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ABSTRACT Finger-vein recognition has the advantages of high immutability, as finger veins are located
under the skin, high user convenience, as a non-invasive and contactless capture device, is used, and high
readability even when one of the fingers is damaged or not available for recognition. However, there
is an issue of recognition performance degradation caused by finger positional variation, misalignment,
and shading from uneven illumination. The existing hand-crafted feature-based methods have exhibited
varied performance depending on how these issues were handled by pre-processing. To overcome this
shortcoming of hand-crafted feature-based methods, convolutional neural network (CNN)-based recognition
methods have been researched. The existing systems based on a CNN use two methods: using a difference
image as the input to the network and calculating the distance between feature vectors extracted from
the CNN. Difference images can be susceptible to noise as they are generated by differences in pixel
values. Also, the method for calculating the distance between feature vectors cannot employ all layers
of the trained network and has less accuracy than the method employing difference images. To address
these issues, this paper examined a method less susceptible to noise and which uses the entire network;
a composite image of two finger-vein images was used as the input to a deep, densely-connected convolu-
tional network (DenseNet). Two open databases, namely Shandong University homologous multi-modal
traits (SDUMLA-HMT) finger-vein database and The Hong Kong Polytechnic University finger image
database (version 1), were used for experiments and the results show that the proposed method has greater
performance than the existing methods.

INDEX TERMS Finger-vein recognition, composite image, deep DenseNet.

I. INTRODUCTION
Existing biometric systems involve various technologies
such as face, iris, fingerprint, and finger-vein recognition.
Among these, finger-vein recognition has the following
advantages [1]: (1) as veins are hidden inside the body and are
mostly invisible to the human eye, finger-vein identification
makes it hard to forge or steal identification; (2) the non-
invasive and contactless capture ensures both convenience
and cleanliness, making the system more acceptable for the
user; (3) with ten fingers, if something unexpected happens
in one finger, other fingers can also be authenticated. How-
ever, upon image capture, finger-vein identification can suffer
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from performance degradation caused by illumination varia-
tions, finger positional variation, shading, and misalignment.
To address these issues, image pre-processing is performed
including region of interest (ROI) segmentation, rotational
transformation, and image enhancement. The existing hand-
crafted feature-based methods such as local binary pattern
(LBP) and local directional pattern (LDP) suffer recognition
accuracy degradation unless they adequately adjust image
noise and misalignment during pre-processing or apply an
optimal filter for the enhancement of finger-vein lines. These
methods also have the disadvantage that they need to obtain
an optimal filter value based on the characteristics of exper-
imental database. Due to these reasons, there have been
studies on finger-vein recognition using convolutional neural
networks (CNNs), which are less affected by pre-processing.
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The existing finger-vein recognition systems based on a CNN
use a difference image as an input to the network or cal-
culate the distance between feature vectors [2], [3]. As for
a difference image, since it is generated by calculating the
difference in each pixel value between enrolled images and
input images, a single input can yield the genuine or imposter
output, and it uses all layers of the trained network in the
recognition process. However, it can be susceptible to noise
as there can be low changes in the feature values of dif-
ference images. In addition, the method for calculating the
distance between feature vectors uses an original image as
an input image. Therefore, to perform recognition, feature
vectors are extracted from a layer prior to the final layer of
the network for each image to calculate the distance between
feature vectors. So, not all layers of the trained network are
used, and it also has less accuracy than a system that uses a
difference image as an input image. To resolve these issues,
this paper studied the method of using a composite of two
images as an input image to a CNN in order to be less
susceptible to noise and to use the entire trained network;
a deep CNN model of a densely-connected convolutional
network (DenseNet) was used. In addition, shift matching
was introduced to address performance degradation due to
the misalignment between enrolled and input images. Related
works are explained in Section II. Section III describes the
contributions of this study. Section IV explains in detail
the proposed deep DenseNet-based finger-vein recognition
method. Sections V and VI each contain study results, analy-
sis, and conclusions.

II. RELATED WORKS
Finger-vein recognition involves image acquisition,
pre-processing, feature extraction, and matching. In pre-
processing, ROI segmentation, image resizing, image align-
ment, and image enhancement are performed. There have
been studies on the application of a Gabor filter to identify
vein patterns in the image enhancement process [4]–[12].
Yang et al. proposed a method using 16 types of Gabor filters
which take into account 2 scales, 8 channels, and center
frequencies to extract features before finger-vein recogni-
tion [5]. Peng et al. used an 8-way Gabor filter generated by
selecting optimal parameters. Among the images to which the
Gabor filter is applied, the images with enhanced veins were
fused to extract finger-vein patterns and the performance was
evaluated through scale-invariant feature transform (SIFT)
matching, which is robust to rotation and shift [8].
Shin et al. combined a 4-way Gabor filtered image with a
Retinex filtered one by a fuzzy-based fusion to enhance image
quality [10]. Park et al. extracted 8 gray profiles which lie
at right angles to an 8-way vein-line and identified the gray
profile which corresponded to the vein-line to determine the
direction of the Gabor filter [11]. Zhang et al. proposed a
gray-level grouping (GLG) which enhanced image contrast
and a circular Gabor filter (CGF) which enhanced the quality
of finger-vein image [12]. Apart from Gabor filter-based
methods, Pi et al. proposed a quality enhancement method

for finger-vein images using edge-preserving and elliptical
high-pass filters that retain edges while eliminating blur [13].
Yu et al. proposed a fuzzy system-based multi-threshold
method which took into account the characteristics of finger-
vein patterns and skin areas [14]. Qian et al. proposed
a finger-vein recognition algorithm based on the fusion
of score-level moment invariants by the weighted-average
method [15].

Furthermore, in order to extract features in consideration
of the local patterns of finger-veins, Lee et al. used LBP
and LDP descriptors [16]. In this study, a modified Gaussian
high-pass filter was used for image enhancement, followed
by binary code extraction by LBP and LDP. The dissimilarity
between the extracted features and enrolled binary codes
was calculated using the Hamming distance. LBP and LDP
measure relative changes in brightness between the pixels
of each image and the surrounding pixels. Therefore, they
have the advantages of robustness against changes in image
brightness and fast processing time. However, they repeat
unnecessary calculations as most bits have the characteristics
of consistency. To consider this issue, Yang et al. used a
personalized best bit map (PBBM) method which used con-
sistent bits [17]. A PBBM is created by the following process:
(1) several samples of finger-vein images are captured for
each individual and features are extracted to obtain cor-
responding LBP codes, and (2) some bits of the LBP
codes extracted from the same location of same finger-vein
image are consistent, and the values and locations of these
bits are stored. Using the PBBM, only the consistent bits
are used for recognition. Therefore, by reducing the influ-
ence of noise bits, it provides higher performance in less
processing time compared to the existing LBP methods.
Rosdi et al. introduced a local line binary pattern (LLBP)
which used a straight-line shape filter unlike the square shape
filter used by LBP, LDP, and PBBM. [18] In this study,
filters of various sizes were applied and the test result showed
that this method was superior in vein-line extraction com-
pared to the method using a square shape filter. However,
as LLBP extracts line patterns only in the horizontal and
vertical directions, effective data from the image may not be
fully utilized. Therefore, Lu et al. introduced a generalized
local line binary pattern (GLLBP) which can alter the filter
direction of LLBP [19]. As GLLBP adjusts the direction and
length of filters in consideration of texture characteristics,
it can better utilize finger-vein direction data than LLBP.
In previous researches [20], [21], a line tracking method
for vein-line extraction was introduced. However, these non-
training-based finger-vein recognition studies used various
types of distance-based matching for finger-vein recognition
based on extracted finger-vein features. It is therefore difficult
to secure good recognition performance for various finger-
vein images obtained by different devices and environments.

To address this issue, the training-based methods of sup-
port vector machine (SVM) [22]–[25] and CNN [2], [3], [26],
[27] methods have been suggested. The study in [22] is about
a presentation attack (spoof attack) detection method which
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determines whether recognition is being performed by the
finger-vein of a live body or by a printed or fake finger-
vein image captured by the camera. In this study, the clas-
sification of texture features extracted by steerable pyramids
using SVM was performed. Wu et al. suggested a method of
performing principal component analysis (PCA) and linear
discriminant analysis (LDA) to reduce the dimension of the
features of finger-vein images, and used SVM with an adap-
tive neuro-fuzzy inference system (ANFIS) to performfinger-
vein recognition [23]. Qin et al. suggested a method in which
sub-area matching values of vein shape, orientation, and
SIFT features extracted from finger-vein images were fused
and classified by SVM [24]. Khellat-kihel et al. proposed the
enhancement of finger-vein images with a Gabor filter and
classification by SVM [25].

Aside from these, studies on finger-vein recognition are
underway using a deep learning-based method which pro-
vides a high level of recognition performance through learn-
ing from a large data set. In studies [26], [27], finger-vein
recognition was performed using a reduced-complexity
four-layer CNN with a fused convolutional-subsampling
architecture. In these studies, the finger-vein images of a
non-trained class cannot be used because the images of the
same class was used during training and testing (closed world
setting). For the recognition of images of non-trained classes
(open world setting), features need to be extracted from the
layer before the final fully connected layer (FCL) of the
CNN obtained from a single image input, and a distance
matching method needs to be used for recognition [28].
Or the CNN needs to be designed to use two types of
images for authentic matching (matching in cases that input
and enrolled images are of the same class) or imposter
matching (matching in case that input and enrolled images
are of different classes) as input to CNN in order to have
two outputs [29]. Hong et al. conducted a test using the
two methods [2]. Two VGG Net-16 networks designed with
original and difference images as input were fine-tuned and
features were extracted from the layer before the final FCL,
and Euclidian distances between input and enrolled features
were calculated for recognition. This method, however, has
the disadvantage that not all layers of the trained network
are used. The network which uses difference images as the
input produces two outputs from a single input. Therefore,
it has no need to extract features from the layer before the
final FCL and can use all layers of the trained network.
In addition, the test results showed that the network using
difference images as input had higher accuracy. Kim et al.
used a network with more depth than the one used in [2],
and suggested a CNN-based multimodal biometric method
based on finger-vein and finger shape [3]. In the case of
finger-vein recognition, Resnet-50 and Resnet-101 networks,
which use difference images as inputs, were fine-tuned.
The Shandong University of homologous multi-modal traits
(SDUMLA-HMT), an open database [30], was used to con-
duct a test. The results showed that it had higher accuracies
than the method in [2]. However, as these difference images

are generated by calculating the difference in pixel values of
the two images, they can be more susceptible to noise as the
changes in feature values of the images can decrease. In [56],
Qin et al. proposed the method of CNN-based extraction
of finger-vein lines. This research used the CNN and fully
convolutional network (FCN) just for extracting finger-vein
lines, and finger-vein verification was performed by template
matching. Because our research does not extract finger-vein
lines but uses the whole region of interest (ROI) of finger as
the input to deep DenseNet for finger-vein verification, our
research is different from the previous study [56]. As shown
in Table 8, the error of finger-vein verification by our method
(equal error rate (EER) of 0.33%) is much lower than that
by [56] (EER of 3.02%). In [57], Fang et al. proposed a
lightweight two-channel convolutional networks for finger-
vein recognition. The training and testing data were from
the same class in their experiments (close world setting).
However, this kind of experimental scenario cannot be used
because the class data in testing is unknown one, and they
cannot be used to train the finger-vein recognition system
in real-world application, consequently. Different from that,
our method ensured that the data of the same class were not
used in the training and testing (open world setting). That is,
the classes in training were completely different from those
in testing for our experiments. In [58], Xie et al. proposed
the finger-vein authentication method based on lightweight
CNN and supervised discrete hashing. However, the error of
finger-vein verification by ourmethod (equal error rate (EER)
of 0.33%) is much lower than that by [58] (EER of 8.87%) as
shown in Table 8.

Although Kumar et al.’s method used shift matching,
they used hand-crafted features based on Gabor filter with
morphological processing for finger-vein recognition [32].
Therefore, the error of finger-vein verification by our method
(equal error rate (EER) of 0.33%) is lower than that
by [32] (EER of 0.65%) as shown in Table 8. In [59],
Yang et al. proposed finger vein recognition method, includ-
ing an anatomy structure analysis-based vein extraction algo-
rithm and an integration matching strategy. Although they
also used shift matching, they used hand-crafted features
for finger-vein recognition. Therefore, the error of finger-
vein verification by our method (equal error rate (EER)
of 0.33%) is lower than that by [59] (EER of 0.38%) as shown
in Table 8. Although the recognition accuracy by their method
with the Shandong University homologous multi-modal traits
(SDUMLA-HMT) finger-vein database is higher than that by
our method, the training and testing data were from the same
class in their experiments (close world setting). However,
this kind of experimental scenario cannot be used because
the class data in testing is unknown one, and they cannot be
used to train the finger-vein recognition system in real-world
application, consequently. Different from that, our method
ensured that the data of the same class were not used in the
training and testing (open world setting). That is, the classes
in training were completely different from those in testing for
our experiments. In [60], Kang and Wu proposed contactless
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TABLE 1. Summarized comparisons of previous and proposed methods of finger-vein recognition.

palm vein recognition based on mutual foreground-based
local binary pattern. Although they also used shift matching,
their method is for contactless palm vein recognition, and it
cannot be compared with our research of finger-vein recog-
nition because the recognition modality is different.

To address the limitations of previous researches, this paper
proposes a finger-vein recognition method which uses a com-
posite image with robustness against noise as input to a deep
DenseNet, and introduces shift matching to resolve perfor-
mance degradation issues caused by misalignment between
enrolled and input images. Table 1 provides an outline of the
advantages and disadvantages of themethods proposed in this
paper and in previous studies.

III. CONTRIBUTIONS
Our research contributes to the body of knowledge in the
following three ways.

- Most of previous researches used AlexNet, visual geom-
etry group (VGG)-Net, residual network (ResNet), and
there is no previous study to use deep DenseNet for
finger-vein recognition. Therefore, although we use the
well-known technique of DenseNet in a known prob-
lem of finger-vein recognition, this study has the value
as the first finger-vein recognition study using a deep
DenseNet.

- The reason why previous researches did not adopt
DenseNet for finger-vein recognition is that the num-
bers of layers and training complexity in this net-
work are larger than those in AlexNet, VGG-Net,
and ResNet. In order to overcome the problems of
increase of numbers of layers and training complexity in
DenseNet in addition to the disadvantages of the CNNs
with two inputs, one difference image or the distance

matching-based method using the CNN features, this
study proposes a new method of combining two images
into one composite image of three channels for the input
to the DenseNet.

- The trained CNN model and algorithms developed in
this study are made available in [31] to other researchers
for fair performance evaluation.

IV. PROPOSED METHOD
A. OVERVIEW OF PROPOSED METHOD
Figure 1 shows the flowchart of our finger-vein recogni-
tion method. The captured finger image is binarized. Then,
the broken boundaries of finger are restored, and in-plane
rotation compensation is conducted (step (2) of Figure 1).
Subsequently, a 4 × 20 mask is used to detect the upper and
lower boundaries of the finger region with noise reduction,
and the collapsed region inside the finger area is restored to
obtain the final ROI (step (3) of Figure 1). The detected finger
ROI is then transformed to the image of 224×224 by size nor-
malization, and the enrolled and input images are combined
into one composite image (step (4) of Figure 1). By an 8-way
shift transformation, 8 enrolled images (pre-generated) and
input images are combined with one another, and a total
of 9 composite images (including one non-shift composite
image) are input to CNN to obtain 9 matching scores. Among
the 9 matching scores, the minimum score is determined as
final matching score (steps (5) and (6) of Figure 1). With
this score, finger-vein recognition is performed (step (7)
of Figure 1).

B. PREPROCESSING AND IN-PLANE ROTATION
COMPENSATION
To remove the background area from the captured image,
the image is binarized as shown in Figure 2 (b).
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FIGURE 1. Flowchart of the proposed method.

FIGURE 2. Example of input image and in-plane rotation compensation:
(a) original image, (b) binarized image, (c) image with background
removed, (d) image after in-plane rotation compensation.

However, the background near the finger area is not com-
pletely removed. Therefore, an edge map created by Sobel
edge detector and the binarized image are used to create a
difference image, and the area thresholding method [32] is
applied to obtain an image without the background,
as in Figure 2 (c). Then, the second order moments of bina-
rized mark R(Figure 2 (c)) are calculated as in Equation (1).

α11 =

∑
(x,y)∈R (y− cy)

2
· I (x, y)∑

(x,y)∈R I (x, y)
,

α12 =

∑
(x,y)∈R (x − cx)

(
y− cy

)
· I (x, y)∑

(x,y)∈R I (x, y)
,

α22 =

∑
(x,y)∈R (x − cx)

2
· I (x, y)∑

(x,y)∈R I (x, y)
(1)

FIGURE 3. Procedure for detecting finger ROI for recognition: (a) original
image, (b) the image of a rotated mask, (c) the image with the removal of
left and right areas of (b), (d) the result image by component labeling
with (c), (e) the ROI mask by filling the black region inside the finger area
of (d), and (f) ROI image.

I (x, y) and (cx , cy) indicate image pixel values and central
coordination, respectively. Based on these, the angle of rota-
tionω in Equation (2) is calculated to compensate for in-plane
rotation [33]. Finally, the compensated image is obtained by
image rotation based onω and bilinear interpolation as shown
in Figure 2 (d).

ω



tan−1

α11 − α22 +
√
(α11 − α22)

2
+ 4α212

−2α12


if α11 > α22

tan−1

 −2α12

α22 − α11 +

√
(α22 − α11)

2
+ 4α212


if α11 ≤ α22

(2)

C. DETECTION OF FINGER ROI
The left and right end areas are usually the thick part of
the finger or fingernail as shown in Figure 3 (a), where the
lighting is inadequate. As the vein patterns of these areas are
not captured accurately and are not useful for recognition,
these areas are removed by predetermined size. Then, noise,
as shown in Figure 3 (c), is removed using a component
labeling method to obtain an image as in Figure 3 (d). The
vein-patterns in the black region inside the finger area cannot
not be observed due to bright lighting, and this region is
filled with the average value of the surrounding pixels using
a 4× 20 mask in order to create an ROI mask (Figure 3 (e)).
The ROI mask is then used to obtain the ROI image as
in Figure 3 (f).

D. IMAGE COMPOSITION FOR THE INPUT TO CNN
The previous studies on CNN-based finger-vein recogni-
tion used an original image or a difference image as an
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TABLE 2. DenseNet architecture used for our research. Each ‘‘conv’’ layer consists of the sequence of batch normalization (BN), rectified linear
unit (ReLU), and convolution layer. ‘‘s1’’ and ‘‘s2’’ represent strides of 1 and 2 pixels, respectively.

input [2], [3]. To solve the disadvantage of these studies,
a composite image is used in this study. The composite image
is generated by compositing enrolled and input images as fol-
lowing process: (1) an ROI image of Figure 3 (f) is stretched
by bilinear interpolation and normalized to a size of 224×224
pixels as shown in Figures 4 (a) and (b). (2) The enrolled
and input images, as in Figure 4 (a) and (b), are input as
the first and second channels of the 3-channel image. For the
third channel, the enrolled and input images are resized to
224 × 112 and they are concatenated vertically to create a
composite image as in Figure 4 (d).

E. CNN-BASED FINGER-VEIN RECOGNITION
In this study, the output layer of pre-trained
DenseNet-161 [34] is modified and fine-tuned. The data
used in the test is the composite image created with the
data class comprising two types of authentic matching and
imposter matching. Therefore, the output of the classifica-
tion layer is modified to be a 2D fully-connected layer for

DenseNet-161 to have two outputs as shown in Table 2.
As the low-level layers of the pre-trained model have
generic features and there is no need to train the entire
network, only the final fully-connected layer is fine-tuned.
Sections IV.E.1 and IV.E.2 give the detail explanations
of DenseNet architecture and shift matching method,
respectively.

1) DenseNet ARCHITECTURE
Suppose a single image x0 passed through the convolutional
network of L layers, and the lth layer including Hl (.) as
a non-linear transformation. Hl (.) is the function including
the operations of convolution, pooling, batch normalization
(BN), or a rectified linear unit (ReLU). AlexNet [35] and
VGG Net [36] as feed forward networks, connect the output
of the (l − 1)th layer to the input of the lth layer as shown
in Equation (3).

xl = Hl (xl−1) (3)
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FIGURE 4. Examples of input and enrolled images of the same class with
their corresponding composite images: (a) enrolled image (1st channel),
(b) input image in same class (2nd channel), (c) concatenated image of
(a) and (b) (3rd channel), (d) composite image of three channels.

ResNet [37] introduces skip-connections and uses identity
function to add xl−1 as shown in Equation (4).

xl = Hl (xl−1)+ xl−1 (4)

DenseNet uses dense connectivity which has improved the
skip connection structure of ResNet. This is the method of
concatenating the feature maps of the lth layer and pre-
vious layers within the dense block. Therefore, the input
of the lth layer consists of the concatenated feature
map of the previous layers (x0, x1, . . . , xl−1) as shown
in Equation (5) [34].

xl = Hl([x0, x1, . . . , xl−1]) (5)

The dense block of Figure 5 concatenates the features of
previous and subsequent layers, and transfer them to the
subsequent layer. This prevents signal attenuation caused by
the growing depth of a layer and improves performance.
However, as the network grows deeper, the number of chan-
nels of the concatenated feature map becomes too high and
this greatly increases the size of the network. To prevent this,
DenseNet adds a bottleneck layer between the layers within
the dense block. The bottleneck layer consists of BN, ReLU,
a 1 × 1 convolutional filter (conv), BN, ReLU, and a 3 × 3
conv as shown in Figure 6. Using the bottleneck structure
prevents the increase of feature map size with the reduction
of computational cost. Nonetheless, since the output of the
dense block concatenates all the layers within the block,
the deeper the layer becomeswith themore layers in the dense
block, the greater the feature map size becomes. To address
this issue, a transition layer is added between dense blocks
to reduce the feature map size, as shown in Figure 7. The
transition layer halves the number of channels of the feature
map through 1×1 conv calculations, and also halves thewidth
and height through 2 × 2 average pooling. Each layer in the
dense block outputs a feature map according to the size of

FIGURE 5. Example of a dense block.

FIGURE 6. Bottleneck layer design: C is the number of channels in the
input feature map and k is the growth rate of DenseNet-161.

FIGURE 7. Transition layer design: C is the number of channels of the
input feature map.

the growth rate, and the growth rate of DenseNet-161 is 48.
We show the overall structure of DenseNet-161 used in our
study as shown in Table 2.

2) SHIFT MATCHING
A shift matching method is proposed to address performance
loss during finger-vein recognition caused by misalignment.
The shift matching process is as follows: (1) translation (shift-
ing) transforms of 5 pixels are applied to pre-enrolled images
in 8 directions of up, down, right, left, and diagonal as shown
in Figure 8; (2) 9 composite images are created with a total
of 9 enrolled images that have been transformed and 1 input
recognized image; (3) the 9 composite images are inputted
to the CNN, and the minimum score among all the obtained
ones is determined as the final matching score. Based on
this score, it is decided whether it is genuine or imposter
matching recognition. Genuine matching refers to matching
where the enrolled and input images are in the same class,
whereas imposter matching refers to matching where the
enrolled and input images are in different classes. When
deciding between genuine and imposter matching based on
the final matching score, the following method is used: gen-
uine matching occurs when the score is lower than the thresh-
old determined based on the equal error rate (EER) of the
genuine and imposter matching distributions obtained from
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FIGURE 8. Example of 8-way pixel shifting.

the training data; imposter matching occurs in the other case.
Here, EER is the error rate at which the false acceptance rate
(FAR, the error rate of incorrectly accepting imposter data
as genuine) is equivalent to the false rejection rate (FRR, the
error rate of incorrectly rejecting genuine data as imposter
data).

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL DATA
Two types of finger-vein databases were used for experi-
ments. The first database was the Hong Kong Polytechnic
University finger image database (version 1) comprising two
sessions [32]. In Session 1, 6 images of index and middle
fingers were collected from a total of 156 people, resulting
in 1,872 images in total (156 people× 2 fingers× 6 images).
In Session 2, 6 images of index and middle fingers were
collected from 105 of the 156 people fromSession 1, resulting
in 1,260 images in total (105 people× 2 fingers× 6 images).
In this study, only the images of Session 1were used. The sec-
ond database was the Shandong University homologous
multi-modal traits (SDUMLA-HMT) finger-vein database.
It comprises 6 images of index, middle, and ring fingers of
both hands from 106 people, resulting in 3,816 images in
total (106 people × 2 hands × 3 fingers × 6 images). In our
study, the Hong Kong Polytechnic University finger image
database (version 1) is referred to as ‘‘PolyU-DB’’ and the
SDUMLA-HMT database as ‘‘SDU-DB.’’ In this paper, two-
fold cross-validation was conducted in the test. Because
PolyU-DB and SDU-DB comprise 312 and 636 classes,
respectively, the images of 156 classes of PolyU-DB were
used for training and the remaining 156 classes were used
for testing in the 1st fold validation. In SDU-DB, the images
of 318 classes were used for training and the remaining
318 classes were used for testing. In the 2nd fold validation,
the training data and testing data used in the 1st fold validation
were exchanged, and training and testing were re-conducted.
This method ensured that the data of the same class were not
used in the training and testing (open world setting). Also,
the average accuracy measured through these two tests was
used as the final recognition accuracy.

B. DATA AUGMENTATION
The two databases of PolyU-DB and SDU-DB have a low
number of images that are not enough for training the various
weights within the deep CNN structure. This can, therefore,
cause overfitting problems. To address this issue, prior to cre-
ating a composite image as described in Section IV.D, a data
augmentation method was performed to increase the size of
the training data sets. The data augmentation method involves
a 3-pixel translation of the image in the vertical direction and
a 5-pixel translation of the image in the horizontal direction to
generate 4 additional images, increasing the original number
of images five-fold. This kinds of translation-based data aug-
mentation has been commonly used in previous research [35].
Table 3 contains the descriptions of augmented images of
PolyU-DB and SDU-DB. As described in Section V.A, half
of all classes of the database were used for training data and
the other half were used for testing data. In other words,
PolyU-DB used 156 classes and SDU-DB used 318 classes
to generate one training or testing dataset. In the case of
the composite images in Table 3, PolyU-DB increased the
number of the original images of 156 classes five-fold to
generate a total of 4,680 (156 classes × 6 images × 5 times)
augmented images.

SDU-DB also used the same method to increase the num-
ber of images five-fold to generate a total of 9,540 augmented
images. Composite images for authentic matching are made
by combining the images in the same class. Training was
performed based on the authentic matching and imposter
matching data obtained in this way. However, there are too
many imposter matches compared to authentic matches in
general. Therefore, the same number of imposter matching
images was randomly selected to that of authentic match-
ing images as training data. The process for generating the
composite image of SDU-DB is the same as above. This data
augmentation technique was applied only to the training data,
whereas the original data was used as testing data set which
was not augmentedwith the composite and difference images.
In this study, training and testing were performed with a
desktop computer comprising an Intelr CoreTM i7-3770K
CPU@ 3.5 GHz (4 cores) with 24 GB RAM and an NVIDIA
GeForce GTX 1070 (1920 compute unified device architec-
ture (CUDA) cores) graphics processing unit (GPU) cardwith
graphics memory of 8 GB [38]. Caffe framework [39] and
Microsoft Visual Studio 2013 [40] were used to implement
the algorithm.

C. TRAINING OF CNN MODEL
Conventional CNN models (VGG Net-16 [36] and
ResNet-152 [37]) were compared with DenseNet to evalu-
ate the performance in relation to different input methods.
Table 4 provides hyper parameter values used for training
with each model. As shown in Table 4, three types of input
were used for PolyU-DB and SDU-DB: a composite image,
difference image, and an original image. For each type of
input, 3 CNN models were fine tuned.
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TABLE 3. Descriptions of the two databases with augmented data.

For training these models, a stochastic gradient descent
(SGD) method is used, which multiplies the learning rate
by gamma values for each step size (epoch) in the unit of
a mini-batch to reduce the learning rate and achieve rapid
convergence with high training accuracy and low loss [41].
The total number of training datasets divided by the mini-
batch size is named as the number of iterations, and the
1 epoch refers to when the training progressed according
to the number of iterations. Therefore, the max number of
iterations is equivalent to the number of iterations multiplied
by the number of the epoch. Figure 10 shows the training
loss and accuracy of the DenseNet-161 model which used
composite images from PolyU-DB. Training loss is close
to 0 and the accuracy is close to 100, suggesting that the
CNN training is sufficient. The training time was 19 hours
and 49 minutes in total.

D. TESTING OF PROPOSED METHOD ON PolyU-DB
The recognition error rate was measured using FAR and
genuine acceptance rate (GAR). Here, GAR is calculated
as 100-FRR (%). In this test, the output score value of the
CNN or the distance between feature vectors of the fully
connected layer were used to measure FAR and FRR. In the
first test, the impact of the noise in the original image on the
recognition accuracy was examined when a composite image
and difference image were used as input to CNN.

Figures 11 (a) and (b) are the resulting images when Gaus-
sian random noise of 0 mean and 0.05 standard deviation was
applied to the original image. Figures 11 (c) and (d) are the
composite and difference images generated from
Figures 11 (a) and (b), respectively. To compare the

FIGURE 9. Example images of different trials from the same finger of one
individual with (a) PolyU-DB and (b) SDU-DB.

recognition accuracy, a test was conducted using our
DenseNet-161 structure and shift matching was not applied.

As shown in Table 5, the recognition accuracy for the
difference image is highly affected by noise compared to
composite images. Therefore, composite images have more
robustness against noise than difference images.

In a subsequent test, the recognition accuracy by pro-
posed minimum score selection based on shift matching was
compared with non-shift matching and the fusion method
of weighted average-based matching distances. As shown
in Table 6 and the receiver operating characteristic (ROC)
curves in Figure 12, shift matching showed better per-
formance results than non-shift matching in most cases.
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TABLE 4. Training parameters used for comparison of the performance using different input methods and different CNN models.

TABLE 5. EER of finger-vein recognition according to input image with or without noises (unit: %).

In addition, the MIN rule method (proposed minimum score
selection) showed the best performance result among the shift
matching methods.

In a following test, accuracy was compared by chang-
ing the inputs to various CNN structures for PolyU-DB.
As shown in Table 7, the highest performance of 0.33% was
observed when the input to the DenseNet-161 structure was
a composite image. As mentioned above, the method using
original images refers to distance matching using feature
vectors extracted from the layer before the FCL obtained
from enrolled and input images. Figure 13 provides the results
in ROC curves. Like Figure 12, this is an average curve of
the two ROC curves obtained from two-fold cross-validation.

As can be seen in Figure 13, using the DenseNet-161 with
composite images showed the highest performance.

In the next test, non-training based methods were
compared with the DenseNet-161 with shift matching. The
non-training based methods includes a Gabor filter with
morphological processing [32], a multi-scale matched filter
with line tracking [42], a personalized best patches map
(PBPM) [43], singular value decomposition (SVD)-based
minutiae matching (SVDMM) [44], subpixel-based features
(SPFs) [45], discriminative binary codes (DBC) [46], and
discriminative binary descriptors (DBD) [47]. The training-
based method using a ResNet-101 [3] were also compared.
As shown in Table 8, the results indicate that our method
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FIGURE 10. Examples of loss and accuracy curves of DenseNet-161 with
training data of two-fold cross validation with PolyU-DB. (a) The 1st fold,
(b) the 2nd fold.

showed higher accuracy than the methods proposed in pre-
vious studies.

Figures 14 (a) and (b) show correct recognition cases by
the proposed method. Figure 14 (a) is the case of authentic
matching and it shows that the vein pattern of the input image
has moved compared to the enrolled image due to misalign-
ment upon image capture. Using the shift matching method,
the misalignment was solved to allow accurate recognition.
Figure 14 (b) is the case of imposter matching and shows that
it is accurately recognized as imposter matching despite that
the vein patterns have been captured with low brightness.

In the false rejection case, the vein patterns are not clear
as the vein area is dark and there is a large degree of mis-
alignment. In this case, the misalignment could not be solved
with the composite image and shift matching. In the false
acceptance case, as the vein area of the input image was
captured with very low brightness, the vein patterns are not

FIGURE 11. Example images with noise. (a), (b) enrolled and recognized
images with Gaussian random noise. (c) Composite image generated from
(a) and (b). (d) Difference image generated from (a) and (b).

clearly seen. Also, the shading of the enrolled and input
images is similar. Therefore, the false acceptance case occurs.

Figures 15 (a) and (b) respectively show false rejection and
false acceptance cases by the proposed method.

In the next test, the processing speed of the DenseNet-161-
based finger-vein recognition was measured. The measure-
ment was performed with the desktop computer explained
in Section V.B and the Jetson TX2 embedded system [48]
in Figure 16. The reason for also performing measurements
on the embedded system is because in most cases of finger-
vein recognition for access control, the system is more
widely used by an on-board computing (edge computing) as
an embedded system for an entrance door than a desktop
computer-based server-client computing (cloud computing).
The feasibility of on-board computing of the proposed system
was therefore evaluated. The Jetson TX2 has a NVIDIA
PascalTM-family GPU (256 CUDA cores) with 8 GB of
memory shared between the central processing unit (CPU)
and GPU, and 59.7 GB/s of memory bandwidth; it uses less
than 7.5 Watts of power. Proposed algorithm of finger-vein
recognition was implemented by Keras-Tensorflow [49] on
the Ubuntu 16.04 operating system [50]. More specifically,
we setup python version 3.5, Tensorflow-GPU version 1.12,
NVIDIA CUDA R© toolkit 9.0, and NVIDIA CUDA R© deep
neural network library (cuDNN) version 7.3 on the computer.
As shown in Table 9, the DenseNet-161-based recognition
method using shift matching required 116 ms for the recog-
nition of one image on the desktop computer and 2038 ms on
the Jetson TX2 embedded system. Processing speed on Jetson
TX2 system was lower as computing resources were limited
compared to the desktop computer, but it was confirmed
that the proposed method could be applied to the embedded
system with limited computing resources.
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TABLE 6. EER of finger-vein recognition with or without shift matching and various score fusions (unit: %).

TABLE 7. EER of finger-vein recognition according to different types of
input image and CNN models (unit: %).

E. TESTING WITH SDU-DB
Next, the performance was evaluated with SDU-DB. Table 10
shows the EER results for different inputs to various CNN
structures. When composite images are used as input to the
DenseNet-161 structure, the highest performance of 2.35%
was obtained. Figure 17 shows the ROC curves of the recog-
nition accuracies. These curves are expressed as averages of
the two ROC curves obtained from two-fold cross-validation.
As shown in Figure 17, the highest accuracy was obtained
when the DenseNet-161 network and composite images were
used.

In the next test, the accuracies of the proposed and previous
methods are compared. The non-training based methods of
Gabor + LBP [51], repeated line tracking [20], and maxi-
mum curvature [52], and the training-based methods of VGG
Net-16 [2], and a ResNet-101 [3] based finger-vein recog-
nition method were compared with our method. As shown

TABLE 8. Comparisons of EER by proposed method with previous
algorithms on PolyU-DB (unit: %).

in Table 11, our method showed higher accuracy than the
methods proposed in previous studies.

Figures 18 (a) and (b) show the correct recognition cases
with the proposed method. Figure 18 (a) is the case of
authentic matching and shows that the vein pattern of the
input image has significantly moved compared to the enrolled
image due to misalignment upon image capture. Using the
shift matching, the misalignment was solved and recogni-
tion was successful. Figure 18 (b) is the case of imposter
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TABLE 9. Comparisons of processing speed by proposed method on
desktop computer and embedded system (unit: ms).

TABLE 10. Comparisons of finger vein recognition accuracies according
to different types of input image and CNN models (unit: %).

TABLE 11. Comparisons of EER by proposed method with previous
algorithms on SDU-DB (unit: %).

matching and shows that it was accurately recognized despite
the unclear vein patterns of the input image.

Figures 19 (a) and (b) show the false rejection and false
acceptance cases with the proposed method. In the case
of false rejection, shading and unclear vein patterns of the
enrolled and input images are observed. Also, they are
not correctly recognized due to different shading patterns

FIGURE 12. ROC curves of finger-vein recognition with or without shift
matching and various score fusions: (a) VGG Net-16, (b) ResNet-152, and
(c) DenseNet-161.

between the two images. In the false acceptance case, the vein
patterns on the left areas of the two images are similar, and
those in the right area of the input image were not clearly
captured. In other words, it appears that recognition was not
successful due to the similarity between local areas.

F. ANALYSIS OF FEATURE MAP AND SHIFT MATCHING
In this section, the feature map of the DenseNet was analyzed
according to the depths of layer. The analysis results were
presented by the channel of featuremap, as the dimension size
of featuremapwas too large. Figure 20 shows the examples of
the feature maps extracted from an authentic matching image
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FIGURE 13. EER of finger-vein recognition according to different types of
input image and CNN models. Using (a) original image, (b) difference
image, and (c) composite image.

(Figures 20 (a), (c), (e), (g), (i), and (j)) and an imposter
matching image (Figures 20 (b), (d), (f), (h), (k), and (l))
on each layer of the DenseNet. Figures 20 (a) and (b) are
the feature maps extracted from the 7 × 7 conv of Table 2.
Figures 20 (c) and (d) are the output feature map of
the 1 × 1 conv of the transition layer (1) of Table 2.
Figures 20 (e) and (f) are the output feature map of
the 1 × 1 conv of the transition layer (2) of Table 2.
Figures 20 (g) and (h) are the output feature map of
the 1 × 1 conv of the transition layer (3) of Table 2.
Figures 20 (i) and (k) are the output feature map of the dense
block (4) of Table 2. Figures 20 (j) and (l) are the 3D feature

FIGURE 14. Examples of the correct recognition cases. (a) Authentic
matching. (b) Imposter matching. Upper and lower images in
(a) and (b) show the enrolled and input images, respectively.
In (a) and (b), the images are an original image, ROI,
and a resized image (224 × 224) from the left to the right.

FIGURE 15. Examples of incorrect recognition cases. (a) False rejection
case. (b) False acceptance case. Upper and lower images in (a) and (b)
show the enrolled and input images, respectively. In (a) and (b),
the images are an original image, ROI, and a resized image (224 × 224)
from the left to the right.

map images generated based on the average feature map
values of Figures 20 (i) and (k), respectively.

For example, the size of the output feature map extracted
from the 7 × 7 conv layer of Table 2 is 112 × 112 × 96,
and 96 feature maps of 112 × 112 size are displayed
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FIGURE 16. Jetson TX2 embedded system.

in Figures 20 (a) and (b) from top left to bottom
right. As shown in Figure 20, the deeper the layer is,
the more abstract the extracted feature is. For example,
Figures 20 (a) and (b) maintained the vein-line and high-
frequency edge components of the original image, but
Figures 20 (i) and (j) lost the shape of the vein-line and
maintained only the abstracted low-frequency features. As in
Figures 20 (a)-(i) and (k), there appears to be no signifi-
cant difference in the feature maps in the case of authentic
matching and imposter matching. However, the 3D feature
map values obtained from the average feature map values
show moderate changes in the case of Figure 20 (j), which
is the authentic matching result at the stage immediately
before the classification layer in Table 2. On the other hand,
Figure 20 (l), which is the imposter matching result, shows
relatively more changes in feature map values compared to
Figure 20 (j). Based on this, a difference was confirmed in
the CNN feature maps of the authentic and imposter matching
due to composite images.

As explained in [53], the recognition error in biometric
system can be determined by genuine matching distribution
(GMD) and imposter matching distribution (IMD). The gen-
uine matching shows the case that the enrolled and input
biometric data are from same class whereas the imposter
matching represents the case that the enrolled and input bio-
metric data are from different classes. In general, the more
overlapped these two distributions are, the larger the recog-
nition error becomes. With shift matching, the decrement of
standard deviation of the GMD is comparatively larger than
the amount of approaching by the IMD to the GMD, which
causes the final reduction of recognition error [53].

To prove this, we experimentally checked the change of the
GMD and IMD without and with shift matching algorithm as
shown in Figures 21 (a) and (b), respectively. Although the
IMD approaches to the GMD with shift matching (the mean
of 14.75 in the IMD as in Figure 21 (a) becomes smaller as
that of 12.52 as in Figure 21 (b)), the decrement of standard
deviation of the GMD is much larger (the standard deviation
of 5.43 in the GMD as in Figure 21 (a) becomes smaller as
that of 3.68 as in Figure 21 (b)). Consequently, equal error

FIGURE 17. EER of finger-vein recognition according to different types of
input image and CNN models. Using (a) original images, (b) difference
images, and (c) composite images.

rate (EER) of recognitionwith shift matching (EER of 0.39%)
of Figure 21 (b) becomes lower than that without shift match-
ing (EER of 0.64%) of Figure 21 (a).

In conventional biometric system, the evaluation of accu-
racy has been also conducted by using the decidability value
(d
′

value) of Equation (6) [54].

d
′

=
|µG − µI |√
1
2 (σ

2
G + σ

2
I )

(6)
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FIGURE 18. Examples of the correct recognition cases. (a) Authentic
matching. (b) Imposter matching. Upper and lower images in (a) and (b)
show the enrolled and input images, respectively. In (a) and (b),
the images are the original image, ROI, and a resized image (224 × 224)
from the left to the right.

FIGURE 19. Examples of incorrect recognition cases. (a) False rejection
case. (b) False acceptance case. Upper and lower images in (a) and (b)
show the enrolled and input images, respectively. In (a) and (b),
the images are an original image, ROI and a resized image (224 × 224)
from the left to the right.

where µG and µI presents the means of the GMD and IMD,
respectively. σG and σI denote the standard deviations of
the GMD and IMD, respectively. In general, the farther the

FIGURE 20. Examples of feature maps extracted from an authentic
matching image ((a), (c), (e), (g), (i), and (j) and an imposter matching
image ((b), (d), (f), (h), (k), and (l) from each layer of the DenseNet.
(a, b) Feature map extracted from the 7 × 7 conv of Table 2, (c, d) output
feature map of the 1 × 1 conv on the transition layer (1) of Table 2,
(e, f) output feature map of the 1 × 1 conv on the transition layer (2) of
Table 2, (g, h) output feature map of the 1 × 1 conv on the transition
layer (3) of Table 2, (i, k) output feature map of the dense block (4) of
Table 2, (j, l) 3D feature map image based on the average feature map
values of (i, k), respectively.
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FIGURE 20. (Continued.) Examples of feature maps extracted from an
authentic matching image ((a), (c), (e), (g), (i), and (j) and an imposter
matching image ((b), (d), (f), (h), (k), and (l) from each layer of the
DenseNet. (a, b) Feature map extracted from the 7 × 7 conv of Table 2,
(c, d) output feature map of the 1 × 1 conv on the transition layer (1) of
Table 2, (e, f) output feature map of the 1 × 1 conv on the transition
layer (2) of Table 2, (g, h) output feature map of the 1 × 1 conv on the
transition layer (3) of Table 2, (i, k) output feature map of the dense
block (4) of Table 2, (j, l) 3D feature map image based on the average
feature map values of (i, k), respectively.

FIGURE 21. Comparisons on the changes in genuine matching
distribution (GMD) and imposter matching distribution (IMD)
(a) without shift matching, and (b) with shift matching.

two distributions are separated, the smaller the recognition
error becomes. The d

′

value of Equation (6) increases when
the two distributions separate, whereas it decreases when the
overlap caused by the proximity between the two distribu-
tions increases. Therefore, a greater d

′

value is an indica-
tor of a better accuracy of the biometric system subject to
evaluation [55].

As shown in Figures 21 (a) and (b), the d ′ value with shift
matching (7.03) of Figure 21 (b) is larger than that without
shift matching (6.38) of Figure 21 (a), which means that the
GMD and IMD with shift matching are more separable and
consequent recognition error is smaller.

In order to obtain the optimal parameter for shift matching,
we performed the experiments with training data to mea-
sure the change of EER according to the amount of pixels
and direction for shift matching. From these experiments,
we determined the optimal parameters of 5 pixels and 8 direc-
tions for shift matching (as shown in Figure 8) because we
obtained the lowest EER of finger-vein recognition with these
parameters.

VI. CONCLUSION
In this research, a deep DenseNet based finger-vein recog-
nition method was proposed. A shift matching method was
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also used to compensate for performance degradation caused
by misalignment of the enrolled and input images, and
a 3-channel composite image was used as the input to the
CNN in place of a difference image which is susceptible to
noise. When the composite images proposed in the study
were used as input to the CNN, the recognition accuracy
was confirmed to be higher than that with difference images.
In addition, when tested with a noisy image, the composite
image was observed to have greater robustness against noise
compared to the difference image. Also, two open databases
were used to test various CNN models, and the highest
recognition accuracy was observed when the DenseNet-161
model was fine-tuned and the shift matching method was
used for recognition. According to the results of this study,
in most cases of false rejection, vein patterns were not clearly
captured with shading, and a high degree of misalignment
occurred. In false acceptance cases, vein patterns were par-
tially captured and there were issues of similarity in the pat-
terns and shading. The processing speed was measured on a
desktop computer and an embedded system, which confirmed
the applicability of our method in various environments.

In future studies, a new method would be examined for
improving the processing speed while maintaining recogni-
tion accuracy by reducing the number of layers and transition
layers of the DenseNet. In addition, the deep CNNmodel and
shift matching would be applied to other types of vein images
(palm-vein, hand-vein) as well as finger-print and palm-print
recognition.
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