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ABSTRACT YouTube Live is one of the most popular services on the Internet, enabling easy streaming
of a live video with the acceptable video quality. Thus, understanding user perception of this service is of
the utmost importance for network operators. As in other video streaming services, YouTube Live traffic is
affected by delays and interruptions due to unfavorable network conditions, which translate into unacceptable
initial reproduction times, image freezes, or abrupt changes in image quality. Detecting these events is key
to ensure an adequate quality of experience (QoE). Unfortunately, data encryption makes it very difficult
for operators to monitor the QoE from packet-level data collected in network interfaces. In this paper,
an analytical model to estimate the QoE for encrypted YouTube Live service from packet-level data collected
in the interfaces of a wireless network is presented. The inputs to the model are TCP/IP metrics, from
which four service key performance indicators (S-KPIs) are estimated: initial video play start time, video
interruption duration, video interruption frequency, and image quality. The model is developed with an
experimental platform consisting of a live streaming server, a terminal agent, a radio access network (e.g.,
Wi-Fi access point), a network-level emulator, a probe software, and a man-in-the-middle proxy. Model
assessment is carried out by comparing the S-KPI estimates with measurements from the terminal agent
under different network conditions introduced by the network emulator.

INDEX TERMS HTTP adaptive streaming (HAS), encryption, modeling, network emulator, quality of
experience (QoE), service key performance indicator (S-KPI).

I. INTRODUCTION
In the last decade, the exponential growth of traffic and
the launch of new services have completely changed mobile
communications networks and this trend will continue in the
coming years. By 2023, it is estimated that there will be
7.3 million smartphone subscriptions connected to different
networks [1]. Likewise, the deployment of future 5G net-
works will pave the way for new mobile use cases [2].

In parallel, technological advances have raised mobile
user expectations, forcing operators to change the way they
manage their networks. In a market where most operators
provide a similar offer, service performance as perceived by
the customer (a.k.a. Quality of Experience, QoE) has become
the key differentiating factor. As a consequence, operators are
changing legacy network management approaches, focused
on network performance and Quality of Service (QoS) to
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a more modern approach focused on user opinion and
QoE [3]. Customer experience management (CEM) will be
even more important in 5th generation (5G) mobile net-
works, where services with very different requirements will
coexist (e.g., social networks, virtual reality, autonomous
vehicle...) [2]. Thus, QoE should be the main criterion for
assigning radio resources [4], prioritizing service requests [5]
or selecting paths in software-defined architectures [6] in
future 5G systems.

At present, the most important service in mobile networks
is video streaming, which is expected to generate 82% of
all IP traffic volume by 2021 [7]. For this reason, operators
focus their attention on understanding traffic from this kind
of applications. In the past, video distribution was based on
HTTP progressive download (HPD), where the server sends
parts of the clip with the format specified by the client in the
HTTP Request message [8]. Currently, the video distribution
technique adopted by most service providers (e.g., YouTube,
Netflix, Hulu. . .) is HTTP adaptive streaming (HAS) [9].

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

70237

https://orcid.org/0000-0003-3859-2622
https://orcid.org/0000-0001-5371-7353


L. R. Jiménez et al.: Network-Layer QoE Model for YouTube Live in Wireless Networks

HAS breaks the video content into a sequence of small
HTTP-based file segments (normally, from 2 to 10 seconds
of video content), which is available to the user with different
resolutions (i.e., at different coding bitrates). While repro-
duction takes place, the video client automatically selects the
segment with the highest bitrate still avoiding client buffer
underruns causing rebuffering events (a.k.a. video stalling).
Thus, HAS adapts to changing network conditions while
providing the highest possible image quality. Additionally,
several social networks (e.g., YouTube Live, Facebook Live,
PeriscopeĚ) now offer the possibility to provide live video
streaming with small reproduction delays. All these changes
make it necessary to understand the properties of the new
video traffic to be able to monitor and control the QoE
perceived by the users.

A key task in video QoE management is QoE assess-
ment. The simplest approach is by performing subjec-
tive tests, where real observers judge subjective video
quality provided under different network conditions in a
controlled lab environment [10]. In parallel, service per-
formance metrics (e.g., initial reproduction delay, stalling
frequency/duration. . .) can also be measured with specialized
client software, so that the impact of each metric on user
experience can be isolated [11]. However, subjective tests are
complex and time-consuming, and not valid for real-time
large-scale monitoring. Objective methods are classified
intomedia-based, bitstream-based or parametricmodels [12].
Media-based (a.k.a. signal-based) methods decoding the
video content and bitstream-based methods that rely on the
video elementary stream, both require access to the applica-
tion layer and are therefore only suitable for service providers
that have access to one side of the link. Alternatively, para-
metric packet-layer methods analyze protocol messages to
identify the different stages of the session (e.g., start of video
playback, stalling . . .), from which service key performance
indicators (S-KPIs) can be obtained for the connection (e.g.,
initial reproduction delay, stalling duration. . .). Then, S-KPIs
are translated into mean opinion score (MOS) [13] values
by formulas derived in subjective tests. In the past, S-KPIs
could be directlymeasured by network operators using packet
inspectors (a.k.a. software probes) in key network inter-
faces of the core network [14]. Note that congestion and
flow control mechanisms in TCP ensure that network-level
indicators reflect end-to-end service quality. Unfortunately,
this approach is not possible anymore due to traffic encryp-
tion. Since 2016, 97% of YouTube traffic is encrypted using
HTTPS connections with Transport Layer Security (TLS)
and Secure Sockets Layer (SSL). In the absence of other
methods, simpler parametric models can blindly relate basic
network-level QoS measurements (e.g., average IP session
throughput) to MOS figures. This approach is often followed
by frameworks used for large-scale on-line passive moni-
toring on a per-connection basis [15], [16]. Recently, these
platforms have been extended with data analytics capabilities
to isolate the indicators that better reflect user experience and
predict their trends [17].

Several QoE assessment models for video streaming have
been proposed in the literature. Preliminary works analyze
video streaming traffic, identifying differences between ser-
vice providers [18], wired and wireless networks [19] and
terminal operating systems [20]. In [21], a linear formula is
derived by regression analysis to estimate the QoE of a video
streaming session from S-KPIs, such as initial reproduction
delay, stalling frequency, and stalling duration. In [22], a QoE
model for the conventional (i.e., non-real time) YouTube
service based on estimating the client buffer level is pre-
sented. Even if the analysis is focused on fixed-quality video
streaming (i.e., without HAS), the authors justify the need
for new service performance metrics to estimate the QoE
with HAS. More focused on HAS, a QoE model for Apple
HTTP Live video streaming solution with HAS is proposed
in [23] to estimate the QoE in mobile devices from the linear
combination of average image quality, standard deviation
of image quality and frequency of switches between image
qualities. As an alternative to network-based approaches,
in [15], several QoE models for popular smartphone apps
based on passive in-device measurements are proposed. Most
of these works focus on conventional (i.e., video-on-demand)
video streaming, whose QoE models may not be valid for
live video streaming due to the different parametrization of
system components. To the authors knowledge, no previous
work has described a QoE model for YouTube Live service,
including online transmission, HAS, and encryption, based
on network-layer passive monitoring.

In this work, a data-driven analytical QoE model for
YouTube Live video streaming service in wireless networks
is proposed. The proposed parametric model relates basic
QoS metrics measured in core network interfaces on a
per-connection basis to S-KPIs reflecting end-to-end service
performance, which can then be translated into MOS fig-
ures with classical packet-layer methods. The inputs of the
model are common TCP/IP metrics (e.g., average session
throughput, packet loss ratio and round-trip time), fromwhich
four of the most important video S-KPIs are estimated: initial
video play start time, video interruption duration, video inter-
ruption frequency, and image quality. The model is developed
by regression techniques on data collected with an exper-
imental platform, consisting of a YouTube Live streaming
server, a user terminal agent, a Wi-Fi wireless network,
a network-level emulator, a probe software and a man-in-
the-middle proxy. This platform allows to: a) automate the
creation of live video streaming sessions in YouTube, b)
emulate user interactions with the live video streaming appli-
cation through a smartphone, c) modify network conditions
with a network emulator, and d) intercept SSL and HTTPS
traffic with a man-in-the-middle proxy [24] to decrypt pro-
tocol messages. With this platform, a preliminary analysis
is carried out to identify differences between conventional
and live video streaming that justifies the development of
new QoE models. Then, model assessment is carried out by
comparing S-KPI estimates with real measurements made by
the user terminal agent and video resolution data in protocol
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messages under different network conditions. The rest of the
paper is structured as follows. Section II reviews parametric
QoE models for video streaming in the literature. Section III
describes the experimental platform. Section IV discusses
the main differences between conventional and live YouTube
streaming service. Section V explains the performance model
relating TCP/IP metrics with S-KPIs for YouTube Live ser-
vice. Section VI presents the main contribution, consisting
of the regression curves used to estimate the S-KPIs of the
service from TCP/IP metrics. Finally, Section VII presents
the conclusions of the work.

II. RELATED WORK
The first QoE models were designed for conventional video-
on-demand streaming based on HPD, where stalling is the
most critical factor. The simplest approach is to estimate
user experience directly from network-layer metrics, such
as packet loss/jitter/delay and bandwidth [25]. More refined
approaches estimate user experience from application-layer
metrics. In [21], a linear formula is derived by regression
analysis to estimate the QoE of an HPD video streaming
session from S-KPIs, such as initial reproduction delay,
stalling frequency, and stalling duration. In [26], an exponen-
tial function is proposed to estimate MOS from the number
of stalling events and their duration. In [22], a QoE model
for the conventional YouTube service based on estimating
the client buffer level is presented. Simpler metrics, such
as the reception rate (i.e., download throughput vs video
coding bitrate) [26] or the stalling duration ratio [27] can
also give a hint of the video user experience. As an alter-
native to network-based approaches, in [15], a QoE model
for YouTube based on passive in-device measurements is
proposed.

Hoßfeld et al. [28] evaluated for the first time the factors
affecting the QoE in HAS, suggesting a simplified model
that estimates video MOS from the fraction of time that
the highest quality level is viewed. A more comprehensive
analysis of perceptual and technical factors affecting the QoE
with HAS is presented in [29]. More refined models esti-
mate the QoE from the linear combination of average image
quality, standard deviation of image quality and frequency of
switches between quality levels [23], combined with stalling
statistics [30], [31]. With recent advances in big data analyt-
ics, the newest approaches apply machine learning to build
sophisticated models that capture complex dependencies of
MOS with a large number of predictors [32]–[35].

In [36], a comparison of several of the above-mentioned
models is done based on a large video QoE database.
As expected, results show that the simplest network-based
and stalling-centric models do not perform well with
HAS, and the most complex hybrid methods combining
media-based and packet-based information (e.g., ITU-T
P.1203 [34]) outperform the others.

In [37], a simple data-driven QoE model for conventional
video streaming services in wireless networks is presented.
The proposed model is built with fixed resolution videos,

and cannot be used to estimate the impact of HAS on user
perception.

The above works are focused on video-on-demand (i.e.,
non-real-time) streaming service. The main contributions of
this work are: a) a preliminary analysis showing the differ-
ences between conventional and live video streaming in wired
and cellular networks, and b) a set of functions mapping
TCP/IP metrics to S-KPIs for YouTube Live service, which
allowmobile network operators to reuse existing packet-layer
QoE models (e.g., [21], [34]).

III. EXPERIMENTAL TEST PLATFORM
Fig. 1 shows a diagram of the platform used to automate mea-
surement collection. The platform ismade up of twomodules:
a broadcast module (left part of the diagram) responsible for
the live broadcast of a video by the YouTube Live platform,
and ameasurementmodule (right part of the diagram) respon-
sible for themodification, decryption, collection, and analysis
of measurements. The broadcast module consists of a PC
runningWirecast application. The measurement module con-
sists of a man-in-the-middle proxy (mitmproxy) recording all
HTTP and HTTPS traffic and a mobile terminal connected to
a Wi-Fi network using a PC as a gateway with direct output
to the Internet. In the mobile terminal, a user terminal agent
(TEMS Pocket) is running, which mimics user interactions
during the video streaming session. TEMS application can
also collect S-KPI measurements, as it has access to one of
the communication endpoints. On the PC, a network emu-
lator (NetEm) is executed to modify network conditions in
a controlled way (e.g., available bandwidth, delay and/or
packet loss ratio). Packet-level network measurements are
collected at the network emulator interface to the Internet
by a standard capturing tool. This data is then processed
with a traffic monitoring and analysis application (Network
Probe), with which basic QoS metrics for each connection
are obtained. The resulting data is used to derive the QoE
model relating QoS metrics to S-KPIs. All these processes
are detailed in the following paragraphs.

A. LIVE VIDEO-STREAM BROADCASTING
In this work, a live video broadcast session is first created in
the YouTube platform. For this purpose, a computer generates
multimedia content to be distributed in real time. Specifically,
a live streaming server consisting of a PC with two 2.4-GHz
8-core Intel (R) Xeon processors, 64GB of RAM, Microsoft
Windows Server 2016 Datacenter ver. 10.0.14933 operat-
ing system and a Matrox G200 multimedia card are used.
The server is connected to an isolated network point to
avoid unwanted changes in the available bandwidth for
uploading multimedia stream to YouTube (100 Mbps upload
speed). TelestreamWirecast software and the web camera are
installed on the server. Wirecast is a software for live video
streaming that allows to produce and stream multimedia
events in real time to YouTube from a workstation [38]. The
version used is Wirecast Pro 7.3 64-bits, with high-definition
video broadcast capability. Wirecast uses an external device
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FIGURE 1. Experimental test platform.

to capture live video, a Logitech HD Pro C920 webcam,
which allows high-definition recordings (HD 1080p). For
this device, the video format, the video coder and the output
bitrate must be configured. In this work, 1920x1080 resolu-
tion, progressive format, H.264 AVC encoder, and 3-9 Mbps
bitrate (1080p profile) are selected. After setting up live
video-stream upload, a stream event gateway on the YouTube
website must be created by logging into the YouTube Cre-
ator Studio service. This service sets up the channel where
transmission takes place, provides the video identifier (ID)
and may change video stream attributes in real time (e.g.,
audio and video encoder) [39]. When creating the event,
various parameters must be established: name, broadcast start
time, download video stream characteristics and event type
characteristics (Public, Private, Hidden). The Public event
distributes the live streaming ID in the YouTube Live list at
a global level, allowing any user to access the live stream; in
contrast, in Private and Hidden modes, it is necessary to have
the ID of the event to access the live stream. In the testbed,
a hidden event is used. This event is linked to live capture.
Subsequently, YouTube transcodes the content received by
the upload link at a specific bitrate, creating a master stream
with the bitrate set when selecting the encoder in the event
configuration. Then, YouTube replicates the flow in different
bitrates, so that the broadcast live video stream is available to
all types of users [39].

B. LIVE VIDEO-STREAM RECEPTION
Live video streaming traffic is generated by sending dis-
play requests to a previously created public broadcast event.

For this purpose, a Samsung Galaxy Note 4 smartphone with
TEMS Pocket application v16.3 [40] is used. This termi-
nal agent software is responsible for emulating user inter-
action with the live video streaming client and collecting
S-KPI measurements. The terminal connects to the Internet
via a standard Wi-Fi router model HG556a, with Wireless
802.11 b/g/n and Ethernet 802.3u interfaces, operating at
2.4 GHz and configured in bridge mode to interconnectWi-Fi
devices to the measurement subnet. The connection between
the wireless access point and the subnet is through a twisted
pair cable connected from the access point to the PC with the
network emulator.

C. NETWORK EMULATION
To change network conditions, NetEmnetwork emulator [41],
included in Linux kernel since version 2.6, is used. NetEm
can introduce controlled effects on the subnet, such as packet
delay, loss, duplication, and reordering. Packet delay and
jitter are described by mean value, standard deviation and
correlation coefficient. By default, a uniform distribution is
used for the delay, which can be replaced by other functions,
such as Pareto, Pareto-normal, normal or custom distributions
created from experimental or simulation data [42]. On the
platform, NetEm is installed on a PCwith an i5-750 processor
at 3 GHz, 8 GB of RAM and Ubuntu 16.04 LTS 64-bit oper-
ating system. This PC includes two network cards linked by a
routing table to provide Internet access to devices connected
to the wireless subnet. In the tests, only delay, packet loss, and
maximum throughput (throttling) parameters are adjusted.

70240 VOLUME 7, 2019



L. R. Jiménez et al.: Network-Layer QoE Model for YouTube Live in Wireless Networks

D. TRAFFIC DECRYPTION
User traffic can only be decrypted if the SSL certificate and
private key of the user are known. Generally, such informa-
tion is only available at the ends of the communication (client
and server). In the experiments, a mitmproxy is located in the
same Wi-Fi network as the mobile terminal generating video
traffic. The mitmproxy is configured in transparent mode by
redirecting traffic into the proxy at the network layer without
changing client settings.Mitmproxy can decrypt traffic on the
fly, as long as the client trusts its built-in certificate authority.
For this purpose, a self-signed SSL certificate generated by
the mitmproxy must be pre-installed at the mobile terminal.
In the platform, mitmproxy is in a laptop with two Intel Core
i5 (6th Gen) 6200U@ 2.3GHz processors, 8 GB of RAM and
Ubuntu 16.04 LTS 64-bit operating system.

E. MEASUREMENT COLLECTION
As shown in Fig. 1, two measurement points are config-
ured in the platform, at the Internet output and the termi-
nal. The former is devoted to network-layer measurements
(TCP/IP metrics), whereas the latter is devoted to S-KPI
measurements.

1) NETWORK-LEVEL MEASUREMENTS
To obtain TCP/IP metrics, packet-level trace files are gener-
ated with the open source tool tcpdump [43]. The resulting
‘‘.pcap’’ files are then processed offline with proprietary
traffic analysis and monitoring tool, Network Probe, whose
output is a comma-separated values (CSV) file with basic
QoS metrics per user, connection and packet burst.

2) S-KPI MEASUREMENTS
S-KPIs are obtained by two processes. On the one hand,
TEMS terminal agent generates logs, which are then pro-
cessed offline by a Python script to compute S-KPIs related
to the client buffer status. On the other hand, mitmproxy per-
forms traffic decryption in real time and generates logs with
HTTP messages exchanged between the user terminal agent
and YouTube server, fromwhich image quality indicators can
be derived later.

a: S-KPIs MEASURED BY THE TERMINAL AGENT
TEMS Pocket is a user terminal agent for verification,
maintenance, and troubleshooting of mobile networks [40].
It allows the creation of scripts to automate the tests of
services such as Facebook, Instagram, Twitter, WhatsApp,
YouTube, etc. For YouTube Live service, YouTube option
must be selected. Fig. 2 shows two screenshots when a
measurement is taking place. On the lower left, a small
screen displays the evaluated live video, while, on the right,
the screen shows different S-KPIs values. In parallel, a report
is generated with relevant S-KPI statistics. In this work, the S-
KPIs analyzed by the terminal agent are initial video play
start time, video interruption duration and video interruption
frequency.

FIGURE 2. TEMS Pocket screens while running YouTube script.

TABLE 1. YouTube itag mapping for live streaming [45].

b: S-KPIs MEASURED BY THE MITMPROXY
YouTube server splits the live video sequence into segments
(a.k.a. chunks), which are encoded with different algorithms,
resolutions and containers. The combination of encoding
algorithm, video resolution, and container type defines the
video format, labeled with the parameter itag [19]. Table 1
shows some itag values for different live streaming videos
resolutions and formats. Then, the video client changes the
requested itag value based on its buffer status and central
processing unit utilization. As explained in [44], YouTube
encodes videos with Adobe Dynamic Streaming for Flash,
which supports dynamic streaming over HTTP, but does
not purely adopt the international standard MPEG-DASH.
Instead, it generates a Uniform Resource Locator (URL)
with the itag inside, which is exchanged between YouTube
HTTP server and client in the video information in the HTML
content.

When a user starts playing a live video stream, an HTTP
video-playback request is sent to YouTube server. This mes-
sage contains different parameters including video URL,
codec, video live quality, resolution, etc. YouTube Server
replies to the client with information on how the segmen-
tation is done, which encoding and resolution are available
for a particular video entry and other meta-data information.
Thus, itag information can be obtained by decrypting HTTP
messages and examining the recorded HTTP Archive (HAR)
trace.
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TABLE 2. YouTube video playback parameters: conventional vs live service.

3) AUTOMATION
The automation process consists of configuring user termi-
nal agent and network emulator and capturing/decrypting
packet-level traffic. Both processes must be synchronized to
allow processing and interpretation of measurements.

a: USER TERMINAL AGENT
A script must be set to repeatedly download and reproduce
the multimedia flow of the live video streaming session. Such
a script consists of actions and settings. In this work, two
actions are selected: YouTube script, in charge of initiat-
ing/terminating video session, and Log file recordings, which
allows saving S-KPI measurements in a single file for later
post-processing. The main settings are: a) Video, indicating
the identifier (ID) of the streaming video channel to be repro-
duced; b) Streaming duration (SD), indicating the length of
a measurement period (i.e., time to collect S-KPI statistics);
c) pre-guard (PG) and post-guard (PTD) intervals, indicat-
ing guard periods inserted before and after measurements to
ensure that the establishment and release of the video session
is recorded in the log file (for YouTube, the recommended
value for both is 10 seconds) [46]; d) repeat action (RA),
representing the total number of times all script options are
executed, and e) maximum iterations (MI), denoting the total
number of times the script is executed. The total measurement
period, E , is

E = MI · RA · (SD+ PG+ PTD). (1)

b: NETWORK EMULATOR
A script is used to configure delay, jitter, loss rate and
maximum throughput parameter values in NetEm, based on
the command line tool ‘tc’ [41]. The interface controlled by
NetEm corresponds to the network emulator interface to the
wireless access point.

IV. YOUTUBE FEATURES
A preliminary analysis is carried out to identify differences
between conventional and live video streaming on YouTube

based on session traces. The analysis covers both protocol
messages and application behavior.

To that end, different combinations of client type (mobile
phone or PC) and video service type (conventional or live) are
tested. For each combination, a short video streaming session
is established, where all HTTP messages (request/response)
are captured between the YouTube client and server in the
video playback sequence. As a result, 4 HAR traces of video
streaming session of 1minute are collected (PC-conventional,
PC-live, mobile-conventional and mobile-live).

A. PROTOCOL MESSAGES
YouTube uses video playback request messages to grabmedia
data from the server [47]. By inspecting the video URL in
these messages, 39 parameters are found: alr, c, gir, ms,
mv, pcm2cms, pl, ratebypass, requiressl, source, cpn, cver,
ei, expire, id, initcwndbps, ip, keepalive, key, mm, mn, mt,
signature, clen, dur, itags, lmt, mime, range, rbuf, rn, aitags,
cmbypass, fvip, gcr, ipbits, live, mpd_version and playlist
type. In this work, the analysis is focused on parameters
differing between YouTube Live and conventional YouTube.
The reader is referred to [47] and [48] for a description of the
other parameters.

Table 2 shows the list of parameters of interest. For clarity,
parameters are arranged in 3 groups, depending on whether
they are available in both YouTube modes, only in conven-
tional YouTube or only in YouTube Live. In the first group,
it is observed that ms and source are static data showing
if media stream comes from a conventional or live feed.
mm includes as many integer values as media stream types.
initcwndbps is the initial congestion window configured on
the server side. It is observed that a few isolated live feeds,
as the one in the table, show extremely low values of this
parameter. Such low values are not observed in conventional
YouTube sessions. dur denotes sequence length (in seconds)
in conventional service, whereas, for live feeds, it denotes
the length of downloaded video segments, between 1 and 5
seconds [49]. clen dynamically varies with itag in conven-
tional service to reflect the total length of the video stream
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FIGURE 3. Video download rate and video bitrate versus time. (a) PC-conventional, (b) PC-live, (c) mobile-conventional, (d) mobile-live.

(content length) in bytes for the current video resolution.
In contrast, in live feeds, clen reflects ‘‘noclen’’. This is
consistent with the fact that the total duration of the live video
session is unknown a priori. The second group of parameters
only appear in conventional YouTube. aitag is the set of itags
for the video sequence available on the server. lmt is a times-
tamp with the file creation date of the video content at the
resolution currently selected by the client. fvip takes integer
values and its name suggests its use for virtual IP forwarding
to balance server load. The third group of parameters only
appear in YouTube Live. grc is a two-letter code with the
country, live is 1 for live videos tested, cmbypass reflects
the activation of some bypass scheme and mpd_version
takes integer values showing theMedia Presentation Descrip-
tion (MPD) version. Finally, playlist_type denotes the type of
playlist from a set of values (e.g., DVR, EVENT, VOD, LIVE
. . .), restricting how the playlist can be updated [50].

Figures 3 (a)-(d) show the average downlink through-
put (THRU) and video bitrate (VBR) of the different video
segments downloaded by the client, for each combination of

client and service type. Specifically, (a) and (b) reflect the
results of conventional and live service in PC, and (c) and
(d) do the same for the mobile phone. In the figures, each
point corresponds to a video playback request message (i.e.,
HTTP GET/request), represented in time when the request is
sent from the client to the server. Thus, each message results
in 2 points in the figure (1 cross for THRU and 1 triangle for
VBR) aligned in time. Note that bursts consisting of several
consecutive messages may see time aligned in the figure,
even if they take place at different instants. Time origin is
when the play button is pressed by the user and time span
is limited to 1 minute for space reasons. Note that video
sequence duration in this experiment is 1 minute in both the
conventional YouTube and the YouTube Live session.

In Figs. 3 (a) and (c), corresponding to conventional
YouTube in PC/mobile, it is observed that the download of
the 60-s video file is completed in less than 30 s (less than
half the video duration). In both cases, a burst of consecu-
tive messages is generated at the beginning of the session
to fill the client buffer as soon as possible, causing that
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THRU>>VBR. As a result, video file download terminates
well before reproduction ends. In the example, the 60-s video
is downloaded with only 10 request messages. In contrast, in
Figs. 3 (b) and (d), corresponding to their live counterparts,
it is observed for a 60-s video playback live session, media
is gradually downloaded (THRU ≈ VBR), as live content
is available in the video server. In this case, for 60 s of live
video, 16 and 18 packets are needed in the PC and mobile
cases, respectively. A closer inspection of Fig. 3.(b) shows
2 samples of very large THRU in the middle of the session
(seconds 26 and 36). These are due to the way THRU is
calculated here on a per-message basis, which gives inaccu-
rate estimates when the client sends 2 request messages at
the same time. Likewise, a closer analysis of VBR values in
Figs. 3 (c) and (d) shows a sudden increase of video bit rate
(i.e., itag change) in the middle of the session, triggered by
the client buffer state [47].

From these results, it is concluded that the client buffer
state is completely different in conventional and live YouTube
service, which has a strong impact on initial reproduction
times and rebuffering statistics. This justifies the need for new
ways to estimate service performance indicators from TCP/IP
metrics for YouTube Live.

V. EXPERIMENTAL METHODOLOGY
This section describes the process to capture data to esti-
mate the S-KPIs of an encrypted YouTube Live video
streaming session from TCP/IP metrics. Firstly, the exact
formula for each S-KPI is presented. Secondly, model
construction is explained. Thirdly, model assessment is
detailed.

A. S-KPI SELECTION
End-user QoE in HAS video streaming is mainly given by
three basic criteria: initial buffering time, number and dura-
tion of stallings and delivered image quality [29]. For the
latter, a recent study [36] shows that a combination of the
average image quality and the average magnitude of image
quality switches performs better than the time spent on the
highest quality level. Unfortunately, in most cases, only a
histogram of quality levels for the whole video streaming
session is available, making it impossible to compute the
magnitude of changes. Consequently, only four S-KPIs are
defined here: video play start time, video interruption count,
video interruption duration and image quality distribution.
These S-KPIs are included in most packet-layer models
(e.g., [21], [23], [30], [31]). Their definition is:

• Video play start time (SPT): time since the user sends
the request to start the video streaming (click on the ID)
until the first video frame appears on the screen.

• Video interruption frequency (IF): frequency with which
video playback in a streaming session is interrupted for
rebuffering reasons, computed as

IF = IC/SET [1/min], (2)

where IC is the total number of stallings during the
session and SET is the duration of the live reproduced
video in minutes.

• Video interruption duration ratio (IDR): ratio reflecting
the relative duration of stallings, computed as

IDR = ID/(ID+ SET ). (3)

where ID is the total stalling duration.
• Image quality distribution (IQ): histogram reflecting the
ratio of chunks downloaded with a certain itag value.

B. MODEL CONSTRUCTION
A measurement campaign was conducted from Septem-
ber 13th to September 22th, 2018. The test battery consists of
a live video streaming broadcast with 1920x1080 resolution,
progressive format, 25 frames/s, and 4.5-9 Mbps maximum
bitrate. The local server is connected to the Internet by a
100/300 Mbps upload/download speed link, which guaran-
tees enough bandwidth to transmit live streaming video with-
out interruption. Video content is generated with an HDTV
camera in front of a monitor displaying an endless sequence
of a single scene with constant and moderate motion so that
the original video bitrate does not vary much and changes in
S-KPIs are only due to network conditions.

Once the live video streaming session is launched, the net-
work emulator and the client are synchronized. The net-
work state is modified by changing NetEm configuration.
To reduce the number of experiments, the jitter parameter is
set to 0. The tested combinations, selected according to values
experienced by users in a live LTE downlink [37], are:
• Packet loss ratio [%]: 0, 0.75, 1.5, 3.
• Packet delay [ms]: 0, 50, 100, 200, 400.
• Maximum throughput limit [kbps]: 500, 1000, 2000,
4000.

Hence, 80 different network emulator settings (network
states) are emulated, each of which is maintained for 33 min-
utes. Thus, the total time of the test battery is 44 hours.

For each network state, several live video streaming
sessions are initiated. Maximum session length is set to
200 seconds (3.33 minutes) so that several session attempts
are carried out per network state (at least, 10). For each
session, the following data is captured:
• TCP/IP report, with TCP/IP metrics computed offline
from pcap files by the Network Probe,

• S-KPI report, with video play start time, video interrup-
tion count and video interruption duration, measured by
TEMS terminal agent, and

• Itag report, containing the histogram of itag values in
each live video streaming segment, obtained by process-
ing mitmproxy log.

Based on the previous data, a preliminary linear regression
analysis is carried out to identify the most relevant TCP/IP
metrics used as predictors. Then, a more refined regression
analysis is performed to build the models to predict the four
S-KPIs selected.
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TABLE 3. Selected live video streams.

1) IDENTIFICATION OF RELEVANT TCP/IP METRICS
In regression analysis, minimizing the number of vari-
ables (predictors) often leads tomore robust models (i.e., with
less overfitting). In this work, a feature selection process is
carried out to identify the TCP/IP metrics with the largest
impact on each video S-KPI. For this purpose, a classi-
cal Analysis of Variance (ANOVA) technique [51] is used.
A regressionmodel is built first with all indicators (referred to
as full model). Then, an iterative process starts where the least
significant variable is eliminated in each step. The more steps
are executed, the simpler the model is, but the less accurate.
The selection of the least significant variable in each step is
done by computing Student’s t and p-value statistics, T and
P, for every variable across iterations. Roughly speaking,
the p-value of a predictor represents the probability that its
regression coefficient is 0. Thus, a predictor (i.e., TCP/IP
metric) with large p-value tends to be less important for
predicting the dependent variable (S-KPI).

The candidate TCP/IP metrics selected a priori for the
full model are average downlink throughput (THRU), overall
downlink packet loss ratio (PLR) and average round trip
time (RTT). These indicators are closely related to effective
transmission rates [52]. All of them are measured at IP layer
and collected by the Probe software.

Figs. 4 (a)-(c) breaks down ANOVA statistics for three of
the four considered S-KPIs, namely initial video play start
time, video interruption frequency and video interruption
duration. These statistics are obtained by analyzing the resid-
uals from the regression analysis. It is observed that, for the
three S-KPIs, THRU is the most significant predictor, as it
has the lowest p-value for all of them.A closer analysis proves
that the accuracy of the model with a single predictor (THRU)
is nearly the same as with the full model. Specifically, the dif-
ference in the determination coefficient, R2, between the full
model and the simplified model based on THRU is less than
0.005 for any of the S-KPIs. From these results, it can be
concluded that THRU is themost significant factor, providing
enough information to estimate S-KPIs.

C. MODEL ASSESSMENT
The proposed mapping from TCP/IP metrics to S-KPIs is
built with measurements from a single video. To check the
validity of these mapping functions, the resulting model has

FIGURE 4. ANOVA statistics. (a) Initial video play start time. (b) Video
interruption duration. (c) Video interruption frequency.

to be tested with other videos. For this purpose, the measure-
ment campaign is repeated with 10 different YouTube Live
feeds from different streaming servers. Streams are carefully
selected so as to ensure that video URLs are active during
the whole measurement campaign and the video content is
diverse enough to be representative of all conditions. Table 3
details the content and motion speed for the selected live
videos. As observed in the table, their content covers very
different scenes, from live video cameras in nature and public
places to animated videos. The validation script reproduces
sequentially the 10 live streams under the 80 different NetEm
configurations. The total time is 2640 minutes (44 hours),
split into 33 min per NetEm configuration and 3.3 minutes
per live video.

D. QoE MODEL
To check the impact of errors when S-KPIs are estimated from
TCP/IP metrics, QoE is also measured. To avoid the need
for time-consuming subjective tests, a simple utility model
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is used to map S-KPI values to MOS figures. The model
is based on the video QoE measurement standard U-vMOS
(User/Unified/Ubiquitous video Mean Opinion Score), pro-
posed by Huawei in 2016 [53]. U-vMOS model takes into
account the dissatisfaction caused by initial reproduction
time, stallings and poor image quality. Similarly, an overall
MOS associated to the video experience of a session c is
calculated here per live video stream and scenario as

vMOS(c)

= 1+ (sQuality(c)− 1)

×

(
β1(sInteraction(c)−1)+β2(sView(c) −1)

4(β1 + β2)

)
, (4)

where sQuality is the maximum MOS due to image qual-
ity (i.e., provided that the initial delay is 0 and there is
no stalling), sInteraction is the maximum MOS related to
the loading time, sView is the maximum MOS due to stall
frequency and stall duration, and βi are regression constants.
As in [53], β1 = 0.71 and β2 = 0.77. Likewise, sInteraction
and sView are computed from SPT, IF and IDRmeasurements
with the mapping functions defined in [53]. Unlike in [53],
sQuality is not computed for a fixed image resolution, but
from itag statistics. In [23], MOS is computed from itag
statistics neglecting stallings. Following the same approach,
MOS due to image quality is estimated from the histogram of
itag values per session, obtained from HAR files generated
by processing mitmproxy logs. For this purpose, a limited set
of 20 live video sessions are established with very different
NetEm settings. For each of these video sessions, a center of
gravity (COG) of itag value is computed as

Cog(c) =
96∑

itag=91

WitagRitag(c)), (5)

where Witag is a weight proportional to the image quality
for an itag value, ranging from 1 (lowest) to 6 (highest) as
shown in Table 4, andRitag(c) is the relative frequency of each
itag value for session c. Thus, a larger ratio of itag 96 in a
session should translate into a larger Cog(c) (i.e., closer to 6),
denoting a higher image quality. Then, theMOS due to image
quality is calculated as a simple linear Cog-to-MOS mapping
as

sQuality = MOSmin +
(
MOSmax −MOSmin

)
×

(
Cog(c)− Cogmin
Cogmax − Cogmin

)
, (6)

TABLE 4. Weights for itag values.

Cogmin = min(Cog(c)), (7)

Cogmax = max(Cog(c)), (8)

where MOSmin and MOSmax are the expected maximum and
minimum MOS values considering all criteria (in this work,
1.5 and 4.5, respectively, taken from [23], [53]), and Cogmin
and Cogmax are the maximum and minimum Cog values of
the 20 sessions used to derive the Cog-to-MOS mapping.

VI. RESULTS
For clarity, the regression analysis performed to build the
different S-KPImodels is described first andmodel validation
is presented later.

A. MODEL CONSTRUCTION
First, Section V-B1 justified why S-KPIs are estimated only
from THRU measurements. Then, the regression models
reflecting the impact of THRU on each S-KPI are presented.

1) VIDEO PLAY START TIME
Fig. 5 shows a scatter plot of the video play start time (SPT)
versus THRU. Each of the 80 points corresponds to the
average of 10 video sessions of the same live feed for the
same network state (NetEm configuration). The segmented
regression curve that best fits the data is superimposed, result-
ing in a determination coefficient of R2 = 0.93. In the
figure, it is observed that points are grouped in columns that
match the bandwidth limitations (throttling values in NetEm).
The regression curve shows how SPT decreases when THRU
increases. As explained in [20], video reproduction starts
when the client buffer is filled up to a certain threshold.
The time to fill the buffer increases as the transmission rate
decreases. In [11], the average initial video play start time
reported for conventional (i.e., non-real time) YouTube ser-
vices was 2.6 s, with a maximum of 11.9 s. Results here show
an average initial delay between 3 and 6.8 s for YouTube Live.

FIGURE 5. Video play start time versus average session throughput.
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FIGURE 6. Interruption frequency versus average session throughput.

The larger variability for THRU = 2000 kbps is due to
stochastic noise.

2) VIDEO INTERRUPTION FREQUENCY
Fig. 6 shows a scatter plot of video interruption frequency (IF)
and THRU. As in Fig. 5, each point corresponds to the
average of 10 video sessions for the same network state.
The segmented regression curve that best fits the data is
superimposed. A quick look at the y-axis reveals medium
IF values (lower than 0.6 rebuffering events per minute for
the smallest THRU values). Unexpectedly, IF does not tend
to zero for large THRU values. A closer analysis of HAR
traces reflects the existence of one rebuffering event in all
live sessions coincident with the video playback sequence
start, which is the reason for the non-negligible IF value for
large THRU (>0.3 = 1stalling / 3.3 min video duration).
In the rest of the session, HAS prevents buffer underruns,
as inferred from the small IF increment for small THRU (i.e.,
0.41 for 500 kbps). It should be pointed out that, even if model
accuracy is low (R2 = 0.21) and IF is not negligible, it will
be shown next that the total interruption duration is short,
having a limited impact on QoE. Thus, IF is discarded as a
relevant metric, since, in this case, it is not a good indicator
of QoE.

3) VIDEO INTERRUPTION DURATION RATIO
Fig. 7 shows a scatter plot of video interruption duration
ratio (IDR) and THRU, together with the segmented regres-
sion curve. Again, it is observed that, with HAS, the percent-
age of time the user is in the rebuffering state is small (less
than 0.06%) even for low THRU values. Only for 500 kbps,
the average IDR increases up to 0.045%. The regression
determination coefficient is R2 = 0.42. A closer analysis
(not shown here) reflects that the maximum total interruption
duration is 160 ms (equivalent to only 4 frames with a video
frame rate of 25 Hz).

FIGURE 7. Interruption duration ratio versus average session throughput.

FIGURE 8. Distribution of itag values versus average session throughput.

4) IMAGE QUALITY DISTRIBUTION
Fig. 8 represents a stacked bar graph with the itag distribution
for the different session throughputs. Column width reflects
THRU ranges for each throttling value. The y-axis shows the
percentage of itags of each class within each column. First,
it can be observed that only 6 itags values appear (91, 92,
93, 94, 95, 96), with 91 and 96 the minimum and maximum
resolutions and also the most frequent values. As expected,
the share of itag 96 (high image quality) increases as THRU
increases. For low THRU values, an alternating behavior
between the maximum and minimum itag values is observed,
although low-resolution itags prevail.

5) QoE
Fig. 9 shows the vMOS estimated by the QoEmodel for a live
video streaming session depending on the average session
throughput resulting from the 80 different network states.
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FIGURE 9. Estimated QoE versus average session throughput.

Each point corresponds to the average of 10 video sessions
for the same network state. The segmented regression curve
is also superimposed. As expected, QoE decreases as THRU
decreases. Specifically, a THRU of 4Mbps results in a vMOS
close to 3.5, below the maximum of 4.5. An inspection
of Fig. 4 shows that values of THRU above 4 Mbps lead
to SPT ≈ 3 s, IF = IDR ≈ 0 and Cog(c) ≈ 6,
resulting in sInteraction(c) ≈ 2.86, sView(c) ≈ 4.98 and
sQuality(c) = 4.28. Thus, it is concluded that the 3-second
initial delay limits the maximum QoE to 3.5. In contrast,
a THRU of 0.5 Mbps leads to vMOS slightly larger than 1,
mainly due to a low image quality (on average, sQuality(c) =
1.92 versus sInteraction(c) = 1.51 and sView(c) =
4.85). Also note that the coefficient of determination
is R2 = 0.98.

B. MODEL ASSESSMENT
The above-presented regression models, derived for a single
live video stream, are tested over 10 different streams. For
each S-KPI, the regression curve is first superimposed with
real measurements to check if the model captures the trend
with THRU. Then, a scatter plot compares measurements and
estimates.

1) VIDEO PLAY START TIME
Fig. 10.(a) plots the SPT for the 10 live video streams with
the 80 different network states (SPT-10). The four center
points (circles) correspond to the vertical (SPT) and horizon-
tal (THRU) mean of measurements for each throttling value
(0.5/1/2/4 Mbps). The error bars show the 10% and 90% con-
fidence interval of that mean. The segmented regression curve
obtained in section VI-A1 is superimposed. It is observed that
the consideredmodel captures the dependence on THRU very
well. Fig. 10.(b) compares SPT estimates and measurements.
SPT estimates are obtained from THRU measurements by
using the piecewise regression curve in Fig. 10.(a). In the
figure, it is observed that estimation is accurate for most of the
samples since the regression equation is reasonably close to
the identity (specifically, y = 0.96x+0.19), with a coefficient
of determination R2 = 0.92.

2) VIDEO INTERRUPTION FREQUENCY
Fig. 11.(a) plots the interruption frequency measured for the
10 live video streams (IF-10). Again, each circle represents
the mean IF and THRU of measurements for each throttling
value, while the error bars show the 10% and 90% confi-
dence intervals. The segmented regression curve obtained in
sectionVI-A2 is overlapped. It is observed thatmeasurements
and model estimates (regression curve) fit reasonably well.

FIGURE 10. Video play start time of 10 live video streams. (a) Dependence on THRU. (b) Measurements vs estimates.
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FIGURE 11. Video interruption frequency of 10 live video streams. (a) Dependence on THRU. (b) Measurements vs estimates.

FIGURE 12. Video interruption duration ratio of 10 live video streams. (a) Dependence on THRU. (b) Measurements vs estimates.

Fig. 11.(b) compares IF measurements vs estimates obtained
with the piecewise regression curve in Fig. 11.(a). It is
observed that line equation is close to the identity (y = 1.1x+
0.025) and R2 = 0.81. A more detailed analysis shows that
the problematic sessions show large fluctuations around their
average THRU value. In particular, the outlier highlighted by
a dotted circle corresponds to a session that experienced an
interruption of 7.4 seconds in video transmission due to a
brief change of content server.

3) VIDEO INTERRUPTION DURATION RATIO
Fig. 12.(a) plots the IDR for the 10 live video streams with the
different network states (IDR-10). The segmented regression

curve obtained in section VI-A3 is superimposed. Fig. 12.(b)
compares IDR measurements and estimates obtained with
the piecewise regression curve in Fig. 12.(a). In the figure,
it is observed that estimation is accurate for most of the
samples, since the regression equation is reasonably close
to the identity (y = 0.83x + 0.0063), with a determination
coefficient of R2 = 0.81.

4) IMAGE QUALITY
Fig. 13 compares the distribution of itag values observed in
the 10 live video streams against estimates raised with the
model derived from a single video. Measurements are repre-
sented with a trend line and error bars showing confidence
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FIGURE 13. Itag distribution versus throughput for 10 live video streams.

FIGURE 14. QoE for 10 live video streams. (a) Dependence on THRU. (b) Measurements vs estimates.

intervals, and estimates are shown by bars. For clarity, each
itag value is shown in a different figure. Again, it is observed
that, for the 10 videos, the most frequent itags are 91, 92 and
96. With higher bitrates, more itag 96 values appear, corre-
sponding to better image quality; with lower bitrates, the itag
values are distributed between 91, 92 and 96.

5) QoE
Finally, Fig. 14.(a) shows the average vMOS for the 10 live
video streams and 80 network conditions (QoE-10). The
segmented regression curve obtained in VI-A5 is superim-
posed. Fig. 14.(b) compares QoEmeasurements vs estimates.
QoE measurements are obtained by applying the U-vMOS
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model with real S-KPI measurements taken by the terminal
agent and the analysis of protocol messages. In contrast,
QoE estimates are obtained by applying the U-vMOS model
with S-KPI estimates derived from average THRU measure-
ments taken by the network probe. Such S-KPI estimates
are obtained with the piecewise regression models shown
in Fig. 5 (SPT), 7 (IDR) and 13 (IQ).

In the figure, it is observed that estimation is very accurate
since the regression equation is close to the identity and the
coefficient of determination R2 = 0.99.

VII. CONCLUSIONS
In this article, a model to estimate the QoE of encrypted
YouTube Live service from packet-level data collected in
the interfaces of a wireless network has been presented.
The model has been derived using an experimental platform
consisting of a live video streaming server, a user terminal
agent, a Wi-Fi wireless network, a network-level emulator,
a probe software and a man-in-the-middle proxy. The latter
is used to obtain itag statistics, from which to infer image
quality. With that platform, a preliminary analysis of the
differences between conventional and live YouTube services
has been carried out to justify the need for new performance
models. The analysis of collected data has shown the strong
correlation of most S-KPIs with average session throughput.
Likewise, measurements have confirmed the ability of adap-
tive streaming to significantly decrease the number of video
interruptions, converting image quality as a more meaningful
indicator of the user experience. These results are consistent
with QoE statistics of the conventional YouTube service with
HAS over mobile networks presented in [22] . An important
difference observed in live streams is the existence of an
initial rebuffering event just after video play start.

The provided regression curves can be used as a black
box model to monitor the QoE of encrypted video streaming
services on a session basis on a large scale. Such an approach
is suitable for network operators that do not have access to
application layer measurements. The model can easily be
integrated into a centralized big data platform with access
to key network interfaces (e.g., S11 and S1-U in 4G/5G
non-standalone systems). The proposed methodology can be
extended to different radio access technologies. Nonetheless,
it might have to be updated as new transport-layer schemes
are introduced (e.g., HTTP/2 protocol [54] ). The analysis of
the uplink from the video source to the server is left for future
work.

REFERENCES
[1] Ericsson. Ericsson Mobility Report. Accessed: Nov. 2018.

[Online]. Available: https://www.ericsson.com/assets/local/mobility-
report/documents/2018/ericsson-mobility-report-june-2018.pdf/

[2] R. El Hattachi and J. Erfanian, ‘‘Next generation mobile networks
(NGMN) alliance: 5G white paper,’’ no. 1, 2015.

[3] A. Banerjee, ‘‘Revolutionizing CEMwith subscriber-centric network oper-
ations and QoE strategy white paper accanto systems,’’ Heavy Reading,
no. 1, 2014.

[4] V. F. Monteiro, D. A. Sousa, T. F. Maciel, F. R. M. Lima, E. B. Rodrigues,
and F. R. P. Cavalcanti, ‘‘Radio resource allocation framework for quality
of experience optimization in wireless networks,’’ IEEE Netw., vol. 29,
no. 6, pp. 33–39, Nov./Dec. 2015.

[5] P. Oliver-Balsalobre, M. Toril, S. Luna-Ramírez, and R. G. Garaluz, ‘‘Self-
tuning of service priority parameters for optimizing quality of experience in
LTE,’’ IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3534–3544, Apr. 2018.

[6] H. Nam, K.-H. Kim, J. Y. Kim, and H. Schulzrinne, ‘‘Towards QoE-
aware video streaming using SDN,’’ in Proc. IEEEGlobal Commun. Conf.,
Dec. 2014, pp. 1317–1322.

[7] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2016–2021. Accessed: Nov. 2018. [Online]. Available:
https://https://www.cisco.com/c/en/us/solutions/service-provider/visual-
networking-index-vni/white-paper-listing.html

[8] P. Gill, M. Arlitt, Z. Li, and A.Mahanti, ‘‘YouTube traffic characterization:
A view from the edge,’’ inProc. 7th ACMSIGCOMMConf. InternetMeas.,
2007, pp. 15–28.

[9] O. Oyman and S. Singh, ‘‘Quality of experience for HTTP adaptive stream-
ing services,’’ IEEE Commun. Mag., vol. 50, no. 4, pp. 20–27, Apr. 2015.

[10] A. Diaz, P. Merino, and F. J. Rivas, ‘‘Customer-centric measurements on
mobile phones,’’ in Proc. IEEE Int. Symp. Consum. Electron., Apr. 2008,
pp. 1–4.

[11] M. Seufert, N. Wehner, F. Wamser, P. Casas, A. D’Alconzo, and
P. Tran-Gia, ‘‘Unsupervised QoE field study for mobile YouTube video
streaming with YoMoApp,’’ in Proc. 9th Int. Conf. Qual. Multimedia
Exper. (QoMEX), Jun. 2017, pp. 1–6.

[12] A. Raake, J. Gustafsson, S. Argyropoulos, M.-N. Garcia, D. Lindegren,
G. Heikkilá, M. Pettersson, P. List, and B. Feiten, ‘‘IP-based mobile and
fixed network audiovisual media services,’’ IEEE Signal Process. Mag.,
vol. 28, no. 6, pp. 68–79, Nov. 2011.

[13] Subjective Video Quality Assessment Methods for Multimedia Applica-
tions, document ITU-T P.910, Apr. 2008.

[14] F. Ricciato, ‘‘Traffic monitoring and analysis for the optimization of a 3G
network,’’ IEEE Wireless Commun., vol. 13, no. 6, pp. 42–49, Dec. 2006.

[15] P. Casas, M. Seufert, and R. Schatz, ‘‘YOUQMON: A system for on-
line monitoring of YouTube QoE in operational 3G networks,’’ ACM
SIGMETRICS Perform. Eval. Rev., vol. 41, no. 2, pp. 44–46, Dec. 2013.

[16] A. Baer, P. Casas, A. D’Alconzo, P. Fiadino, L. Golab, M. Mellia, and
E. Schikuta, ‘‘DBStream: A holistic approach to large-scale network traffic
monitoring and analysis,’’ Comput. Netw., vol. 107, pp. 5–19, Oct. 2016.

[17] L. Skorin-Kapov, M. Varela, T. Hoßfeld, and K.-T. Chen, ‘‘A survey of
emerging concepts and challenges for QoE management of multimedia
services,’’ ACM Trans. Multimedia Comput., Commun., Appl., vol. 14,
no. 2s, p. 29, 2018.

[18] A. Rao, A. Legout, Y.-S. Lim, D. Towsley, C. Barakat, and W. Dabbous,
‘‘Network characteristics of video streaming traffic,’’ in Proc. 7th ACM
Conf. Emerg. Netw. Exp. Technol., 2011, p. 25.

[19] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao,
‘‘YouTube everywhere: Impact of device and infrastructure synergies on
user experience,’’ in Proc. ACM SIGCOMM Conf. Internet Meas., 2011,
pp. 345–360.

[20] P. Ameigeiras, J. Ramos-Munoz, J. Navarro-Ortiz, and
J. M. Lopez-Soler, ‘‘Analysis and modelling of YouTube traffic,’’
Trans. Emerg. Telecommun. Technol., vol. 23, no. 4, pp. 360–377, 2012.

[21] R. K. Mok, E. W. Chan, and R. K. Chang, ‘‘Measuring the quality of
experience of HTTP video streaming,’’ in Proc. IFIP/IEEE Int. Symp.
Integr. Netw. Manage., May 2011, pp. 485–492

[22] F. Wamser, P. Casas, M. Seufert, C. Moldovan, P. Tran-Gia, and
T. Hossfeld, ‘‘Modeling the YouTube stack: From packets to quality of
experience,’’ Comput. Netw., vol. 109, pp. 211–224, Nov. 2016.

[23] J. De Vriendt, D. De Vleeschauwer, and D. Robinson, ‘‘Model for esti-
mating QoE of video delivered using HTTP adaptive streaming,’’ in Proc.
IFIP/IEEE Int. Symp. Integr. Netw. Manage., May 2013, pp. 1288–1293.

[24] Mitmproxy. An Interactive HTTPS Proxy. Accessed: Nov. 2018. [Online].
Available: https://mitmproxy.org/

[25] H. J. Kim, D. G. Yun, H.-S. Kim, K. S. Cho, and S. G. Choi, ‘‘QoE
assessment model for video streaming service using QoS parameters in
wired-wireless network,’’ in Proc. 14th Int. Conf. Adv. Commun. Technol.
(ICACT), 2012, pp. 459–464.

[26] T. Hoßfeld, R. Schatz, E. Biersack, and L. Plissonneau, ‘‘Internet video
delivery in YouTube: From traffic measurements to quality of experience,’’
in Data Traffic Monitoring and Analysis. Springer, 2013, pp. 264–301.

[27] P. Casas, R. Schatz, and T. Hoßfeld, ‘‘Monitoring YouTube QoE: Is your
mobile network delivering the right Experience to your customers?’’ in
Proc. WCNC, 2013, pp. 1609–1614.

[28] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner, ‘‘Assessing effect sizes
of influence factors towards a QoE model for HTTP adaptive streaming,’’
in Proc. IEEE 6th Int. Workshop Qual. Multimedia Exper. (QoMEX),
Sep. 2014, pp. 111–116.

VOLUME 7, 2019 70251



L. R. Jiménez et al.: Network-Layer QoE Model for YouTube Live in Wireless Networks

[29] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-Gia,
‘‘A survey on quality of experience of HTTP adaptive streaming,’’ IEEE
Commun. Surveys Tuts., vol. 17, no. 1, pp. 469–492, 1st Quart., 2015.

[30] M. Claeys, S. Latre, J. Famaey, and F. De Turck, ‘‘Design and evaluation
of a self-learning HTTP adaptive video streaming client,’’ IEEE Commun.
Lett., vol. 18, no. 4, pp. 716–719, Apr. 2014.

[31] W. Huang, Y. Zhou, X. Xie, D. Wu, M. Chen, and E. Ngai, ‘‘Buffer state
is enough: Simplifying the design of QoE-aware HTTP adaptive video
streaming,’’ IEEE Trans. Broadcast., vol. 64, no. 2, pp. 590–601, Jun. 2018.

[32] E. Demirbilek and J.-C. Grégoire, ‘‘Machine learning–based paramet-
ric audiovisual quality prediction models for real-time communica-
tions,’’ ACM Trans. Multimedia Comput., vol. 13, no. 2, pp. 16:1–16:25,
Mar. 2017.

[33] P. Casas, A. D’Alconzo, F. Wamser, M. Seufert, B. Gardlo, A. Schwind,
P. Tran-Gia, and R. Schatz, ‘‘Predicting QoE in cellular networks using
machine learning and in-Smartphone measurements,’’ in Proc. 9th IEEE
Int. Conf. Qual. Multimedia Exper. (QoMEX), Jun. 2017, pp. 1–6.

[34] W. Robitza, M.-N. Garcia, and A. Raake, ‘‘A modular HTTP adaptive
streaming QoEmodel—Candidate for ITU-T P.1203 (‘P.NATS’),’’ in Proc.
9th IEEE Int. Conf. Qual. Multimedia Exper. (QoMEX), Jul. 2017, pp. 1–6.

[35] W. Pan and G. Cheng, ‘‘QoE assessment of encrypted YouTube adap-
tive streaming for energy saving in smart cities,’’ IEEE Access, vol. 6,
pp. 25142–25156, 2018.

[36] Z. Duanmu, A. Rehman, and Z. Wang, ‘‘A quality-of-experience database
for adaptive video streaming,’’ IEEE Trans. Broadcast., vol. 64, no. 2,
pp. 474–487, Jun. 2018.

[37] P. Oliver, M. Toril, S. Luna, and R. García, ‘‘A system testbed for mod-
eling encrypted video-streaming service performance indicators based on
TCP/IP metrics,’’ EURASIP J. Wireless Commun. Netw., vol. 2017, p. 213,
Dec. 2017.

[38] Telestream. Wirecast User Manual. Accessed: Nov. 2018. [Online].
Available: www.telestream.net/application-content/wirecast/help/7-3/win/
Wirecast-User-Guide-Windows.pdf

[39] YouTube. Creator Studio. Accessed: Nov. 2018. [Online]. Available:
https://support.google.com/youtube/answer/
6060318

[40] Ascom. TEMS Pocket Specifications. Accessed: Nov. 2018.
[Online]. Available: http://www.tems.com/products-for-radio-and-
core-networks/radio-network-engineering

[41] Linux Foundation. NetEm. Accessed: Nov. 2018. [Online]. Available:
https://wiki.linuxfoundation.org/netem

[42] A. Jurgelionis, J.-P. Laulajainen, M. Hirvonen, and A. I. Wang, ‘‘An empir-
ical study of NetEm network emulation functionalities,’’ in Proc.
20th IEEE Int. Conf. Comput. Commun. Netw. (ICCCN), Aug. 2011,
pp. 1–6.

[43] TCPDUMP-Workers. TCPDUMP. Accessed: Nov. 2018. [Online]. Avail-
able: http://www.tcpdump.org/

[44] I. M. Froseth, S. Leicht, R. J. Reimer, and V. T. Tran, ‘‘Obtaining a Video
Dataset from YouTube via DASH,’’ 2015.

[45] YouTube. Live Encoder Settings, Bitrates, and Resolutions.
Accessed: Nov. 2018. [Online]. Available: https://support.google.com/
youtube/answer/2853702?hl=en

[46] Ascom. TEMS Pocket User Manual. Accessed: Nov. 2018. [Online]. Avail-
able: https://goo.gl/wjzxtV

[47] A. Mondal, S. Sengupta, B. R. Reddy, M. J. V. Koundinya,
C. Govindarajan, P. De, N. Ganguly, and S. Chakraborty, ‘‘Candid
with YouTube: Adaptive streaming behavior and implications on data
consumption,’’ in Proc. ACM Proc. 27th Workshop Netw. Oper. Syst.
Support Digit. Audio Video, 2017, pp. 19–24.

[48] A. Golub. Reverse-Engineering YouTube. Accessed: Nov. 2018. [Online].
Available: https://tyrrrz.me/Blog/Reverse-engineering-YouTube

[49] YouTube. Delivering Live Youtube Content via DASH. Accessed:
Nov. 2018. [Online]. Available: https://developers.google.com/
youtube/v3/live/guides/encoding-with-dash

[50] R. Pantos and W. May, HTTP Live Streaming, document RFC 8216, 2017,
pp. 1–60.

[51] W. Navidi, Statistics for Engineers and Scientists. New York, NY, USA:
McGraw-Hill, 2011.

[52] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, ‘‘Modeling TCP reno
performance: A simple model and its empirical validation,’’ IEEE/ACM
Trans. Netw., vol. 8, no. 2, pp. 133–145, Apr. 2000.

[53] Huawei. Video Experience-Based Bearer Network Technical White
Paper. Accessed: Mar. 2019. [Online]. Available: https://www.
huawei.com/~/media/CORPORATE/PDF/white%20paper/video-
experience-based-bearer-network-technical-whitepaper

[54] Z. Xu, X. Zhang, and Z. Guo, ‘‘QoE-driven adaptive K-push for HTTP/2
Live Streaming,’’ IEEE Trans. Circuits Syst. Video Technol., to be pub-
lished.

LUIS ROBERTO JIMÉNEZ received the M.S.
degree in electronics and communications engi-
neering from the Santo Domingo Institute of
Technology (Intec), Santo Domingo, Dominican
Republic, in 2013, and the M.S.E. degree in telem-
atics and telecommunication networks from the
University of Malaga, Málaga, Spain, in 2015,
where he is currently pursuing the Ph.D. degree
in telecommunications engineering. His current
research interests include self-optimization net-

works and performance evaluation of multimedia services over mobile net-
works based on customer experience. He was a recipient of the Junta de
Andalucía Scholarship (2017–2021) over methods planning and optimizing
QoE in B4G networks.

MARTA SOLERA received the M.Sc. and Ph.D.
degrees in telecommunication engineering from
the Polytechnic University of Catalonia (UPC),
in 1996 and 2006, respectively. She is currently an
Associate Professor with the Department of Com-
munication Engineering, Universidad de Malaga
(UMA). Since 1996, she has been a Lecturer in
several universities, such as UPC, the Universi-
dad Nacional Autonoma de Mexico (UNAM), and
UMA. She has been involved in several public

funded national research projects in the field of multimedia and mobile
communications. Her research interest includes design and performance
evaluation of multimedia services over mobile networks.

MATÍAS TORIL received the M.S. and Ph.D.
degrees in telecommunication engineering from
the University of Malaga, Spain, in 1995 and
2007, respectively. Since 1997, he has been a
Lecturer with the Communications Engineering
Department, University of Malaga, where he is
currently an Associate Professor. He has authored
more than 100 publications in leading conferences
and journals, and he holds three patents owned by
Nokia Corporation. His current research interests

include self-organizing networks, radio resource management, and graph
partitioning.

70252 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	EXPERIMENTAL TEST PLATFORM
	LIVE VIDEO-STREAM BROADCASTING
	LIVE VIDEO-STREAM RECEPTION
	NETWORK EMULATION
	TRAFFIC DECRYPTION
	MEASUREMENT COLLECTION
	NETWORK-LEVEL MEASUREMENTS
	S-KPI MEASUREMENTS
	AUTOMATION


	YOUTUBE FEATURES
	PROTOCOL MESSAGES

	EXPERIMENTAL METHODOLOGY
	S-KPI SELECTION
	MODEL CONSTRUCTION
	IDENTIFICATION OF RELEVANT TCP/IP METRICS

	MODEL ASSESSMENT
	QoE MODEL

	RESULTS
	MODEL CONSTRUCTION
	VIDEO PLAY START TIME
	VIDEO INTERRUPTION FREQUENCY
	VIDEO INTERRUPTION DURATION RATIO
	IMAGE QUALITY DISTRIBUTION
	QoE

	MODEL ASSESSMENT
	VIDEO PLAY START TIME
	VIDEO INTERRUPTION FREQUENCY
	VIDEO INTERRUPTION DURATION RATIO
	IMAGE QUALITY
	QoE


	CONCLUSIONS
	REFERENCES
	Biographies
	LUIS ROBERTO JIMÉNEZ
	MARTA SOLERA
	MATÍAS TORIL


