share a high amount of
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information with the classification results (i.e., transportation
mode) while showing low redundancy with other features
in the set. In order to achieve a good trade-off between
classification speed and accuracy, we choose the best features
as computed by mRMR algorithm. The list of those features
can be seen in Table 2.

F. ATTENTION BASED LSTM CLASSIFICATION

LSTM is a Recurrent Neuron Network (RNN) based neural
network [39], [40]. LSTM networks are well-suited to clas-
sifying, processing and making predictions based on time
series data, since there can be lags of unknown duration
between important events in a time series. However, the stan-
dard LSTM cannot detect which is the important part for
fine-grained transportation mode classification. To overcome
this limitation, we design an attention mechanism that can
capture the key part of the samples in response to a given
transportation mode.

FIGURE 4. The architecture of attention-based LSTM.

Figure 4 shows the architecture of the AT-LSTM model.
As discussed earlier in Section IV-E, we extract a number of
features from a segment of KEH voltage data such as statisti-
cal features and frequency-domain features. Suppose we have
extracted n features from each segments: {xi, x2, -, x,}.
In the input layer, the features are fed into LSTM network
to obtain hidden state {hp, ho, - - - , h,}. Then all the ouput of
LSTM networks are fed into the attention layer. If we assume
the feature importance vector is #;, the normalized weights o;
can be obtained as follows.

u; = tanh(Wh; + b) )
_ exp(utTu)
o= > exp(u! u) )

where W, b and u are parameters during training. Followed
by that, we calculate the weighted sum of each hidden state
h; with its corresponding weight a;: v = ), a ;. Finally,
we input vector v to the output layer with softmax activation
to obtain the probabilities of each class. The class with the
highest probability is the current transportation mode.

In the AT-LSTM network, we use the following loss
function:

loss = — Z Zyélog%' + o1 @)
i
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FIGURE 5. t-SNE projection of different transportation modes (0-Walking;
1-Running; 2-Car; 3-Bus; 4-Light rail; 5-Train; 6-Ferry).

Power switch for the start/stop data recording

Power switch for on/off the device

4cm

6. cm

12.5cm

(a)

Piezoelectric Energy Harvester

(Volture v25w) MircoSD Shield 8 GB MircoSD Card

L/
/

Arduino Uno Microcontroller 9 Volts Battery to power Arduino

(b)

FIGURE 6. Custom-made VEH data recorder. (a) VEH data recorder.

where i is the index of the i-th segment, j is the index of the j-th
class. 6 is the parameter set, A is the Ly-Regularization term.
The AT-LSTM model is trained on the collected data with the
goal of minimizing the cross-entropy between the predicted
distribution y and ground truth distribution y using gradient
descent. With repeated training and repair, the loss will reach
a state of convergence, and the training has been completed.
Figure 5 shows the T-distributed Stochastic Neighbor Embed-
ding (t-SNE) projection of all transportation modes after
training. We can see that the AT-LSTM model can effectively
distinguish different transportation modes.

V. HARDWARE PLATFORM AND DATA COLLECTION

A. PROTOTYPE

We built a PEH prototype to collect PEH voltage signals
generated from different transportation modes. Figure 6
shows the design of our prototype. We use the piezoelectric
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TABLE 3. Summary of collected data.

Subjects ~ Walking ~ Running Car Bus Train Ferry Light rail Total
6 12 traces 10 traces 20 traces 27 traces 26 traces 16 traces 8 traces 119 traces
5.6 hours 4.8hours 2.4 hours 8.6hours 8.5hours 4.5hours 4.2hours 38.6 hours

FIGURE 7. Sample traces in Sydney.

transducer from MIDE as the vibration energy harvester
which is mounted on the Arduino UNO board. The Arduino
Uno board is an open source development platform based
on the ATmega328P micro-controller (MCU). We do not
physically store the energy generated by the PEH on our
device, but the output AC voltage from the harvester is sam-
pled by the MCU via its onboard 10-bit analog-to-digital
converter (ADC) at 100Hz and the sampled AC voltage
data are stored in a microSD card for further analysis. The
whole system is powered by an external 9V battery. The
Arduino measures voltage between 0 and 5 volts and provides
10 bits of resolution (i.e., 1024 different values). Besides,
our prototype also includes a 3-axis accelerometer to record
the acceleration signals simultaneously which allows us to
compare the performance of accelerometer signal and KEH
signal.

B. DATA COLLECTION

Our evaluation is based on 38.6 hours of traces collected in
anonymous city by 6 volunteers in 3 months’ time. Volunteers
were asked to carry the prototype with them during their daily
transportation. No special instructions were given about how
to carry the device, and none of the journeys were decided
in advance. The ground truth is obtained by pressing buttons
on the prototype. The everyday data covers a wide range
of transportation behaviors within our target city: a total
of 119 traces were collected during various times and traffic
conditions. Table 3 provides a summary of the traces collected
from each volunteer. There are more than 10 hours pedestrian
activity (e.g., walking and running) and 28 hours of vehicle
activity. In particular, we collect 16 traces from ferry activity
which has not been investigated in previous studies. In total,
there are 119 traces and 38.6 hours of data. Unlike the data
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collection methodology in previous studies [6], [24], we are
not able to collect traces from multiple countries due to the
limited number of prototypes.

VI. EVALUATION

A. GOALS, METRICS AND METHODOLOGY

In this section, we evaluate the performance of the pro-
posed system based on the collected dataset. The goals of
the evaluation are threefold: 1) evaluate the performance
of the proposed system in transportation mode detection;
2) compare the proposed system with accelerometer-based
system; 3) compare the proposed classification framework
with traditional classification algorithms.

For fair comparison, we perform the same signal process-
ing, feature selection and classification method on accelera-
tion data. The only difference is the feature vector is obtained
by concatenating features extracted along three axes in one
window together. This is because acceleration signal is sensi-
tive to direction and different volunteers may carry prototype
in different ways.

In the evaluation, we compare our classification framework
with Support Vector Machine (SVM), K-Nearest Neigh-
bor (KNN), and Naive Bayes (NB) which are popular
machine learning algorithms in activity classification. The
parameters in SVM, KNN and NB are well tuned to give
highest accuracy. For KNN classifier we set the number of
nearest neighbors as 10. For SVM classifier, we choose linear
kernel function, and the soft margin constant is 8. We choose
normal Gaussian distribution for NB. For each classifier,
we perform 10-fold cross-validation on the collected dataset.

In this paper, we focus on the following four evaluation
metrics: accuracy, precision, recall and Fl-score. We plot
the results of the average values and 95% confidence level
obtained from 10 folds cross-validation.

1) KEH-BASED V.S. ACCELEROMETER-BASED

In this section, we investigate how is the performance of
the proposed KEH-based system against the conventional
accelerometer-based system.

We vary T from s to 5s and plot the results in Figure 8.
First, we can see that the accuracy of both methods increases
as T increases. This is because with larger 7', we can obtain
more information for classification. However, there is a big
gap between these two systems when T = 1. There are
two reasons. First, accelerometer has 3 axes, thus it can take
advantage and capture more useful information from 3 direc-
tions. However, KEH-based system suffers from information
loss due to its single axis characteristic. Second, accelerom-
eter is designed to detect minor vibrations whereas KEH
signal contains much noise since it is not designed for precise
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vibration detection. Nevertheless, we can see that the
gap between accelerometer-based method and KEH-based
method diminishes as T increases. When 77 = 5, the dif-
ference of accuracy, precision, recall and F1-score are only
1.2%, 1.7%, 1.1%, and 0.9% respectively. The results sug-
gest that the KEH-based approach can achieve comparable
accuracy compared to accelerometer-based system when we
collect more data. It is worth mentioning that piezoelectric-
based accelerometer has been developed in the past few years.
Our future research will focus on studying the accuracy and
energy consumption of this new type of accelerometer.

2) RECOGNITION ACCURACY V.S. SAMPLING RATE

In this subsection, we examine the impact of sampling rate
on the recognition accuracy for both accelerometer-based
and KEH-based system. We down-sample both the KEH and
acceleration data from 100Hz to 1Hz, and then apply the
same feature extraction and classification algorithms on the
down-sampled data. Figure 9(a) exhibits the system accuracy
with different sampling rates. We can see that the accu-
racy increases with the sampling rate for both KEH and
accelerometer-based systems. The gap between these two
systems also reduces with the increment of sample rate.

3) COMPARISON WITH OTHER CLASSIFICATION METHODS

Next, we compare the accuracy of the proposed deep learning
classification framework to traditional classification algo-
rithms. Again, we use the same features and vary T from
Is to 5s. From the results in Figure 9(b), we can see that
our approach is up to 16% more accurate than the second
best method. There are two reasons for the improvement.
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TABLE 4. Confusion matrix.

Bus Car Ferry | Lightrail | Train | Walk Run

Bus 96.5% | 12% | 0.8% 0.5% 05% | 02% | 03%
Car 09% | 95.5% | 0.85% 1% 1.05% | 0.41% | 0.29%
Ferry 0.25% | 0.14% | 98.5% 0.5% 0.26% | 0.15% | 0.2%
Light rail 1% 0.23% | 0.21% 97.8% 0.46% | 0.18% | 0.12%
Train 0.25% | 0.5% | 0.2% 0.15% 985% | 0.1% | 0.3%
Walk 04% | 0.6% 1.1% 0.7% 02% | 95.8% | 12%
Run 05% | 03% | 0.4% 1.1% 03% | 0.6% | 96.8%

First, we conduct a detailed feature selection study and
choose a feature subset that can best represent the difference
of different transportation modes. Second, the AT-LSTM
approach has proven to show better performance than other
machine learning methods in time series data classification.
As an example, Table 4 shows the confusion matrix of the
proposed system with 7 = 5s. We can see that it can reach
high recognition accuracy and the average accuracy achieved
i 97.05%.

B. SYSTEM ROBUSTNESS

In this subsection, we evaluate the robustness of the proposed
system against two major variations: the variance resulting
from different traveling traces and the variance due to user
difference.

1) ROBUSTNESS TO TRACE VARIANCE

To demonstrate the capability of our approach to classify
transportation mode on new traces, we carry out leave-one-
trace-out cross validation. The results of this evaluation are
shown in Figure 9(c). As expected, the recognition accu-
racy decreases when we use different traces for training and
testing. However, the accuracy of the accelerometer-based
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system and KEH-based system only drop by 0.9% and 1.5%,
respectively. The results demonstrate the robustness of our
system to new traces.

2) ROBUSTNESS TO USER VARIANCE

To evaluate the robustness of our approach against different
users, we carry out leave-one-user-out cross validation. From
the results in Figure 9(d), we notice that the user variance has
noticeable impact on the recognition accuracy. The accuracy
of the accelerometer-based system and KEH-based system
drops by 6.4% and 8.7%, respectively. This is because differ-
ent users tend to carry the device in different ways during the
data collection. For example, some users hold the prototype
in the hand while others may put it in the backpack. As a
result, variations in user characteristics have a more signifi-
cant influence on the results than variations in traces.

VII. ENERGY CONSUMPTION PROFILE

We first investigate how much energy can be harvested from
different transportation modes. Table 5 shows the average
amount of energy that can be harvested from each transporta-
tion mode. We can see that it can hardly meet the energy con-
sumption requirement of common sensors like accelerometer
whose energy consumption is in the order of mW [14]. The
results are intuitive as the harvested energy is directly related
to the motion vibrations of different activities. Running ranks
first because it produces the largest movement. The harvested
energy of vehicles is similar because they produce similar
vibrations.

TABLE 5. Harvested power.

Bus Car Ferry Lightrail Train Walking Running
Power(uW) 9.6 8.4 6.3 5.5 3.4 16 50

The energy consumption of our system consists of three
parts: sensor sampling, memory reading/writing, and data
transmission. According to previous study [14], [41], mem-
ory reading/writing consumes significant less energy com-
pared to the other two parts. Therefore, we only consider the
energy consumption of sensor sampling and data transmis-
sion in our evaluation.

In order to capture both the average current and the time,
the Agilent DSO3202A oscilloscope is used in the experi-
ment. We connect the prototype with a 10€2 resistor in series
and power it using a 9V battery. The oscilloscope probe is
then connected across the resistor to measure the current
going through. Figure 10 shows the details of KEH voltage
sampling. We can see that at the beginning of each sampling
event, the MCU is waked up by the software interrupt from
the power-saving deep-sleep mode, and it boots ADC to
sample before going back to sleep. The details of power
consumption and time duration for voltage sampling event
are shown in Table 6. We find that sampling the voltage takes
only 0.6ms and consumes 480 W. This is significantly lower
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FIGURE 10. Profiling of voltage sampling.

TABLE 6. States of voltage sampling.

Time | Power
State (ms) | (W)
S1 0.6 480
S_sleep null 6

than that reported in previous transportation mode detection
systems such as [4], [6], [24].

For the duty-cycled transportation detection system,
the average power consumption in data sampling can be
obtained by the equation in [14], [42]. Based on the analysis
in Section VI, a sampling rate of 100Hz and a window size
of 5s is needed for the KEH-based system to achieve high
recognition accuracy. With 100Hz sampling rate and 5s data
collection, in case of data sampling, the proposed system
consumes 135uJ.

Next, we evaluate the energy consumption of transmit-
ting KEH voltage data via Bluetooth. We conduct power
measurement of the Bluetooth Low Energy (BLE) beacon
using the CC2650 wireless MCU. With the 100Hz sampling
rate and 5s data sampling, the KEH-based system generates
500 samples. This results in 750 bytes data to be transmitted
in total (in BLE packet). According to our measurement,
the average transmission power of Bluetooth is 2.72mW.
As a result, the energy consumption of data transmission for
KEH-based system is 265.2uJ.

Based on the measurements, the energy consumption of
KEH-based system to complete one classification is approxi-
mately 400.24J (note that the classification is executed in the
cloud server).

VIil. CONCLUSION

In this paper, we propose an energy harvesting-based smart
transportation mode detection system via AT-LSTM model.
Extensive evaluation results show that the proposed sys-
tem can achieve over 97% accuracy. Finally, we perform
a detailed energy consumption profile to demonstrate that
the proposed system significantly outperforms existing trans-
portation mode detection system in terms of energy con-
sumption. One limitation of our work is that the size of
the designed prototype is relatively larger than common
mobile devices. This problem can be addressed by using
small size PEH. Moreover, as mentioned in the introduc-
tion, we have observed an increasing number of commer-
cial products equipped with piezoelectric energy harvesters.
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Therefore, the proposed system can be applied in any energy
harvesting-based wearable devices such as smart shoes.
We believe that with the development of technology, the size
of energy harvester will be further reduced and embedded in
more mobile devices in the near future.
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