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ABSTRACT Counting and localization of people in videos consisting of low density to high density crowds
encounter many key challenges including complex backgrounds, scale variations, nonuniform distributions,
and occlusions. For this purpose, we propose a scale driven convolutional neural network (SD-CNN) model,
which is based on the assumption that heads are the dominant and visible features regardless of the density of
crowds. To deal with the problem of different scales of heads in different regions of the videos, we annotate a
set of heads in random locations of the videos to develop a scale map representing the mapping of head sizes.
We then extract scale aware proposals based on the scale map which are fed to the SD-CNN model acting
as a head detector. Our model provides a response matrix rendering accurate head positions via nonmaximal
suppression. For experimental evaluations, we consider three standard datasets presenting low density to
high density crowd scenes. Our proposed SD-CNN model outperforms the state-of-the-art methods in terms
of both frame-level and pixel-level analyses.

INDEX TERMS Convolutional neural networks, non-maximal suppression, head detection, crowd counting,

motion analysis.

I. INTRODUCTION

With increase in population and rapid urbanization, crowd
occurrences are regularly observed in the form of concert,
political and religious gatherings. Although these gatherings
serve peaceful purposes, yet present a lot of problems to
security agencies and management. To ensure public safety,
it is critical to understand crowd dynamics and congestion
circumstances at crowded scenes [16], [39]. Crowd analysis
can be used in numerous applications, for example, in detect-
ing critical crowd levels, detecting anomalies, and tracking
individuals or group of individuals. Among them, the most
important and emerging application is to count the number of
people in the scene.

The problem of crowd counting is to estimate the num-
ber of people attending the event or participating in politi-
cal or religious gathering. This type of information is also
very important for both political and safety point of view.
Crowd counting can provide useful piece of information
that could provide support in future event planning and
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public space design. Moreover, crowd counting can substan-
tially reduce the cost by deploying exact number of security
personnel required for public safety and security. Though
crowd counting has numerous applications and has become
the prime focus of many researchers, acquiring information
about the localization of people in high density images has
received least attention from the research community. The
problem of localization is to find the exact location of the
people in the scene. With the localization information, one
can find out the distribution of people in the environment
which is very crucial for crowd managers. Moreover, local-
ization information can be used to detect and track [38] a
person in dense crowds. Localization can provide an aide
in generating the ground truth data that can be used to
rectify counting errors generated by automated counting
algorithms. Localization information provides the estimated
locations (bounding boxes or dots) of the individuals in
the image and the analyst can easily find and rectify the
errors by removing false positives. This process can pro-
vide huge support to the coders for annotating high density
images efficiently and effectively which is very tedious and
hectic job.
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Accurate crowd counting and localization are essential to
handle large crowds for public safety. Most of the exiting
crowd counting methods [2], [33], [37], [42], [43] are regres-
sion based that estimate the crowd count via regression of
density maps. However, these methods only estimate count,
they cannot localize individual pedestrian and therefore can-
not produce the distribution of pedestrians in the environ-
ment. On the other hand, traditional methods [3], [14], [41]
estimate the count via detecting individual pedestrians in the
scene. These methods perform well in low density situations,
where all parts of the pedestrian are fully visible. However,
the performance of these method degrade when applied in
high density situations. This attribute to the severe occlusion
and clutter in the scene due to which most parts of the human
body are not visible. In high density situations, where the
people stand very close to each other and due to the half body
occlusions, head is the only visible part. Although several
strides have been made in human head detection [20], [30],
[32] during the recent years, head detection in the images
is still a challenging task. Due to variation in scales and
appearances of heads, it remains a big problem to precisely
distinguish human heads from the background. Moreover,
the smaller sizes of the human heads make the problem even
worse.

Generally, most of the state-of-the-art methods treat head
detection as object detection problem. Object proposal gen-
eration is a pre-processing step and has been widely used in
modern object detection pipelines. Object proposals are used
to guide the search of objects and avoid exhaustive search
across all the image locations. Recent methods use low-level
image cues, such as saliency, gradient and edge informa-
tion [8], [36], [46] to hypothesize objects in images. Later
on, DeepBox [18] improved the proposals by re-ranking
the object proposals generated by EdgeBox [46]. In Deep-
Proposal [11] method, object proposals are generated by an
inverse cascade from the final to the initial layer. Multi-
Box [23] extracts object regions by bounding box regression
based on CNN features maps. However, person scenes and
images are usually complex and have large variations in
scales, appearances, and human poses. Consequently, the cur-
rent state-of-the-art region proposal methods are less effec-
tive and usually results in low recall rates when applied
to complex scenes. To address this problem, we propose a
different strategy for generating object proposals to detect
human heads in multiple scales. Our framework consists of
the following three major components:

1) We generate scale-aware object proposals by gener-
ating a scale map. Scale map is generated by first
sampling random person positions and then compute
perspective values for each sampled position based on
their relation to person’s head size and then a linear
regression is applied to fit the sampled values in each
image based on the perspective geometry.

2) The second part is an object proposal classification net-
work, which classifies each proposal into two classes
(head/background).
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3) Non-maximal suppression is applied to the response
matrix and final detection results are produced at the
original resolution. The response map is a matrix
with resolution equal to the size of input image and
obtained after processing all the proposals. The values
of response map represent the classification score of all
input proposals.

Comparing to other state-of-the-art methods, our frame-
work has the following contributions:

« Ability to count and localize human heads in both low
density and high density crowd images.

« Handles scale variations by generating scale-aware pro-
posals.

« Generates density maps (response maps) which give the
distribution of humans in the scene.

o Unlike previous crowd counting models that only esti-
mate the crowd count, our method handles counting and
localization problems simultaneously.

We perform extensive experiments on standard bench-
marks datasets, i.e, UCSD dataset [4], and World-
Expo’10 [42] and UCF-CC-50 [13] to show the superiority
of our approach over state-of-the-art methods.

Il. RELATED WORKS

Deep learning has achieved tremendous success in the recent
years. In the literature, various deep learning models are
proposed for image segmentation, object classification and
detection with excellent results. Inspired by the success of
deep learning, the CNN models have been proposed in litera-
ture to estimate the count of people from the image. Generally
deep learning models for crowd counting can be classified
into two major categories, 1) Regression based methods,
2) Detection based methods. Regression based methods esti-
mate the crowd count by performing regression between
the image features and crowd size. In CNN based methods,
density maps are generated from the image and count is
obtained by performing integration over the density map.
A Multi-column Convolutional Neural Network (MCNN) is
proposed in [44], which utilizes three columns with filter
size of different receptive field to compensate for perspective
distortion. The CNN regression model with two configura-
tions [42] estimates the number of people in a single image.
Switch-CNN [29] uses multiple CNN based crowd count-
ing architectures and proposes switching strategy to select
one network based on the performance. Contextual Pyramid
CNN [35] estimates the count by generating high-quality
crowd density by incorporating global and local contextual
information of crowd images. Different density estimation
methods are compared in [15]. Crowd density is estimated
in [45] by using different regression networks. Although the
Regression based methods work well in high density situa-
tions as they capture generalized density information from the
crowd image yet they suffer from the following limitations.
1) The performance of these methods degrade when applied
to low density situations due to overestimating the count.
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FIGURE 1. SD-CNN Model. We generate scale aware proposals based on the scale map which are fed to the SD-CNN model for rendering the response
map. We then apply non-maximal suppression to detect and localize heads in the scene.

2) These methods cannot localize pedestrian in the scene
and thus provide no information about the distribution of
pedestrians in the environment which is very crucial for the
crowd managers and security personnel.

On the other hand, detection based methods [30]-[32],
train object detectors to localize the position of each per-
son, where crowd count is the number of detections in the
scene. A hybrid method is proposed in [21] that incorporates
both regression and detection based counting and adaptively
decide the appropriate counting mode for different image
locations. Our proposed model is similar to [32] in a way that
we also train a head detector. Unlike feeding general object
proposal to the network as proposed in [32], we generate
scale-aware proposals by using a scale map. Scale map esti-
mates the object scales and use them to guide proposals rather
than exhaustive searching on all scales. From our experi-
ments, we observed that generating scale-aware proposals are
very effective and can reduce the search space and ignores
false positives at improper scales.

Ill. SCALE DRIVEN MODEL FOR COUNTING AND
LOCALIZATION

In this work, to count and localize the people in images
with large scale variations, we propose a new scale driven
convolutional network (SD-CNN) model. The pipeline of our
proposed model is shown in Figure 1. It comprises of three
main components. Firstly, we annotate the sizes of the heads
in random locations of the image to generate the scale map.
Secondly, the scale map is subsequently used to produce
scale aware proposals. This procedure is illustrated in details
in Fig. 2. Finally, the scale aware proposals are fed to the
SD-CNN model to detect and localize heads.

Object proposal generation is a pre-processing step and
has been widely used in modern object detection pipelines.
Object proposals are used to guide the search of objects
and avoid exhaustive search across all the image locations.
To generate object proposals, the first step is to estimate a
scale map S. In order to estimate the scale map S, we need
to understand the underlying factors that cause scale vari-
ations in the image. From empirical evidence, we confirm
that drastic perspective distortions in images cause scale vari-
ations in the image as illustrated in Figure 3 (left image).
The perspective distortion is related to camera calibration
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FIGURE 2. Proposal generation. After we annotate the sizes of heads in
the image, we produce scale map depicting mapping of head sizes from
the original image.

FIGURE 3. The size of the person head drastically changes due to
perspective distortions as shown in the image on the left. The size of
head at the bottom (in green) is bigger than size of head on the top
(yellow) in the image. The estimated scale map on the right captures this
perspective distortion at every location in the image.

which estimates 6 degrees-of-freedom (DOF) [10] and indi-
cate the scale change from near to far in an image as shown
in Figure 3. Therefore, we exploit perspective information to
estimate the scale map S.

The value p; of any pixel i of the scale map S represents
a perspective value and defined as the number of pixels
representing one meter at that location in the real scene [42].
Hence, the perspective value is related to the observed size of
pedestrian in the image. We estimate the perspective value for
each pixel by using perspective geometry of pinnhole camera
as shown in Figure 4. In the Figure, a person of height Py
is walking on the ground, shot by the camera located at the
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FIGURE 4. Perspective geometry of pinnhole camera.

height Cy from the ground. The head and feet of the person
is mapped on the image plane at y; and yp, respectively, and
f is the focal length. The cartesian coordinate system with y-
axis represents the vertical direction, while z-axis represents
the depth. From the perspective geometry of pinnhole camera,
we can solve the similar triangles as follows

= M (1)
21
C
Vo = f(Cr) )
21

From the above Equations 1 and 2, we compute the height
h of pedestrian as
f(PH)
h=yp—y = 3)
21
we obtain height 4 by dividing both sides of Equation 3 by
Yy as

Py
- Cy — Py
After obtaining height 2 of pedestrian, the perspective
value p is given by:

h Vi 4

h 1
Py Cu—Pu

In order to generate scale map for input image, we approx-
imate Py to be the average size of adults (1.76 m) [42] for
every pedestrian. To estimate C, we manually labeled height
of random adults at different locations. Then we find the
perspective value p; of pixel i as p; = 1h—7’6 We then employ
linear regression method on Equation 5 and generate scale
map. The scale map shown in Figure 3 (right image), captures
the scale variations at every location in the image, with the
values decreased from bottom to top indicating the change in
person scale from front to remote end of the image and have
same values in the same row. The red colors in the scale map
represent bigger sizes in the image and blue color represents
smaller sizes. The vertical bar shows the range of scales in
the input image.

After generating the scale map S, the next step is to
generate object proposals. We uniformly overlaid a gird G
of points on the image and generate bounding boxes with
grid points as their centers. Let S(p;) represents the size of

p= &)
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pedestrian (in pixels) at location p;. For every point p; € G,
we generate bounding box of size S(p;) with point p; as its
center. Ideally, the resolution of the grid G and scale map S are
the same as the resolution of the input image /; nonetheless
this would imply huge computational costs. In order to avoid
this problem, we define a parameter «, the value which is
in the range of {0 < o < 1}, indicating the resolution of the
grid. Consider R, x Ry is the original resolution of the image.
The resulting resolution of the grid G is G, x Gy, where
Gy = a(Ry) and Gy = a(R)). Generally, the higher the value
of « increase the resolution of the grid which results in large
number of proposals. In this case, higher number of proposals
are concentrated near the areas which likely to contain a
pedestrian. However, the downside is that with lower values
of a will produce small number of proposals which result in
lower recall rates. This issue introduces a tradeoff in selection
of parameter «. From the experiments evidences, we found
that value of & = 0.65 is ideal for most of the cases, so we
fix o to 0.65 in the experiments.

The scale map S for the UCSD [4] and WorldExpo’ 10 [42]
datasets were generated by labeling the height of pedestrians.
However, for UCF-CC-50 [13] dataset having high dense
crowds, the above process of generating the scale map is
not applicable. The reason is the pedestrian bodies are not
visible for labeling in such dense scenes. In dense crowd
scenes, head is the only visible part and we noticed that
similarly to the observed pedestrian height, the size of the
head also changes due to perspective distortions. Therefore,
in this case we interpret perspective value p; by labeling head
size as shown in Figure 2 (zoomed view). After labeling
heads, instead of employing conventional linear regression,
we adopt a novel non-linear regression to fit the perspective
value. After computing mean perspective value at each sam-
pled row y;, we employ parametric tanh function to fit the
average values over the entire row of y; by

p =a-tanh(b - (y; + ¢)) (6)

where a, b and c are the parameters.

IV. DETECTION NETWORK

After generating scale-aware proposals, the next step is to
classify each proposal into two classes, i.e, head and back-
ground. Our detection network follows the classical R-CNN
mode [12] and instead of using selective search [40] for
proposal generation, we use scale-aware proposals. Before
feeding to the network, we extend the bounding box of each
proposal by a small margin and then image patch correspond-
ing to each proposal is resized to fit the input layer of the
CNN. For the head detection, we keep the square-like aspect
ratios N € [%, %] for all bounding boxes.

The classical R-CNN is based on AlexNet architecture [17]
which is pretrained on ImageNet [9] dataset. In addition to
AlexNet, we used several other alternatives, for example,
VGGS [5], VGG-verydeep-16 [34], and Oquab et al. [25].
From the experiment, we noticed that VGGS slightly outper-
forms AlexNet but was slower in both training and testing.
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TABLE 1. Datasets. Summary of the three datasets including UCSD dataset [4], WorldExpo’10 [42], and UCF-CC-50 [13] is presented in terms of number of

frames, total scenes, resolution, frames per second, and crowd size.

Dataset Number of frames  Total scenes  Resolution Frames per second Crowd size
WorldExpo’10 [42] 4.4 million 108 576x238 50 1-253
UCSD [4] 2000 1 158x238 10 11-46
UCF-CC-50[13] 50 50 various images 94-4543

TABLE 2. Comparative analysis with other techniques on UCSD [4]
dataset.

TABLE 3. Comparative analysis with other techniques on
WorldExpo’10 [42] dataset using MAE metric.

Methods MAE ‘ MSE Methods S1 S2 S3 S4 S5 Average
Regression Based Models Zhang et al. [42] 9.8 14.1 14.3 222 3.7 129
) MCNN [44] 34 20.6 12.9 13.0 8.1 11.6
Lempitsky et al. [19] 1.7 - Lingbo et al. [22] 2.6 11.8 10.3 10.4 3.7 7.76
Kernel Ridge Regression [1] 2.16 | 745 Faster R-CNN [28]  18.65 37.94 1984 4267 1527 2687
Multi output Ridge Regression [7] 225 8.08 SD-CNN 29 108 101 94 39 742
Gaussian process Regression [4] 2.24 7.97
Cumulative Attribute Regression [6] 2.07 6.86
TABLE 4. Comparative analysis with other techniques on UCF-CC-50 [13]
CNN Based Models dataset.
Zang et al. [42] 1.60 3.31
Count forest [26] 1.61 4.4 Methods MAE | MSE
Liping etal. [+5] 1031 1.37 idreesetal. [13]  419.5 | 590.3
MCNN [44] 107 | 135 Zhangetal. [12] 4670 | 498.5
Faster R-CNN [5] 289 | 925 Lipingetal. [45] 3023 | 411.6
Proposed SD-CNN 1.01 1.28 MCNN [44] 3716 | 509.1

In the same way, VGG-verydeep-16 performed well but was
much slower. Oquab et al. on the other hand performed
better and achieved similar speed in both training and testing
compared to AlexNet. In this paper, we used Oquab et al. pre-
tained on ImageNet. For training the network, we assign each
bounding box to one of the two classes,i.e, head and back-
ground. We decide this assignment based on intersection-
over-union (IoU), which represents the overlap ratio between
the candidate bounding box and ground truth bounding box.
We fix a threshold value of 0.5 and any bounding box for
which IoU > 0.5 will be assigned to positive class, while the
remaining bounding boxes will be assigned to the negative
class. We keep training batch size of 64 proposals. We ini-
tialize the parameter of the network using ImageNet pre-
trained network of Oquab et al. We minimize the parameter
of the network with stochastic gradient descent (SGD) with
momentum of 0.9 and weight decay 0.0005. We initialize the
learning rate at 0.01, and decrease it by a factor of 10 after
the validation error reaches saturation point.

For the localization task, to get the precise location of the
heads, we post-process the response map by finding local
peaks/ maximums based on fixed threshold. This process is
also known as non-maixmal suppression. We use 1-1 match-
ing strategy to compare the predicted locations with the
ground truth locations and use Precision and Recall metrics
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MRA-CNN [43] 240.0 352.6
Faster R-CNN [28]  592.09 | 672.19

Proposed SD-CNN  235.74 | 345.6

for evaluation. The performance of the localization task is
mainly affected by changing the threshold value.

V. EXPERIMENT RESULTS

In this section we discuss both qualitative and quantita-
tive analysis of the results obtained from the experiments.
We evaluate our SD-CNN framework using three publicly
available datasets, UCSD dataset [4], WorldExpo’ 10 [42] and
UCF-CC-50 [13]. The summary of the datasets is described
in Table 1. Generally, these datasets are annotated in a way
that can only be useful for evaluating the performance of
regression models. Typically, in these datasets, every indi-
vidual pedestrian is annotated with a dot in the scene. These
dot annotations are not suitable for training our SD-CNN
model or other detection based methods. Therefore, we anno-
tated each pedestrian with a bounding box that cover whole
body of pedestrian. In the same way, we also annotated the
head of each pedestrian using the bounding box.

After annotation, we then trained different models dis-
cussed in Section IV on Titan Xp with learning rate at
0.01 and decrease it by a factor of 10 after the validation error
reaches saturation point.
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TABLE 5. Localization performance of different methods in terms of Average Precision (Avg), Average Recall (AvR) and Area Under Curve (AUC). The
values of AvP and AvR are represented in percentages.

Methods WorldExpo’10 UCSD UCF-CC-50 ]
AvP AvVR AUC | AvP AvR AUC | AvP AvVR AUC
Zang et al. [42] 45.87 39.23 045 65.64 59.65 0.64 3527 29.67 0.29
MCNN [44] 55.24 5228 051 69.74 65.67 0.71 33.27 3564 031
Kang et al. [15] 4298 3927 041 67.28 5532 0.67 24.13 3027 0.27
Liping et al. [45] 65.72 4791 0.58 71.73  68.68 0.72 3428 31.19 0.31
Faster R-CNN [28] | 25.18 27.53 0.21 3328 37.62 0.30 1452 12.69 0.14
Proposed SD-CNN | 69.46  67.65 0.69 73.58 71.68 0.74 45.67 40.12 045

For the sake of comprehensive evaluation, we divide the
experiment setup into two phases. In the first phase, we eval-
uate and compare the crowd counting performance while
in the second phase, we evaluate and compare localization
performance of our proposed SD-CNN model with other
state-of-the-art methods.

A. COUNTING PERFORMANCE

In this section, we evaluate the performance of different
crowd counting methods. We use Mean Absolute Error
(MAE) and Mean Square Error (MSE) as evaluation mea-
sures to compare the counting performance of the SD-CNN
against the state-of-the-art methods and is defined as.

T
1
MAE:TZW,—GII (7
t=1
1 T
MSE = = % (1 =G ®)
t=1

where T is the total number of testing frames. While y; and
G, are the predicted and ground-truth count of pedestrians
respectively at frame 7.

The UCSD dataset consists of 2000 frames of size 158 x
238 captured from a single camera at 10 fps. We follow
the same settings as in [4] and use frames from 601 to
1400 as training, and the remaining 1200 are used in the
testing phase. The dataset captures low density crowds where
crowds are sparsely distributed. We evaluate and compare
our results with different regression and CNN based meth-
ods. The results of SD-CNN and other methods are reported
in Table 2. From the table, it is obvious that our SD-CNN
outperforms other state-of-the-art methods.

We next evaluate and compare the performance of
our framework and other state-of-the-art methods using
WorldExpo’10 dataset. This data set was first introduced
by Zhang et al. [42] and contains 1132 annotated video
sequences which are captured by 108 cameras from different
viewpoints. There are total of 199,923 head annotations that
span over 3980 frames. In training stage, total 3380 frames are
used and for the testing we used five different video scenes.
Thanks to the author of [42] for providing the perspective
maps. For the fair comparison, we use ROI regions provided
by the [42] in each test scene. We use the same evaluation
metric (MAE) and the results are presented in Table 3. It can
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be observed from Table 3 that SD-CNN outperforms existing
approaches on an average scale while achieves compara-
ble performance in five different scenes. From the results,
we infer that the perspective information generally increases
the performance of our proposed SD-CNN considering var-
ious scenarios. Liu et al. [22] proposed regression based
crowd counting approach which works well in extreme dense
situations, since they can capture density dependent informa-
tion. The proposed method by Liu ef al. [22] is dependent
on the density of crowd. Therefore, this is the reason that
Liu et al. [22] outperforms our method by a small margin in
scene S1 and S5, since these scenes contains high density
crowd with rich texture information. In most cases, when the
density of crowd changes, the performance of Liu et al. [22]
degrades. Moreover, Liu et al. [22] is regression based model
and cannot localize persons heads, and thus cannot provide
information about the distribution of pedestrians in the envi-
ronment which is very crucial for the crowd managers and
security personnel.

UCF-CC-50 [13] is a challenging dataset which contains
50 annotated images of different resolutions, view points,
and with the densities drastically changing from 94 per-
sons/image to 4543 persons/image. We followed the same
standard of 5-fold cross-validation proposed by [13] for eval-
uating and comparing the methods. We evaluate and compare
the results of different state-of-the-art methods in Table 4.
From Table 4, it is obvious that our proposed SD-CNN
outperforms other state-of-the-art methods. This experiment
signifies the importance of using perspective information
for estimating crowd count in images with widely varying
densities.

In Table 2, Table 3 and Table 4, we evaluated and compared
the performance of Faster-RCNN [28] on three datasets. The
results of our proposed method are significantly better than
Faster-RCNN. Faster-RCNN achieve good results only if
the size of objects is very large. Faster-RCNN is based on
PASCAL VOC dataset for training and testing where the
actual size of most objects in the dataset is large. However,
in our problem we are interested in detecting heads (size
of 10-15 pixels), which are usually small. The detection
network in Faster R-CNN has trouble to detect such small
objects. The performance of Faster-RCNN becomes worse
when applied to high density situations. The reason is that
the ROI-pooling layer builds features only from one sin-
gle high level feature map. For example, the backbone of
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FIGURE 5. Results of samples frames from UCSD (15¢ and 2™? rows), WorldExpo’10 (3" and 4th rows)
and UCF-CC-50 datasets (5! and 6! rows). The first column represents the input sample images from
different datasets. The second column shows the corresponding responses maps (density maps), while
the third column shows the final detections. The yellow dot represents the groundtruth while the red
bounding box is the predicted location by our approach. The Figure can be best viewed in color.
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Faster-RCNN (e.g, VGG-16) model does ROI-pooling from
the ‘conv5’ layer, which has an overall stride of 16. When
the object size is less than 16 pixels, the projected ROI
pooling region is less than 1 pixel in the ‘conv5’ layer even
if the proposed region is correct. Thus the detector will have
much difficulty to predict the object class and bounding box
location based on information from only one pixel.

B. LOCALIZATION PERFORMANCE

In this section, We evaluate both qualitatively and quan-
titatively the localization performance of our framework.
In order to quantify the localization error, we associate the
center of estimated bounding box with the ground truth
location (single dot) through 1-1 matching strategy. We then
compute Precision and Recall at various thresholds and report
the overall localization performance in terms of area under the
curve. In order to estimate the location, we use the same den-
sity maps generated by state-of-the-art methods followed by
non-maxima suppression algorithm. The results are reported
in Table 5. It is obvious that our proposed model presents
higher Precision and Recall rates as compared to the state-
of-the-art methods. These results attribute to the fact that
our model generates scale-aware proposals that capture wide
range of head sizes in each image. It can also be observed that
all other methods present lower rates for UCF-CC-50 dataset
as compared to WorldExpo’10 and UCSD datasets. This
is due to the fact the UCF-CC-50 dataset contains more
dense images with heavy occlusions as compared to World-
Expo’10 and UCSD datasets. We also show some qualita-
tive results of our proposed method in Figure 5. From the
Figure 5, it is obvious that the sample images from
the UCSD dataset represent low density scene. The sam-
ple images taken from two different scenes of World-
Expo’10 dataset represent medium densities and the images
from UCF-CC-50 represent relatively more complex and
extreme high density scenes. From our experiments, we find
out that our method performs well in both high and low
density scenes and is independent of the scene density. As it
is clear from the figure, that in most of cases, our proposed
method precisely localizes the heads even in the complex
scenes.

Our method will incur computation time. We compute
the computation time of proposed framework using World-
Expol0 and UCSD dataset. We found that our frame work
took 0.87 and 0.34 seconds to process an image from World-
Expol0 and UCSD datasets, respectively. We further inves-
tigated time complexity of our proposed framework using
UCF-CC-50 dataset and found out that computation com-
plexity of our framework is directly related to the image res-
olution. UCF-CC-50 dataset contains different images with
various resolutions. High image resolution will lead to high
computation complexity, since large number of proposals will
be generated to estimate the response map. We compute the
computation time for each image and found out that average
computation time for UCF-CC-50 dataset is 1.78 seconds.
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VI. CONCLUSION

This paper presented a novel SD-CNN model to estimate
the count by detecting and localizing the humans in dense
crowd scenes. To tackle the problem of scale variations,
we generated scale-aware head region proposals by exploit-
ing the perspective information. This strategy has signifi-
cantly reduced the classification time and also resulted in
boosting the detection accuracy. We evaluated SD-CNN on
three datasets, i.e, UCSD, WorldExpo’, and UCF-CC-50 and
have achieved noticeable improvements in the results.

In our future work, we would further improve the localiza-
tion results since the localization accuracy is mainly affected
by the post-processing step (non-maxima suppression in our
case).
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