
Received March 24, 2019, accepted April 15, 2019, date of publication May 23, 2019, date of current version June 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2918675

ComQA: Question Answering Over Knowledge
Base via Semantic Matching
HAI JIN , (Fellow, IEEE), YI LUO, CHENJING GAO, XUNZHU TANG,
AND PINGPENG YUAN, (Member, IEEE)
National Engineering Research Center for Big Data Technology and System/Services Computing Technology and System Lab/Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding author: Pingpeng Yuan (ppyuan@hust.edu.cn)

This research was supported by The National Key Research & Development Program of China (No. 2018YFB1004002), NSFC (No.
61672255), Science and Technology Planning Project of Guangdong Province, China(No. 2016B030306003 and 2016B030305002), and
the Fundamental Research Funds for the Central Universities, HUST.

ABSTRACT Question answering over knowledge base (KBQA) is a powerful tool to extract answers
from graph-like knowledge bases. Here, we present ComQA—a three-phase KBQA framework by which
end-users can ask complex questions and get answers in a natural way. In ComQA, a complex question is
decomposed into several triple patterns. Then, ComQA retrieves candidate subgraphs matching the triple
patterns from the knowledge base and evaluates the semantic similarity between the subgraphs and the triple
patterns to find the answer. It is a long-standing problem to evaluate the semantic similarity between the
question and the heterogeneous subgraph containing the answer. To handle this problem, first, a semantic-
based extension method is proposed to identify entities and relations in the question while considering the
underlying knowledge base. The precision of identifying entities and relations determines the correctness of
successive steps. Second, by exploiting the syntactic pattern in the question, ComQA constructs the query
graphs for natural language questions so that it can filter out topology-mismatch subgraphs and narrow
down the search space in knowledge bases. Finally, by incorporating the information from the underlying
knowledge base, we fine-tune general word vectors, making them more specific to ranking possible answers
in KBQA task. Extensive experiments over a series of QALD challenges confirm that the performance of
ComQA is comparable to those state-of-the-art approaches with respect to precision, recall, and F1-score.

INDEX TERMS Question answering, knowledge graph, semantic matching.

I. INTRODUCTION
With the advent of open data (open government data initia-
tives, open access to scientific data, Linked Open Data etc.),
more and more knowledge graphs, including DBpedia [1]
and Freebase [2] can be accessed publicly. The ever increas-
ing public knowledge graphs on the Web are becoming a
information backbone of many systems, such as Question
answering over knowledge base (KBQA), a quite useful tool
which helps people naturally retrieve answers from large-
scale semi-structured knowledge bases.

Although knowledge graphs contain detailed information
about entities and the connections between them—which
are useful to figure out the true intention of the questions
by offering a richer context—it is still difficult to build the

The associate editor coordinating the review of this manuscript and
approving it for publication was Chang Choi.

map between the given question and the target answer in
the underlying knowledge base. For example, if we pose a
simple question ‘‘Who is the CEO of Apple?’’ to a KBQA
framework, the first issue is ‘‘Which apple’’. It is nontrivial
for KBQA framework to know the correct meaning of a
word—〈apple company〉 instead of 〈apple fruit〉 in the ques-
tion. When performing KBQA task in question answering
systems, there are three challenges to be tackled and the
previous example exemplifies the first challenge. That is
how to locate the key entities and extract relations from
input question while considering the underlying knowledge
base. Since the entity or relation in the question may have
a different mention in the underlying knowledge base, this
mismatched mention problem can lead to returning wrong
answer. Fig. 1(a) illustrates the mismatched mention problem
when giving the question Qe2 to ComQA (Qe2 is introduced
in next section). To address this challenge, first, the ‘‘seed

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

75235

https://orcid.org/0000-0002-3934-7605

H. Jin et al.: ComQA: Question Answering Over Knowledge Base via Semantic Matching

FIGURE 1. Overview of ComQA.

FIGURE 2. An example for dependency-tree and query graph.
(a) Dependency Tree. (b) Gold Standard Query Graph.

entity’’ is recognized by identifying the named entities [3]
in the question while considering the underlying knowledge
base. Further, a dependency-tree [4] is created by parsing the
input question. Fig. 2(a) illustrates the dependency-tree of
questionQe2. With seed entity and dependency-tree, ComQA
extracts ‘‘seed relation’’ from the question. By extending
seed entity and seed relation semantically, ComQA generates
extended sets (Section III, Definition 4) which can mitigate
mismatched mention problem effectively.

Once the KBQA frameworks figure out the correct mean-
ing of 〈apple〉, the following issue is How to locate the
corresponding subgraphs which may contain target answer(s)
in the knowledge base. Considering the magnitude of the
knowledge base and the rich connections between any pair
of entities, simply linking 〈apple〉 to the knowledge base
will bring about many unrelated subgraphs. Let us consider
the running example Qe2, where the entity 〈Rachel_Stevens〉
has several related mentions in underlying DBpedia such
as 〈Rachel_Stevens〉 and 〈Rachel_Stevens_Song〉. Subgraphs
containing 〈Rachel_Stevens_Song〉 are obviously misleading
candidates and should be discarded. This example exem-
plifies the second challenge in KBQA tasks—that is how
to narrow down the search space of the final answer after

linking the key entities to the underlying knowledge base.
To address this challenge, we exploit the syntactic constraints
containing in the question to filter out misleading subgraphs.
By recognizing the critical path and the linking node in the
dependency-tree, ComQA captures the syntactic pattern in
the question and finally constructs the query graph which
implies the syntactic constraints from the question. Fig. 1(b)
illustrates the query graph of question Qe2.
If the KBQA frameworks retrieve candidate subgraph(s)

from the knowledge graph, the last issue is ‘‘how to extract
the answer by mapping the relation 〈CEO of apple〉 onto can-
didate subgraph(s) to find answer’’. Inappropriate handling
this issues can lead to a missing or wrong answer and it
exemplifies the third challenge in KBQA—that is how to
rank the retrieved subgraphs after mapping query graphs onto
the knowledge base. To handle this challenge, we define a
measurement of semantic similarity. Rather than simply using
general word vectors to model the semantics, we fine-tune
them by incorporating the information from the underlying
knowledge base, making these vectors more specific to the
ranking task at hand. By comparing the semantic similarity
between the query graphs and retrieved subgraphs, ComQA
can rank these candidate subgraphs and extracts the answer
from the most promising one(s).

All the issues stem from how to evaluate the seman-
tic similarity between the natural language question and
the retrieved candidate subgraphs. To handle the problem,
we develop ComQA, a three-phase KBQA framework focus-
ing on semantic similarity. In ComQA, the process of ques-
tion answering includes three phases—question parsing,
query graph construction, and candidate subgraph evaluation.
After parsing the question and construct the query graph,
ComQA retrieves candidate subgraphs from the knowledge
base and then excludes the subgraphs proved to be wrong
by evaluating semantics similarity between subgraphs and
questions. Then ComQA ranks final subgraphs to return the
answer(s).

75236 VOLUME 7, 2019

H. Jin et al.: ComQA: Question Answering Over Knowledge Base via Semantic Matching

In this paper, our contributions are as follows:
1) We present ComQA, a three-phase KBQA framework.

By offering end-users a natural language interface, they
can ask complex questions and retrieve answers in a
natural way, without any prior knowledge about the
underlying knowledge base.

2) We devise a semantic-based extending method for enti-
ties and relations in the original question and incor-
porate it into the process of query graph construction,
which is effective in capturing the compositional men-
tion of entity (or relation) from the knowledge base.

3) By exploiting the syntactic pattern in the question,
We propose an algorithm to construct the correspond-
ing query graph, with which we can filter out topology-
mismatch subgraphs to narrow down the search space
of the answer in knowledge base.

4) We propose a semantic similaritymeasurement. Instead
of using general word vectors to model the semantics,
we fine-tune these vectors by incorporating the infor-
mation from the underlying knowledge base.

5) We conduct extensive experiments against a series of
QALD challenges. The results demonstrate that our
ComQA is comparablewith state-of-the-art approaches
in terms of recall, precision and F1-score.

II. CONCEPTS AND FRAMEWORK OVERVIEW
The main function of ComQA is retrieving answers from the
underlying knowledge base when given a natural language
question Q. We will use the following questions Qe1 and
Qe2 as our two running examples for demonstration. Fig. 1
illustrates the workflow of answering Qe2 with ComQA.

Qe1 : Who is the foreignminister of Ethiopia ?

Qe2 : Which artists were born on the same date

as Rachel Stevens ?

To make our following description more precise, we first
clarify the concept of mention.
Mention. In ComQA, we use mention to refer to an entity

or a relation. An individual entity or a relation can have
several mentions. For example, an entity mentioned as m1 in
the knowledge basemay have another mentionm2 in the input
question. Both m1 and m2 refer to the same entity.
Definition 1 (Relation): If given a RDF triple in the form

of 〈entity1, rel, entity2〉 where entity1 and entity2 are two
entities, rel is the relation which indicates how entity1 is
related to entity2.

Generally, the workflow of our ComQA consists of three
phases. Each phrase focuses on one of the three challenges.
Phase I focuses on the extraction of key entities and relations.
Phase II focuses on the construction of query graph. Phase III
focuses on ranking the retrieved subgraphs. We will give a
detailed explanation of all three phases in the following three
sections.

In its first phase, ComQA takes as input a natural language
question and performs the question parsing. The goal of

question parsing is to locate the key entity (ke) in the question
and extract the relation (rel) between ke and the target answer.
For instance, in RDF triple 〈Apple, hasCEO, Cook〉 corre-
sponding to ‘‘Who is the CEO of Apple?’’, 〈Apple〉 is the ke
and 〈hasCEO〉 is the rel. In ComQA, ke links the question
to potential subgraphs in the knowledge base, specifying the
search space of the answer in knowledge base. While rel
dominates ranking retrieved subgraphs. Simply using ke and
rel extracted from the input question will encounter following
problems:

1) The first one is what we called polysemy problem
where a word or phrase may have several meanings.
An example is 〈apple〉 in ‘‘Who is the CEO of Apple?’’

2) The second one is what we called ambiguity prob-
lem. It means that ke can be linked to several related
entities in the underlying knowledge base. Given the
questionQe2, the entity 〈Rachel_Stevens〉 can be linked
to 〈Rachel_Stevens〉 or 〈Rachel_Stevens_Song〉 in
DBpedia.

3) The last and worst is composition problem where there
is improper entity or relation the underlying knowledge
base being linked to ke or rel. Given the question ‘‘Who
is the foreign minister of Ethiopia?’’, it is the for-
eign_minister that should be treated as the rel. Directly
regrading minister as the rel will lead to returning a
wrong answer.

Comparing with polysemy and ambiguity, composition
problem is more critical. Although the first two prob-
lems introduce noise, it can be filtered out by a certain
mechanism. While the composition problem will cause
the loss of key information thus can make the following
processing meaningless. Considering the fact that compo-
nents of a composition (like foreign and minister) usu-
ally co-occurs in a corpora, we adopt GloVe [5], a global
word vector representation algorithm which pays special
attention to the co-occurrence of words. Based on GloVe,
we present an approach to find entities most similar to ke
and pack them with ke to create an extended set. In addition,
the same process also applies to the extracted relation. With
extended set, ComQA can mitigate the composition problem
effectively.

After locating the key entities and extracting the possible
relations, workflow of ComQA comes to its second phase.
The goal of second phase is to construct the query graph
revealing the syntactic pattern in the question, which also
implies what kind of answer the end-user actually wants. The
core issue in second phase is how to construct structured
query graph from input question which is a sequence of
words. Given a question, ComQA creates its dependency tree
[6] to perform question parsing in phase I. By recognizing
syntactic pattern and revealing hidden structure from depen-
dency tree, ComQA can extract a series of RDF triples. After
joining these RDF triples, the original query graph can be
finally constructed. In addition, Considering the composition
problem mentioned in the first phase, a set of extended query
graphs will be constructed by replacing the key entities and

VOLUME 7, 2019 75237

H. Jin et al.: ComQA: Question Answering Over Knowledge Base via Semantic Matching

their corresponding relations in the original query graph with
their corresponding extended sets.

With the set of query graphs constructed in the second
phase, the goal of the last phase is mapping query graphs onto
the knowledge base and evaluating matched subgraphs to fig-
ure out the answer. The first issue in this phase is how to avoid
retrieving improper subgraphs from the knowledge base. For
the sake of preventing the key information loss, we adopt
the strategy—setting a lower threshold for information to get
in. Anything relating to the target answer will be considered
during the first two phases, which inevitably brings about
some noise. To handle this noise-filtering issue, ComQA
prunes those obviously improper subgraphs based on the
topology information of query graphs. The second issue in
this phase is how to rank filtered subgraphs to choose themost
promising candidate(s). The ranking process in ComQA is
hold by evaluating the semantic similarity between the query
graphs and candidate subgraphs. For measuring the semantic
similarity, we model the semantics of the vertices and edges
in the knowledge base as word vectors. Further, considering
that the general word vectors like GloVe, which is learned
from a text-based corpora rather than a graph-like knowledge
base, we adopt TransE [7] to fine-tune these pre-training
word vectors, making them more specific to the underlying
knowledge base. By calculating the cosine value of the angle
between find-tuned vectors, ComQA can evaluate the their
semantic similarity. Once the evaluation is finished, each
candidate subgraph will receive a score with which ComQA
determines the best candidate subgraph and returns the final
answer based on this selected subgraph.

III. ENTITY AND RELATION EXTRACTION
In phase I, the core task is how to parse the question to
locate key entities and extract relations from the question.
These entities and relations are so important that with them
we can link the input question to the underlying knowl-
edge base. Specially, extracted entities from the question
specify the search space of the answer in the knowledge
base while relations dominate ranking retrieved subgraphs in
phase III.

To begin question parsing, we employ DBpedia Spotlight
to recognize the ‘‘seed entity’’ from input question. Since the
input question can be in any reasonable form, extracting rela-
tion is not a simple task. Considering the fact that a relation
is often denoted by a verb or a verb complemented by other
words, syntax parsing tools are quite helpful in extracting
relations since these tools can reveal the syntactic structure
of the input sentence. In ComQA, we adopt Stanford Parser
to create the dependency-tree for the input question. In this
dependency-tree, we denote the seed entity recognized by the
DBpedia Spotlight as a starting point and the predicate verb
as an end point. Vertices in the path connecting the starting
point and the end point are extracted as the complement of the
predicate verb. With the predicate verb and its complements,
ComQA can extracted the ‘‘seed relations’’. For example,
considering the dependency-tree of Qe2 in Fig. 2(a), the

predicate verb is ‘‘born’’ while ‘‘date’’ complements ‘‘born’’,
ComQA will regard 〈born, borndate〉 as the seed relations.

Althoughwe can extract the seed entities and seed relations
from the question, knowing in advance their corresponding
mentions in the knowledge base is nearly impossible. Thus it
is hard to make sure that a mention in the question is exactly
the same as its counterpart in the knowledge base, which
makes the mismatched mention problem of entity (relation)
be the most challenging part in phase I.

When linking key entities to the underlying knowledge
base, the main problem lies in the diverse mentions that
an individual entity can have—an entity may have a men-
tion which is different from the corresponding mention in
the question. If these two mentions do mismatch, tools like
DBpedia Spotlight will fail to recognize this entity from
the question. For example, if the end-user asks Qe2 with
the nickname of 〈Rachel_Stevens〉, it is difficult to link this
nickname to 〈Rachel_Stevens〉, even though the entity is lying
in the knowledge base.

Except for the cases of mismatched entity mentions, a rela-
tionmay also have different mentions between the input ques-
tion and the underlying knowledge base. A typical case of
mismatched mentions is the composition problem. For exam-
ple, the relation 〈borndate〉 inQe2 has amention 〈dateofBirth〉
in DBpedia. If we simply search 〈born〉 against the RDF
graph, no answer will be found. The underlying knowledge
base, however, actually contains the target relation denoted
by 〈dateofBirth〉.

Clearly, we need a semantic-based extending strategy.
We denote the mention from the knowledge base as mG and
the mention from the question as mQ. There are two useful
observations:

1) While mQ may vary from person to person who use
the KBQA framework, the corresponding mG remains
unchanged. Thus mG could be treated as the target.
So long as we can turn themQ into a collection of men-
tions which are highly related tomQ, it is promising that
the targetmG will be matched with one of the mentions
in this collection. Just like playing darts game, throwing
several darts once a time is more likely to hit the target
than merely throwing one dart.

2) The underlying knowledge base is built from the textual
data. For example, DBpedia is built from theWikipedia
corpus. This textual corpus are also represented in the
form of natural language like English, which implies
that mG is highly similar to mQ in semantics. If we can
build a collection of mentions which are highly close
to mQ both in semantics and lexical forms, it is likely
that mG will be in this collection.

Based on these two observations, we adopt GloVe, a global
word vector representation algorithm. By representing mQ in
its GloVe word vector, we can find the top-k mentions which
are most similar to mQ in semantics (Definition 2) and take
these mentions as the Candidate Set of mQ. Considering the
tradeoff between performance and overhead, k is 10. Since
GloVe is learned from the real textual corpus and focuses on

75238 VOLUME 7, 2019

H. Jin et al.: ComQA: Question Answering Over Knowledge Base via Semantic Matching

the co-occurrence of words, it is safe to say that mentions
in the candidate set of mG co-occur with mG with highest
frequency thus candidate set can provide mG with a richer
context and complement the information of mG.
Definition 2 (Similarity of Two Mentions): Give twomen-

tions m1 and m2. Let c1 and c2 be the corresponding word
vector for m1 and m2, the similarity of m1 and m2 is defined
as follows:

similarity(m1,m2) =
c1 · c2
||c1|| ||c2||

(1)

Definition 3 (Candidate Set): A candidate set is a collec-
tion of top-k mentions which are most similar to mQ in
semantics, where mQ is the mention from the input question
Q. IfmQ is an entity, its candidate set is denoted as CSe. IfmQ

is a relation, its candidate set is denoted as CSr .
Algorithm 1 shows how to build the corresponding candi-

date set for a certain mention mQ.

Algorithm 1 Building the Candidate Set

Input: A mention mQ, The dictionary of GloVe GW,
The GloVe vectors set GV

Output: The candidate set for mQ

define a variable CS for the candidate set;
for each element e in CS do

e← (NULL: 0);
define a variable n_vec;
n_vec← GV[mQ];
for each word vector w in GW do

w_vec← GV[w];
sim← calculating the similarity between w and mQ;
for each element e in CS do

min_sim← find the minimum similarity in CS;
min_w← find the word indexing min_sim;
if sim > min_sim then

delete min_w from CS;
CS[w]← sim;

return CS;

Although the candidate set consists of mentions which are
similar to mQ, it can not be directly used in matching the
mG. One reason is that our choice, GloVe, focuses on the
co-occurrence of words. mentions in candidate set are words
which frequently co-occur with mQ thus some of them may
not be lexically similar to mG. For example, in Qe2, the CEr
of relation 〈born〉 contains mentions like 〈footballer〉 and
〈816-822-8448〉 which clearly have nothing in common
with the final answer toQe2. The other reason is that the actual
entity or relation could be a phrase rather than a single word.
When creating the dependency-tree of the input question,
the question is finally broken into words. It is nontrivial to
rebuild the correct phrase merely with syntax information.
As shown inQe1, the actual relation is 〈foreign_minister〉. It is
difficult to evaluate how important the adjective ‘‘foreign’’
is in forming the actual relation. But the CSe of 〈minister〉
contains a mention 〈foreign〉, which means that 〈foreign〉

actually contains useful semantic information and should be
reserved to form the actual relation—〈foreign_minister〉.
Take these two reasons into consideration, in order to filter

noises out and handle the phrase issue, further processing for
the candidate set of mQ is necessary. In this case, We intro-
duce the Extended Set for mQ. The detail of creating the
extended set is explained in Algorithm 2.
Definition 4 (Extended Set): An extended set for mQ is a

collection of mentions. Each mention is either a single word
or a phrase which is selected according to the Algorithm 2.
If mQ is an entity, its extended set is denoted as ESe. If mQ is
a relation, its extended set is denoted as ESr .

Algorithm 2 Creating the Extended Set
Input: Dependency tree T, A mention l, and its extended

set CS
Output: The extended set for mQ

join(a, b) means join two words a, b to form a new word;
define a variable ES for extended set;
for each element e in CS do

if e is noun then
ES← ES + join(e, l);
if l is noun then

ES← ES + e;
if e is verb and l is verb then

ES← ES + e;
if e is adjective and l is noun then

ES← ES + join(e_l);
if (e is adverb or preposition) and l is verb then

ES← ES + join(e_l);
if w is noun and w is on the same layer with l in T then

ES← ES + w, ES← ES + (w_l);
return ES;

In a word, by creating the extended sets, ComQA can
mitigate the mismatched mention problem when extracting
entities and relations from the input question.

IV. QUERY GRAPH CONSTRUCTION
In phase I of ComQA, we create the extended set ESe for each
extracted entity and ESr for each extracted relation. Although
ESe specifies the search space of the answer in the knowledge
base, simply linking ESe to the knowledge base is not a rea-
sonable choice. As we mentioned in Section I, there are three
problems including polysemy, ambiguity, and composition
when associating the question with the knowledge base. ESe
can mitigate the composition problem but the polysemy and
ambiguity can introduce noise which makes the search space
too big. To narrow down the search space, we exploit the
syntactic pattern hidden in the question. We introduce graph
query to represent the syntactic pattern. So the core task of
phase II is constructing the query graph from the question.
In addition, considering the mismatched mention problem,
it is necessary to generate more query graphs with extended
sets by regarding the original query graph as a template.

VOLUME 7, 2019 75239

H. Jin et al.: ComQA: Question Answering Over Knowledge Base via Semantic Matching

In order to construct the query graph form the question
which is a sequence of words, we exploit the topology infor-
mation drawn from the dependency-tree T . Based on the
T , we manage to construct the query graph to represent
the intention of the input question. If a plausible subgraph
is not isomorphic to the query graph, this subgraph will
be discarded. A basic idea behind this criterion is that the
dependency-tree T reveals the syntactic structure of the input
question and T actually imposes syntactic constraints on the
entity eA which could represent the answer. Thus we can
extract the ‘‘syntactic pattern’’ of eA from T and encode it
into the query graph. If a subgraph and the query graph are
not isomorphic, this subgraph is high likely just the noise and
should be filtered out.

As we mentioned above, the dependency-tree imposes
the syntactic constraints on the entities which could form
the answer but the dependency-tree still contains some use-
less noise. We should extract the syntactic pattern from
the dependency-tree and construct the more compact query
graph. There is an observation that the wh-words such as
what, how, and which highly contribute to the intention of
question while the query graph must include all the possi-
ble entities in the question, no matter whether the entity is
already determined. Based on this observation, we presents
the concept of critical path. Critical path captures the syntac-
tic pattern which the entities in the question should comply
with. We also presents a heuristic algorithm (Algorithm 3) to
extract the critical path from the dependency-tree.
Definition 5 (Critical Path in Dependency-tree): Given a

Dependency-tree T of the input question Q, Let e be a leaf
entity at the bottom of T and let w be the wh-word of Q. The
critical path is the shortest path which starts from e and ends
at w which only consists of entities and the root verb.

Algorithm 3 Extracting Critical Path
Input: All the Extended sets ES, Dependency tree T
Output: The critical path p
p← ∅;
define a variable N and N← all of leaf nodes in T;
define a variable loc and loc← NULL;
while loc 6= wh-word do

for each entity e in ES do
if e is in N then

p← p + <e>;
loc← e;
delete e from ES;

if loc 6= root node then
N← parents of loc;

else
N← (children of loc - ES);

break;
define a variable term and term← last node in p;
if term == root node then

p← p + <wh-word>;
return p;

Generally speaking, once the critical path is extracted from
the dependency-tree, we can construct the query graph.When
it coming to the complex question, however, there is another
problem to be addressed. Here the complex question refers to
the questionwhose query graph is consists of at least twoRDF
triples. In order to answer complex question like, we need to
join several RDF triples to specify the pattern of the query
graph, which will bring about the issue of linking node. The
linking node plays a key role in constructing query graph of
complex question—it joins the triple containing the target
answer and the triple containing the already-known facts.
In addition, a linking node can impose topology constraints
on the query graph to further limit the scope of candidate
subgraphs.
Definition 6 (Linking Node): Let Q be a input question.

Let p be the critical path of Q. Let e be the entity in the graph
query of Q and let w be the corresponding node of e in p.
Node e is a linking node if and only if its corresponding e can
not be directly located in p while e is linking two triples in
the query graph.

A good example of the linking node can be found in
Qe2 ‘‘Which artists were born on the same date as Rachel
Stevens?’’ If we manually write the query ofQe2 in SPARQL,
one possible way is as follows:

It is clear that the triple in line 4 and the triple in line 5 share
a same entity denoted by ?date. To make it more concrete,
the corresponding query graph of Qe2 is shown in Fig. 3 (b).
The green node in Fig. 3 (b) joins two triples. Although there
is node mentioned by date in the critical path in Fig. 3 (a),
it should be noted that this date node is just a kind of syntactic
structure complementing the relation between the node born
and the node Rachel Stevens thus it corresponds no entity.
According to Definition 6, the green node in Fig. 3 (b) is the
linking node of this query graph.

FIGURE 3. The process of constructing graph query. (a) Dependency Tree.
(b) Triples. (c) Constructed Query Graph.

With the concept of linking node, we can finally construct
the query graph of (complex) question from its critical path.
Once we get the critical path of a question by applying

75240 VOLUME 7, 2019

H. Jin et al.: ComQA: Question Answering Over Knowledge Base via Semantic Matching

Algorithm 3, Algorithm 4 can be used to construct the query
graph. Moreover, in Algorithm 4, we assume that the critical
path remains the tree-like structure when it is extracted from
the dependency-tree.

Algorithm 4 Constructing the Query Graph
Input: Critical path p, Dependency-tree T, and Extended

set ES of the root node in T
Output: Query graph q, ES
root← the root node in T;
id← the bottom leaf node of p;
end← the wh-word in p;
triple_1← (s, NULL, NULL);
s← (s→ next);
while s 6= root do

tmp← s, s← (s→ next);
tmp← tmp + s;

ES← ES + tmp;
triple_1← merge triple_1 and (NULL, tmp, link);
triple_2← (link, tmp, ?);
s← (s→ next), tmp← NULL;
while s 6= end do

tmp← tmp + s, s← (s→ next);
if type 6= NULL then

triple_3← (?, type, tmp);
else

triple_3← (?, type, end);
q← join triple_1, triple_2, and triple_3;
return q, ES;

We will give an example to illustrate how Algorithms 4
works. This example is based on Qe2 and is shown in Fig. 2.
The subtree in Fig. 2 (a) colored by gray corresponds to the
critical path of Qe2. According to Algorithm 4, the whole
process begins with the bottom leaf node Rachel Stevens.
Moving upward, the next node is date. This node is not the
root node, we simply continue to moves upward. The next
node is the root node—born. We concatenate the mention
bornwith the date and put this newmention into the extended
set of born. At the same time, we can build the fact triple
(Rachel Stevens, born, linking node) and the linking node
triple (?, born, linking node). Then we move downward from
root node. The next node is artists, then wemove on. The next
node is the terminal node—which. The traversal of the critical
path is ended. With the information obtained from DBpedia
Ontology [8], the node artist can indicates a ‘‘is-a’’ relation
in the input question. Thus we can build the last triple (which,
rdf:type, artists). It is obvious that which and ? correspond to
a same entity. By joining these three triples together, we can
construct the query graph of Qe2 as shown in Fig. 2 (c).
The query graph Qmconstructed from the critical path

can be treated as the template to generate other query
graph. Based on the extended sets of entities and rela-
tions, the method of generating new query graph is listed
as follows:

1) For a certain entity in Qm, replace this entity with all
the elements in its extended set once a time.

2) Based on the new query graphs generated from the
step above, choose another entity not selected in the
previous step, replace this entity with all the elements
in its extended set once a time.

3) Repeat step 2 until all the possible entities in the origi-
nal query graph are extended.

By generating new but good quality query graphs from the
original one, more candidate subgraphs can be retrieved when
mapping these generated query graphs onto the underlying
knowledge base. Thus there should be a much better chance
of retrieving the subgraph containing the target answer. And
this is the main target of phase II in ComQA.

V. CANDIDATE SUBGRAPHS EVALUATION
At the end of phase II, ComQAfinally generates a set of query
graphs. The core task of phase III in ComQA is mapping
these query graphs on the underlying knowledge base and
evaluating these retrieved candidate subgraphs to locate the
answer. By filtering and ranking these candidate subgraphs,
ComQA can return the target answer to the input question.

When associating the question to the knowledge base,
ComQA will encounter the problems of polysemy and ambi-
guity. So query graphs are constructed to filter out the mis-
leading subgraphs introduced by these two problems. In order
to explain how query graphs work, we first introduce the
concept of neighbor, which is the initial search space of the
answer.

To make it succinct, we denote the entity in the question as
eQ, the corresponding entity in the knowledge base as eG, and
the entity representing the answer as eA. There is a critical
assumption that once eQ is correctly linked to the eG, eA

should be the neighbor of eG. If not, the input question can not
be answered over the knowledge base. With this assumption,
the search space of the eA is limited to the neighbor of eG.
Further, we set the range of neighbor within 3-hop.
Definition 7: (Neighbor in the Knowledge Base): In a

knowledge base G, Let e be an entity in G and let N be a
set of entities in G. N is the neighbor of e if and only if the
following conditions hold:

1) N = ∅;
2) ∀n ∈ N , n is in the range of n-hop from e;
Holding this ‘‘neighbor containing answer’’ assumption,

ComQA starts mapping the query graph onto the underly-
ing knowledge base with the already known entity in the
fact triple. For example, the query graph of Qe2 includes
three triples—〈Rachel Stevens, born, linking node〉, 〈?, born,
linking node〉, and 〈which, rdf:type, artists〉. According to
Definition 8, 〈Rachel Stevens, born, linking node〉 is the
fact triple and 〈Rachel Stevens〉 is the recognized entity and
clearly in its extended set. We refer to 〈Rachel Stevens〉 as
e. To begin the query graph mapping, e can be selected as
the starting point. For e and its extended set, ComQA will
search their possible counterparts in the knowledge base,
which is an entity linking task. Once ComQA finds all the

VOLUME 7, 2019 75241

H. Jin et al.: ComQA: Question Answering Over Knowledge Base via Semantic Matching

candidate entities in the knowledge base, A BFS algorithm
will be applied on these entities and all the neighbors of
these candidate entities can be retrieved from the knowledge
base as candidate subgraphs. However, entity linking is never
a simple task which will introduce ambiguity, lots of those
candidate entities in the knowledge graph are unrelated to
the intention of Qe2. Further, instead of only mapping e,
ComQA also maps the extended set of e onto the knowledge
base, which can get a much better chance of retrieving the
target answer but inevitably brings extra noise. Thus before
ranking these candidate subgraphs, Filtering those obviously
unrelated subgraphs out is of great necessity. ComQA per-
forms filtering task both with query graph information and
semantics.
Definition 8 (Fact Triple): Given extended set of entity

ESe. Let q be the original query graph of the question Q and
let t be a triple in q. t is a fact triple of q if t is in the form of
〈entity, predicate, linking node〉 where entity ∈ ESe.

1) PRUNING UNRELATED PATH VIA QUERY GRAPH
As we argued in the previous section, the query graph of a
input question imposes syntactic constraints on the entities
which can form the target answer. The main body of these
syntactic constraints resides in the topology of the query
graph. If a path consisting of several triples is not isomorphic
to the query graph, this path is supposed to contain no answer
and should be pruned from the retrieved subgraphs. In addi-
tion, if a path is isomorphic to the query graph and one of its
endpoints indicates the relation of ‘‘rdf:type‘‘, we can double
check this endpoint against the query graph to make the result
more precise. The details of pruning unrelated paths can be
seen in Algorithm 5.

An example over Qe2 can help to illustrate how to prune
unrelated paths in the retrieved subgraph. As shown in Fig. 4,
the staring point is Rachel Stevens, and the length of the query
is three (hops). It is clear the two paths listed in the leftmost
of Fig. 4 (a) are not isomorphic to the query graph. Both of
these two paths are shorter than the query graph and should
be pruned from the retrieved subgraph. Fig. 4 (b) gives the
results of pruning the unrelated paths.

2) RANKING PATHS ACCORDING TO SEMANTICS
By pruning unrelated paths from the candidate subgraphs,
ComQA actually transforms the original subgraph into a

FIGURE 4. Pruning unrelated paths. (a) Retrieved Subgraph. (b) Candidate
Paths.

Algorithm 5 Pruning Unrelated Paths via Query Graph
Input: Query graph q, retrieved subgraph Gs
Output: A set of path may contain the answer P
s← the central node of Gs;
len← length of longest path in q;
Na← all nodes except s in Gs;
while Na 6= ∅ do

select an adjacent node i of s;
Ni← longest pathsstarting from e while passing i;
for each path pi in Ni do

Pi← ∅;
if length of pi ≥ len then

Pi← Pi + pi;
P← P + Pi;
delete node i and all its neighbors except s;

return P;

set of discrete paths in the underlying knowledge base.
We denote these paths as candidate paths. Considering the
magnitude of candidate paths, we need to rank them to find
the most likely path containing the answer. There is an obser-
vation that the edge joining two entities is actually a predicate
and indicates a certain relation between this pair of entities.
Given two RDF triples, the predicate can be used to measure
the semantic similarity between the triples, which is helpful
in ranking candidate paths. This task is known as predicate
mapping.

When performing the predicate mapping, there exists two
issues:

1) The first issue is that the predicate may have different
mention in the query graph from its mention in the
candidate path. For example, in Fig 5, the input ques-
tion is ‘‘Which country did Bill Gates born in?’’. The
predicate of the fact triple in query graph is ‘‘born in’’
while its counterpart in the answer path is ‘‘birthPlace’’.
These different mentions of an identical predicate may
leads to filtering out the answer path.

2) The second issue is the hidden linking node. As shown
in Fig 5 (c), the answer path contains a linking node
(colored by green) and consists of three triples. The
query graph, however, fails to reveal the linking node
thus consists of only two triples. In order to rank the
candidate paths correctly, we need to expand the hidden
link node in Fig 5 (a) to the triple denoted by the dashed
rectangle in 5 (c).

FIGURE 5. Locating the hidden linking node. (a) Original Query Graph.
(b) Predicate Extended. (c) Path in Knowledge Base.

75242 VOLUME 7, 2019

H. Jin et al.: ComQA: Question Answering Over Knowledge Base via Semantic Matching

In order to handle these two issues above, we exploit
word vector to represent the predicate in the query graph and
in the candidate path. Thus we can measure the semantic
similarity (Definition 2) between two predicates. Since the
general word vector like GloVe is learning from the text-
based data, it may not perform very well in representing the
word from the knowledge base. We adopt TransE to fine-
tune GloVe, making it more specific to the task related to
the knowledge base. Based on word vector representation,
ComQA can handle the mentioned two issues above.

For handling the first issue, the extended set of relation is
critical. We can extend the predicate in the query graph to
match the mention in the candidate path. Considering the fact
that the most reliable triple in query graph is the fact triple and
the candidate path sometimes is longer than the query graph
(Fig. 5), the predicate extending process is only performed on
the fact triple of query graph. We illustrate the whole process
with an example. Fig. 5 (a) shows the query graph of question
‘‘Which country did Bill Gates born in?’’ and the fact triple
is 〈Bill Gates, born in, ?〉. The predicate ‘‘born in’’ should be
extended to match the predicate ‘‘birthPlace’’ in Fig. 5 (c).
By applying the Algorithm 2, the word ‘‘birthin’’ is added to
the extended set of ‘‘born in’’. By calculating the similarity
between ‘‘birthin’’ and ‘‘birthPlace’’, ComQA will replace
the predicate ‘‘born in’’ with ‘‘birthPlace’’. And the extended
query graph is shown in Fig. 5 (b).

For handling the second issue, we exploit a particular
property of TransE. For example, 〈a,h,b〉 and 〈c,h,d〉 are
two RDF triples mapped into a vector space via TransE
representation. Since these two triples share a same relation,
vector 〈b − a〉 is very similar to vector 〈d − c〉. With this
property, we can reveal the hidden linking node. As shown
in Fig. 5 (b), we can get the TransE vector of 〈country〉 by
using a formula −−−−→country =

−−−−−−→
Bill_Gates −

−−−−→
Country. Then we

calculate the TransE vector of 〈 Country 〉 in Fig. 5 (c) with
a formula,

−−−−→
Country =

−−−−−−−−−→
United_States + −−→type. We denote the

vector of the first 〈country〉 in Fig. 5 (b) as v1 and denote
the other as v2. If 〈v1, v2〉 is more similar than any other
pairs of 〈v1, vo〉, ComQA will judge that the query graph
in Fig. 5 (b) contains a hidden linking node and the candidate
path in Fig. 5 (c) is the most likely mapping results of the
query graph in Fig. 5 (a).

VI. EVALUATION
In this section, we conduct extensive experiments against
a series of QALD challenges, which includes QALD-3,
QALD-4 and QALD-5. We compare the performance of our
ComQA with some representative KBQA systems. It should
be noted that since squall2sparql puts constraints on the ques-
tion and not directly uses the free natural language, we will
not compare with it or give its results.

A. EXPERIMENTAL SETUP
The experiment setup includes dataset and software/hardware
environment.

1) DATASET
All of the QALD challenges are running on the DBpedia
knowledge base which is actually a large RDF knowledge
graph built based on Wikipedia. Each QALD has its corre-
sponding DBpedia version. To be specific, QALD-3 runs on
DBpedia 3.8. QALD-4 runs on the DBpedia 3.9 and QALD-5
runs on DBpedia 2014-10.

2) ENVIRONMENT
All the experiments are conducted on a server computer,
equipped with 2-way Intel Xeon CPU and 256 GB memory.
The DBpedia knowledge base is treated as a whole RDF
graph and managed by TripleBit [9] running on Centos 6.5.

B. PERFORMANCE OF QUESTION ANSWERING
In order to evaluate our ComQA extensively, we conduct
experiments against a series of QALD challenges including
QALD-3, QALD-4, and QALD-5.

After each QALD challenge, a official report of the chal-
lenge results will be released on its website.1 The perfor-
mance reports of other participants are excerpted from the
corresponding official report. Since QALD challenge is held
annually, the participants may vary from year to year.

The performance metrics in QALD are precision, recall
and F1-measure. For each question q, its three performance
metrics are as follows:

Precision(pi) =
number of correct answers
number of all system answers

Recall(pi) =
number of correct answers

number of gold standard answers

F1− measure(pi) =
2× Precision× Recall
Precision+ Recall

The results reported in this section are overall metrics,
which are calculated by taking the mean of all individual
precision, recall and F1-measure.

In addition, some questions in QALD challenge may con-
tain server answering, if a certain system can not return all the
correct answers, this question will be marked as ‘‘Partially‘‘.

Table 1 reports the results against QALD-3 challenge.
From the table, we can see that ComQA can answer the most
questions correctly (38 questions) and partially correctly
(13 questions) while remain the highest precision (0.48).
Our recall and F1-measure are still comparable with the
leading systems. As a contrast, CASIA answers 29 questions
correctly and 8 questions partially correctly.

Table 2 reports the results against QALD-4 challenge.
According to this table, ComQA can handle the most ques-
tions (46 questions). It should be noted that Xser incorporate
a KB-independent model which needed to be learned offline.
Except for Xser, ComQA is the leading competitor among
the remaining systems. We achieve a result of 0.34 recall,
0.58 precision and 0.36 F1-measure. As a contrast, gAnswer
achieves 0.37 recall, 0.37 precision, and 0.37 F1-measure.

1https://qald.sebastianwalter.org

VOLUME 7, 2019 75243

H. Jin et al.: ComQA: Question Answering Over Knowledge Base via Semantic Matching

TABLE 1. QALD-3 on DBpedia 3.8.

TABLE 2. QALD-4 on DBpedia 3.9.

TABLE 3. QALD-5 on DBpedia 2014-10.

Table 3 reports the results against QALD-5 challenge.
From this table, we can find that Xser still performs best
on Recall, Precision, and F1-measure with the same reason
mentioned above. ComQA, however, can process the themost
questions (46 questions) and can answer the most questions
correctly (30 questions). As a contrast, Xser can process
42 questions and answers 26 questions correctly. Except Xser,
our ComQA achieves the highest precision (0.65) and is
comparable with other systems when considering recall and
F1-measure. In addition, we report the 30 questions correctly
answered in Table 4.

In addition, for some questions in three QALD challenges,
especially those in QALD-3 challenge, it is difficult to
extract the correct mention of the relation which can match
the corresponding mention in DBpedia, only by exploiting
the syntactic and semantic information. Without common-
sense knowledge, answering such questions is a nontrivial
task. A good example is ‘‘What is the total amount of
men and women serving in the FDNY?’’ from QALD-3.
The corresponding mention of the relation in DBpedia is
〈dbp:strength〉. Lacking commonsense knowledge, it is hard
to match the 〈dbp:strength〉 with 〈total amount of men and
women〉. Since our ComQA only exploits the syntactic and
semantic information, it can hardly answer such kind of
question. How to use commonsense knowledge inKBQAwill
be explored in the future research.

VII. RELATED WORK
QA (question answering) has a long history dating back to
the 1970s in IR. Representative tasks of QA are benchmarks

TABLE 4. The Questions in QALD-5 which can be completely answered
by ComQA.

provided by TREC and SemEval. These tasks fall in the
classical IR domain which focus on retrieving answers from
text-based data sets. Thus, the requirements of the answer
are not complex, even for the recently released TREC CAR
(complex answer retrieve) data set [10]. IBM Waston [11]
begins to exploit the expressiveness of structured database,
but textual data still mainly contributes to Waston’s knowl-
edge sources. In order to handle complex question answer
over text-based data, [11]–[13] make efforts in question
decomposition. Although these technologies of reasoning
and re-composition work well in conventional text-based QA
tasks [12], the infrastructure of KBQA borrows heavily from
the Semantic Web, which makes it hard to simply apply these
technologies to the KBQA task. Another effort to answer
complex question comes from [14] which pays attention to
compositional semantics and can deal with several special
types of complex questions.
KBQA receives lots of attention recently, especially when

knowledge graph becomes more and more popular. [15]–[19]
could be treated as the starting point of KBQA. These
early work focus on answering simple questions. [15] also
presents a widely-used benchmark—WebQuestions. Supe-
rior systems against WebQuestions benchmark typically
adopt templates and grammars [20]–[23], incorporate sup-
plementary information [24], [25], or directly train an end-
to-end model [25]–[29]. Although all these systems can han-
dle the binary factoid questions, they do not perform well
in answering the complex questions presented in another
famous benchmark QALD. Leading systems against QALD
benchmark often regard the underlying knowledge base as a
huge RDF graph. These systems usually parse the question

75244 VOLUME 7, 2019

H. Jin et al.: ComQA: Question Answering Over Knowledge Base via Semantic Matching

into entities and predicates, then manage to find a way to
map these entities and predicates into the knowledge base
correctly. In order to reduce the ambiguity from the natural
language, [30] presents an approach to extract key phrases
using knowledge graphs. Systems like [31], [32] restrict the
vocabulary and grammar in the process of parsing the input
question. These restrictions help to improve the answering
quality, but also limit the expressiveness of the system. Other
systems like [33]–[35] directly parse the input question with-
out any restrictions. Xser [33] employs a method of ad-hoc
lexicon to perform the mapping between the input ques-
tion and the knowledge base. CASIA [34] adopts Markov
Logic Network to perform the Disambiguation. gAnswer
[35] builds a dictionary to perform the mapping between the
predicates. All these three pay little attention to the context of
the entities and predicates.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we present ComQA, a KBQA framework which
can answer complex questions. Different from current work,
we devise a semantic-based extending method which is effec-
tive in capturing the compositional entities or relations from
the knowledge base. We also exploit syntactic pattern in the
question to facilitate semantic matching. In addition, we fine-
tune the pre-training general word vector by incorporating
the information from the underlying knowledge base, mak-
ing the vector more specific to the ranking task in KBQA.
Extensive experiments over QALD confirm that our ComQA
framework is comparable with state-of-the-art approaches in
terms of recall, precision and F1-score.

In the future, we will explore how to represent the com-
monsense knowledge of the world in KBQA tasks. Then we
will aim to incorporate the appropriately represented com-
monsense knowledge into the process of KBQA, which helps
a lot in evaluating the semantic similarity of different entities
(or relations) at a deeper level than merely considering the
semantic similarity at the word level in our current work.

REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Lves,

‘‘Dbpedia: A nucleus for a web of open data,’’ inProc. ISWC, Busan, South
Korea, 2007, pp. 722–735.

[2] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, ‘‘Freebase:
A collaboratively created graph database for structuring human
knowledge,’’ in Proc. SIGMOD, Vancouver, BC, Canada, Jun. 2008,
pp. 1247–1250.

[3] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes, ‘‘Improving efficiency
and accuracy in multilingual entity extraction,’’ in Proc. ISEM, Graz,
Austria, Sep. 2013, pp. 121–124.

[4] S. Schuster and C. D. Manning, ‘‘Enhanced english universal dependen-
cies: An improved representation for natural language understanding task,’’
in Proc. LREC, Portoroz̆, Slovenia, May 2016, pp. 23–28.

[5] J. Pennington, R. Socher, and C. D. Manning, ‘‘GloVe: Global vec-
tors for word representation,’’ in Proc. EMNLP, Doha, Qatar, 2014,
pp. 1532–1543.

[6] M. Marneffe and C. D. Manning. (Sep. 2016). Stanford Typed Depen-
dencies Manual, Version 3.7.0. [Online]. Available: https://nlp.stanford.
edu/software/dependencies_manual.pdf

[7] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, ‘‘Learning entity and relation
embeddings for knowledge graph completion,’’ in Proc. AAAI, Austin, TX,
USA, Feb. 2015, pp. 2181–2187.

[8] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.Mendes,
S. Hellmann, M. Morsey, P. Kleef, S. Auer, and C. Bizer, ‘‘DBpedia—
A large-scale, multilingual knowledge base extracted from Wikipedia,’’
Semantic Web, vol. 6, no. 2, pp. 167–195, 2015.

[9] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu, ‘‘TripleBit: A fast
and compact system for large scale RDF data,’’ Proc. VLDB Endowment,
vol. 6, no. 7, pp. 517–528, May 2013.

[10] L. Dietz, B. Gamari, and J. Dalton. (2018). Trec Car: A Data Set for
Complex Answer Retrieval Version 2.1. [Online]. Available: http://trec-
car.cs.unh.edu

[11] D. A. Ferrucci, ‘‘Introduction to ‘this is watson’,’’ IBM J. Res. Develop.,
vol. 56, nos. 3–4, pp. 1:1–1:15, May/Jun. 2012.

[12] E. Saquete, J. L. Vicedo, and P. Martínez-Bar, R. Muñoz, and H. Llorens,
‘‘EnhancingQA systemswith complex temporal question processing capa-
bilities,’’ JAIR, vol. 35, no. 1, pp. 775–811, May 2009.

[13] P. Yin, N. Duan, B. Kao, J. Bao, and M. Zhou, ‘‘Answering questions with
complex semantic constraints on open knowledge bases,’’ in Proc. CIKM,
Melbourne, VIC, Australia, Oct. 2015, pp. 1301–1310.

[14] P. Liang, M. I. Jordan, and D. Klein, ‘‘Learning dependency-based com-
positional semantics,’’ Comput. Linguistics, vol. 39, no. 2, pp. 389–446,
Jun. 2013.

[15] J. Berant, A. Chou, R. Frostig, and P. Liang, ‘‘Semantic parsing on freebase
from question-answer pairs,’’ in Proc. EMNLP, Washington, DC, USA,
2013, pp. 1533–1544.

[16] Q. Cai and A. Yates, ‘‘Large-scale semantic parsing via schema matching
and lexicon extension,’’ in Proc. ACL, Sofia, Bulgaria, 2013, pp. 423–433.

[17] A. Fader, L. Zettlemoyer, and O. Etzioni, ‘‘Open question answering over
curated and extracted knowledge bases,’’ in Proc. KDD, New York, NY,
USA, Aug. 2014, pp. 1156–1165.

[18] C. Unger and L. Bühmann, J. Lehmann, A.-C. N. Ngomo, D. Gerber, and
P. Cimiano, ‘‘Template-based question answering over RDF data,’’ in Pro.
WWW, Lyon, France, Apr. 2012, pp. 639–648.

[19] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath, and G. Weikum,
‘‘Natural language questions for the web of data,’’ in Proc. EMNLP-
CoNLL, Jeju Island, South Korea, Jul. 212, pp. 379–390.

[20] S. Reddy, M. Lapata, and M. Steedman, ‘‘Large-scale semantic parsing
without question-answer pairs,’’ Trans. Assoc. Comput. Linguistics, vol. 2,
pp. 377–392, Dec. 2014.

[21] H. Bast and E. Haussmann, ‘‘More accurate question answering on
freebase,’’ in Proc. CIKM, Melbourne, VIC, Australia, Oct. 2015,
pp. 1431–1440.

[22] A. Abujabal, M. Yahya, M. Riedewald, and G. Weikum, ‘‘Automated
template generation for question answering over knowledge
graphs,’’ in Proc. WWW, Perth, WA, Australia, Apr. 2017,
pp. 1191–1200.

[23] A. Abujabal, R. S. Roy, M. Yahya, and G. Weikum, ‘‘Never-ending learn-
ing for open-domain question answering over knowledge bases,’’ in Proc.
WWW, Lyon, France, Apr. 2018, pp. 1053–1062.

[24] D. Savenkov and E. Agichtein, ‘‘When a knowledge base is not enough:
Question answering over knowledge bases with external text data,’’ in
Proc. SIGIR, Pisa, Italy, Jul. 2016, pp. 235–244.

[25] K. Xu, S. Reddy, Y. Feng, S. Huang, and D. Zhao, ‘‘Question
answering on freebase via relation extraction and textual evidence,’’
2016, arXiv:1603.00957. [Online]. Available:https://arxiv.org/abs/
1603.00957

[26] H. Li, C. Xiong, and J. Callan, ‘‘Natural language supported relation
matching for question answeringwith knowledge graphs,’’ inProc. KG4IR,
Tokyo, Japan, 2017, pp. 43–48.

[27] W. Yih, M. Chang, X. He, and J. Gao, ‘‘Semantic parsing via staged query
graph generation: Question answering with knowledge base,’’ in Proc.
ACL-IJCNLP, Beijing, China, 2015, pp. 1321–1331.

[28] Z. Xie, Z. Zeng, G. Zhou, and W. Wang, ‘‘Topic enhanced deep structured
semantic models for knowledge base question answering,’’ Sci. China Inf.
Sci., vol. 60, no. 11, Nov. 2017, Art. no. 110103.

[29] T. Shao, Y. Guo, H. Chen, and Z. Hao, ‘‘Transformer-based neural net-
work for answer selection in question answering,’’ IEEE Access, vol. 7,
pp. 26146–26156, 2019.

[30] W. Shi, W. Zheng, J. Yu, H. Cheng, and L. Zou, ‘‘Keyphrase extraction
using knowledge graphs,’’ Data Sci. Eng., vol. 2, no. 4, pp. 275–288,
Dec. 2017.

[31] G. M. Mazzeo and C. Zaniolo, ‘‘Answering Controlled Natural Language
Questions on RDF Knowledge Bases,’’ in Proc. EDBT, Bordeaux, France,
2016, pp. 608–611.

VOLUME 7, 2019 75245

H. Jin et al.: ComQA: Question Answering Over Knowledge Base via Semantic Matching

[32] S. Ferré, ‘‘squall2sparql: A translator from controlled english to full
SPARQL 1.1,’’ Workshop of Multilingual Question Answering Over
Linked Data (QALD-3), Valencia, Spain, Sep. 2013. [Online]. Available:
https://hal.inria.fr/hal-00943522

[33] K. Xu, Y. Feng, S. Huang, and D. Zhao, ‘‘Question answering via phrasal
semantic parsing,’’ in Proc. CLEF, Toulouse, France, 2015, pp. 414–426.

[34] S. He, Y. Zhang, K. Liu, and J. Zhao, ‘‘CASIA V2: AMLN-based question
answering system over linked data,’’ in Proc. CLEF, Sheffield, U.K.,
Sep. 2014, pp. 1249–1259.

[35] L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and D. Zhao, ‘‘Natural
language question answering over RDF: A graph data driven approach,’’
in Proc. SIGMOD, Snowbird, Utah, USA, Jun. 2014. pp. 313–324.

HAI JIN received the Ph.D. degree in computer
engineering from Huazhong University of Science
and Technology, in 1994. He is a Cheung Kung
Scholars Chair Professor of Computer Science and
Engineering with Huazhong University of Science
and Technology. In 1996, he was awarded a Ger-
man Academic Exchange Service Fellowship to
visit the Technical University of Chemnitz in Ger-
many. He worked at The University of Hong Kong
from 1998 to 2000, and as a Visiting Scholar at

the University of Southern California from 1999 to 2000. He received the
Excellent Youth Award from the National Science Foundation of China,
in 2001. He is the Chief Scientist of ChinaGrid, the largest grid computing
project in China, and also the Chief Scientists of National 973Basic Research
Program Project of Virtualization Technology of Computing System and
Cloud Security.

Dr. Jin is a CCF Fellow, and a member of the ACM. He has coauthored
22 books and published over 700 research papers. His research interests
include computer architecture, virtualization technology, cluster computing
and cloud computing, peer-to-peer computing, network storage, and network
security.

YI LUO received the B.S. degree in material
forming and control engineering from Huazhong
University of Science and Technology, Wuhan,
China, in 2011. He is currently pursuing the Ph.D.
degree in computer science and technology with
Huazhong University of Science and Technology,
Wuhan, China.

Since 2013, he has been a Ph.D. student with
Services Computing Technology and System Lab,
Wuhan, China. His research interests include ques-

tion answering, knowledge graph representation, and graph data mining.

CHENJING GAO received the B.S. degree in com-
puter science and technology from Wuhan Uni-
versity of Science and Technology, Wuhan, China,
in 2018. She is currently pursuing the M.S. degree
in computer technologywith HuazhongUniversity
of Science and Technology, Wuhan, China.

Since 2018, she has been a M.S. student with
Services Computing Technology and System Lab,
Wuhan, China. Her research focuses on question
answering and knowledge graph representation.

XUNZHU TANG received the B.S. degree in infor-
mation management and information system from
Guangxi University, Nanning, China, in 2016.
He is currently pursuing the Ph.D. degree in com-
puter software and theory with Huazhong Univer-
sity of Science and Technology, Wuhan, China.

Since 2016, he has been a Ph.D. student with
Services Computing Technology and System Lab,
Wuhan, China. His research interest includes ques-
tion answering and natural language processing.

PINGPENG YUAN received the Ph.D. degree
in computer science from Zhejiang Univer-
sity. Currently, he is a Professor with the
School of Computer Science and Technology,
Huazhong University of Science and Technol-
ogy. His research interests include databases,
knowledge representation, and reasoning and
information retrieval, with a focus on high-
performance computing. During exploring his
research, he implements systems and innovative

applications in addition to investigating theoretical solutions and algorithmic
design. Thus, he is the Principle Developer in multiple system prototypes,
including TripleBit, PathGraph, and SemreX.

75246 VOLUME 7, 2019

	INTRODUCTION
	CONCEPTS AND FRAMEWORK OVERVIEW
	ENTITY AND RELATION EXTRACTION
	QUERY GRAPH CONSTRUCTION
	CANDIDATE SUBGRAPHS EVALUATION
	PRUNING UNRELATED PATH VIA QUERY GRAPH
	RANKING PATHS ACCORDING TO SEMANTICS

	EVALUATION
	EXPERIMENTAL SETUP
	DATASET
	ENVIRONMENT

	PERFORMANCE OF QUESTION ANSWERING

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	HAI JIN
	YI LUO
	CHENJING GAO
	XUNZHU TANG
	PINGPENG YUAN

