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ABSTRACT In recent years, numerous applications of science and engineering for modeling and control
of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional
calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance
of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs
that have been addressed by the fractional order techniques over the last decade.

INDEX TERMS Fractional calculus, fractional order control techniques, unmanned aerial vehicles (UAVs),
unmanned ground vehicles (UGVs).

I. INTRODUCTION
Nowadays, the research interests of UAVs and UGVs is grow-
ing rapidly due to their potential in usage for a countless
number of applications. UAVs are suitable to perform impor-
tant tasks, among which are surveillance, reconnaissance,
agricultural imaging, search and rescue, etc [1], [2]. There
are many types of UAVs used in mentioned applications
such as single rotor helicopters, multi rotor-crafts, fixed wing
planes and hybrid combinations [3]. Each platform has its
particular advantages and disadvantages. Similarly, UGVs
also have arisen the interests of many researchers and orga-
nizations, especially the military, since the 1960s [4]. This
has conducted to the development of different models of
UGVs, which can be distinguished in wheeled mobile robots
(WMRs) and legged mobile robots (LMRs) depending on
the locomotion mechanism. Currently, UAVs and UGVs are
used in many applications both individually and collectively
including reconnaissance, surveillance, combat, rescue, agri-
culture, etc [5]. Because various applications in which
UAVs and UGVs are involved, the need of solving various
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problems in their control has occurred. In recent years,
the research community has addressed several control prob-
lems in UAVs using integer order control (IOC) techniques,
e.g trajectory tracking [6]–[11], attitude control [12]–[16],
path planning [17]–[22], state estimation [23]–[27], forma-
tion control [28]–[32], fault tolerant control (FTC) [33]–[37],
fault detection and diagnosis (FDD) [38]–[42], and collision
avoidance [43]–[47]. Similarly, the control issues which have
been studied in UGVs are: trajectory tracking [48]–[52],
path planning [53]–[57], state estimation [58]–[62], forma-
tion control [63]–[67], fault tolerant control (FTC) [68]–[72],
fault detection and diagnosis (FDD) [73]–[75], and collision
avoidance [76]–[78].

Many scientists are widely using fractional controllers to
achieve more robust performance in many control systems
some of which are servo-mechanisms, water tank system and
other industrial applications [79]–[84]. Compared with the
traditional integer order controllers, fractional order control
(FOC) techniques have achieved more impressive results of
UAVs and UGVs system in term of improving the robustness
during wind gusts, payload variations, and friction, and mod-
eling uncertainties [85]–[88]. Because of the FOC techniques
permit to consider more efficient constraints such as phase
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margin, gain crossover frequency, complementary sensitivity,
energy efficiency and isodamping behavior for tuning the
controllers. Additionally, it is indicated that fractional cal-
culus has the capacity to configure the phase and gain of
the frequency response in a system independently and get
the Bode ideal transfer function [89]. Therefore, this paper
reviews and highlights the existing work using the fractional
order control (FOC) techniques as the best solutions for the
control problems of UAVs and UGVs.

This review is structured as follows. In section II, the math-
ematical fundamental of fractional calculus used in control
theory is introduced. FOC techniques of UAVs and UGVs
are respectively described in the section III and section IV.
Finally, concluding remarks are presented in section V.

II. BASICS OF THE FRACTIONAL CALCULUS
Fractional calculus corresponds to the generalization of the
classical operation of derivation and integration to orders
other than integer. Since the last decades, several applications
in the science and engineering areas have been developed
(modeling, control theory, mechanical and dynamic systems,
signal and image processing, etc.) based on fractional calcu-
lus theory [90]–[94].

A. FRACTIONAL ORDER DERIVATE DEFINITIONS
Three important approaches of fractional derivatives used
extensively in the field of control theory are intro-
duced by Grünwald-Letnikov, Riemann-Liouville and
Caputo [95], [96].

1) GRÜNWALD-LETNIKOV DEFINITION
The Grünwald-Letnikov (G-L) definition of fractional
derivate is defined as:

aDαt = lim
h→0

1
hα

[ t−ah ]∑
j=0

(−1)j
(
α

j

)
f (t − jh) (1)

where [ t−ah ] is an integer amount, a and t are the limits of the
operator, α > 0. The binomial coefficient

(
α
j

)
is defined as:(

α

j

)
=

0(α + 1)
0(j+ 1)0(α − j+ 1)

(2)

0(.) is the gamma function defined as:

0(n) =
∫
∞

0
tn−1e−tdt (3)

The G-L definition is a discrete form of the fractional
derivative and it is primarily used in numerical solutions of
fractional-order differential equations [79], [97].

2) RIEMANN-LIOUVILLE DEFINITION
TheRiemann-Liouville (R-L) definition of fractional derivate
is defined as:

aDαt =
1

0(n− α)

(
d
dt

)n ∫ t

a

f (τ )
(t − τ )α−n+1

dτ (4)

where α is a real value, n is an integer value with the condi-
tion n− 1 < α < n, t and a are the limits of integration.

The R-L definition is an integral form of the fractional
derivative and it is appropriate for finding the analytical
solution of simple functions (et , tb, cos(t), etc.) [98].

3) CAPUTO DEFINITION
The Caputo definition of fractional derivate is defined as:

C
a D

α
t =

1
0(n− α)

∫ t

a

f (n)(τ )
(t − τ )α−n+1

dτ (5)

where α is a real value, n is integer value with the condition
n− 1 < α < n, t and a are the limits of integration.
The Caputo derivate has advantages over R-L definition,

due to the consideration of initial conditions of integer order
such as y(0), ẏ(0), which are interpretable with real physical
phenomena [98].

The three definitions presented, G-L and Caputo
definitions are the most used for their aforementioned charac-
teristics. Caputo derivate is used because of practical applica-
tion and G-L definition for its representation discrete suitable
to numerical solutions. However, the analytical methods
are very complicated and should be limited the number of
coefficients because of the limited available memory of the
microcontrollers [79]. Because of this difficulty, the existing
literature prefers continuous or discrete approximation meth-
ods by ease implementation. Nevertheless, when accuracy is
increased in these methods, high-order transfer functions are
obtained. The approximation methods purpose is expressing
the fractional term sα , obtained by the Laplace transform
taking to the G-L or Caputo definitions, in a rational approxi-
mation function in the s, z or δ domain. The digital implemen-
tations are achieved by the discrete approximation methods
(z, δ) and can be implemented directly to any microprocessor
based devices like as PIC, PLC, FPGA, etc. One of the
methods of discrete approximation is based on G-L definition
aforementioned. More details about the study of rational
approximation functions of sα can be found in [89].

III. FRACTIONAL ORDER CONTROL TECHNIQUES
APPLIED TO THE CONTROL PROBLEMS IN UAVs
In this section, FOC approaches of UAVs are introduced.The
UAVs applications such as trajectory tracking control, path
planning, collision avoidance, attitude control, state esti-
mation, formation control and fault tolerant control are
investigated.

A. TRAJECTORY TRACKING CONTROL
A fractional order derivative (FOD) controller which is
also called the first generation of the CRONE (Commande
Robuste d’Ordre Non Entier) strategy for the trajectory track-
ing control of a rotary-wing aircraft is proposed [99]. Its
structure is given by:

C(s) = ksα, α ∈ (0, 1), k ∈ <. (6)
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FIGURE 1. Neural network based approximator. (a) neural network
structure. (b) neural network assisted FIR approximator [100].

The controller of the UAV is designed, by assuming a
constant phase margin around the gain-crossover frequency.
The effectiveness of the controller without considering the
external disturbances is shown by simulation. In addition,
the Bode plots of the closed-loop control system with a con-
stant phase margin around the gain-crossover frequencies are
presented. It demonstrates that the FOC controller eliminates
the nonlinear effects and parameter uncertainties. However,
there is no comparison with any type of IOC controller.
An application of an analogical fractional order proportional-
integral-derivative (FOPID) controller emulated by a neural
network based approximator is proposed in [100]. The ana-
logical FOPID controller is given in (7).

C(s) = kp +
ki
sλ
+ kd sµ (7)

where, kp, ki and kd are the proportional, integral and deriva-
tive terms, respectively. λ and µ are the fractional orders
integral and derivative terms. It consists of two sections: a
neural network and a Finite Impulse Response (FIR) filter,
which permits to approximate the response obtained by the
analogical FOPID controller sampled to 1ms (see Fig. 1(a)
and Fig. 1(b) respectively).

The neural network structure contains 20 neurons with
hyperbolic tangent type neuronal activation function, which
is trained to provide the coefficients to the FIR approxima-
tor (A0 = {a0, a1, a2, a3}), varying the action coefficients
and differintegration orders (Ai = {kp, kd , ki, λ, µ}) of the
fractional controller. In this work, the range of the controller
parameters are kp ∈ (0, 3), kd ∈ (0, 0.5), ki ∈ (0, 1) and
λ,µ ∈ (0, 1). The simulation results show that the presented
structure successfully emulates the analogical FOPID con-
troller under the wind disturbances, powering uncertainties
and measurement noises. Moreover, the proposed scheme has

a very low computational complexity, which allows to use for
real-time applications based on microprocessor or FPGA.

A novel FOPID controller based on modified Black-
Nichols method is proposed in [101], whose transfer function
is defined as:

C(s) = kp

(
1+ Tisλ

Tisλ
1+ Td sµ

1+ Tf s

)
, λ, µ ∈ (0, 2). (8)

where kp is the proportional term, Ti is the integration time,
Td is the derivative time, Tf is filter time term, λ and µ
are the fractional orders integral and derivative terms respec-
tively. The results are compared with an integer order PID
(IOPID) control, Fuzzy-PID hybrid control and a backstep-
ping approach (BS) under two realistic scenarios considering
the parameters uncertainties, extra payload and sensor noise.
The Integral Square Error (ISE) and Integral Squared Control
Input (ISCI) indexes are used for the quantification of the
results. According to the performance indexes, the FOPID
has the best performance in terms of precision and energy
consumption in comparison to the other nonlinear techniques.
This clearly demonstrates that linear controllers based on
FOC techniques can achieve similar or better results than the
other traditional nonlinear techniques for UAVs.

An optimal FOPID controller tuned with a genetic algo-
rithm (GA) approach under certain design specifications is
presented in [102]. The fitness function used to optimize the
parameters kp, ki, kd , λ and µ of the FOPID controller is:

f = βess + δest + γ eos (9)

where ess is steady-state error, est is settling time error, eos is
overshoot error, β, δ and γ are weight factors. The proposed
strategy is evaluated with MATLAB simulations using a
variable set-point and circular trajectory without considering
external disturbances, obtaining a good trajectory tracking
with both references. Nevertheless, it is necessary to compare
the proposed controller against some IOC technique.

In other work, a FOPD controller is designed and applied to
AR.Drone 2.0 [103]. The controller parameters are obtained
based on the specifications of phase margin, gain crossover
frequency and robustness.

6 C(jωgc)P(jωgc) = −π + φm∣∣C(jωgc)P(jωgc)∣∣ = 1
d(6 C(jω)P(jω))

dω

∣∣∣∣
ω=ωgc

= 0 (10)

where, C(s) is the controller, P(s) is the process, φm, is the
phase margin desired in closed-loop and ωgc is the gain
crossover frequency. Additionally, the absolute integral error
(IAE) and integral squared error (ISE) indexes are used
for choosing the best FOPD controller. The performance of
FOPD controller considering wind disturbances is compared
against the controllers based on extended prediction self-
adaptive control (EPSAC) approach and integer order PD
(IOPD) control. The results show that the FOPD controller
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has a similar response to the EPSAC method, which is an
advanced technique of process control.

A novel fractional-order backstepping sliding mode
control (FOBSMC) approach for an UAV is proposed
in [104]. The globally asymptotically stability of the pro-
posed controller is achieved using Lyapunov stability theory.
Subsequently, the effectiveness and robustness of the con-
troller have been tested by flight trajectories with external
disturbances.

Finally, fractional order sliding mode control (FOSMC)
strategies are presented in [105] and [106]. The trajectory
tracking problems are resolved using FOSMC and IOPD
controllers [105]. The FOSMC uses a switching function
(S(t)) and a double power reaching law (Ṡ(t)) to avoid the
chattering problem, which are described as:

S(t)= ė(t)+ kpe(t)+Dαe(t)

Ṡ(t)=−k1‖S(t)‖γ sign(S(t))−k2‖S(t)‖γ+1sign(S(t)) (11)

where e(t) = {eϕ, eθ , eψ }, are the errors of attitude tracking,
kp = {kpϕ, kpθ , kpψ }, k1, k2 are real constants, sign(.) is
the signum function and γ the fractional order derivative.
For comparison purpose, an integer SMC is developed. The
proposed strategywith FOSMCpresents a faster response and
higher tracking accuracy. Similarly, a FOSMC for a second-
order non-linear model of a quadrotor with an unknown addi-
tive perturbation term is presented in [106]. Theirs switching
function (S(t)) and reaching control law (Ṡ(t)) are chosen as:

S(t) = ė(t)+ λe(t)

Ṡ(t) = −σD−βsign(S(t))− µS(t) (12)

where e(t) is the tracking error, λ, µ and σ are real constants,
sign(.) is the signum function and β is the fractional order
derivative. The performance of the FOSMC is compared
against an integer order SMC (IOSMC). The MATLAB sim-
ulations demonstrate the robustness of the FOSMC controller
under additive perturbations. In addition, the chattering in
some of the control signals of the FOSMC is less than the
SMC controller.

B. PATH PLANNING/ COLLISION AVOIDANCE
A fractional order potential field (FOPF) method is applied
for path planning and collision avoidance in two cooperative
source seeking applications [107], [108]. The method can be
used in path planning when UAVs are attracted to the source
(attractive potential field) and collision avoidance as each
UAV or obstacle are repelled (repulsive potential field). The
FOPF is obtained based on the definition of Coulomb electric
field as:

Vn(r) =
q

4πε0

0(2− n)
r2−n

, ∀n ∈ (0, 2)(2,+∞) (13)

where q is the source point charge, ε0 is the permittivity vac-
uum, r is the distance to the charge, n can be an integer or non-
integer greater than zero and 0(.) is the gamma function.
In order to implement the FOPF, the function Vn(r) can be

FIGURE 2. FOPF. (a) repulsive field. (b) attractive field [107].

normalized to a value between (0, 1), using the maximum
distance (rmax) and minimum distance (rmin). The repulsive
FOPF is given as:

Urep(r) =


rn−2 − rn−2max

rn−2min − r
n−2
max

, ∀n ∈ (0, 2)(2,+∞)

ln r − ln rmax
ln rmin − ln rmax

, n = 2

(14)

while, the attractive FOPF is Uatt (r) = −Urep(r). FOPF
evaluation with 1 ≤ n ≤ 5 for repulsive and attractive
potential fields are shown in Fig. 2.

Contrarily, the FOPF method allows to use different level
of potential fields, which can be useful in dangerous cases.
This is an advantage of the FOPF with regard to the integer
order potential field (IOPF). FromFig. 2(a), it can be seen that
more force can be applied with the greater n than a FOPFwith
the smaller n. It shows that FOPF and extended Kalman filter
(EKF) achieved suitable results.

C. ATTITUDE CONTROL
An application of FOSMC and neural networks to attitude
control of a quadrotor is proposed [109]. The switching func-
tion (S(t)) and a reaching law (Ṡ(t)) in FOSMC method are
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defined as:

S(t) = e(t)(1+β) + λe(t)

Ṡ(t) = −QDβsign(S(t)) (15)

where e(t) is the tracking error, β ∈ (0, 1) is the fractional
order derivate and λ, Q are real constants. The neural net-
works approach is applied to compensate the power loss in the
battery of the quadrotor. Two neural networks create the maps
to provide the relation at the pulse-width modulation (PWM)
signal level between the controller and UAV dynamics. The
scheme is given in Fig.3.

FIGURE 3. Neural network components for the relation in PWM
level [109].

where Vb is the battery voltage, �ic is the angular speed at
ith motor specified by the controller, �i is the angular speed
at ith motor, H1 and H2 are low pass filters. The strategy is
evaluated by simulation, where FOSMC and neural networks
present the feasibility under the effect of wind disturbances,
measurement noise and during the voltage loss in the battery,
when it discharges from 11.1V to 9.9V in 130s. A fractional-
order control structure that enforces finite-time convergence
of the sliding surface is proposed [111]. The model-free
fractional-order control law is given by:

τi(t) = −ktni I
ν
t sign(Sqi(t))+ τi(tni) (16)

where k > 0 is the feedback gain, τi is the ith component of
the control torque vector τ = [τφ, τθ , τψ ]T , Sqi is the sliding
error manifold, ν is the fractional order integral term and tni
is the sequence of instants at which Sqi(tni) = 0. The perfor-
mance of the scheme proposed is evaluated experimentally by
using the AR.Drone 2.0 quad-rotor. Two trajectories (a circle
and a sine function) for attitude tracking control are chosen
to validate. The results show that the quad-rotor effectively
achieves the angular positions with a minimum tracking error
without chattering. This work is extended in [112], where the
problem of underactuation to control the translational coordi-
nates (x, y) is addressed and a solution based on a virtual posi-
tion control approach is proposed. In the similar approach,
the performance of AR.Drone 2.0 is validated through both
simulations and real-experiments. Two order of integration
values are implemented, with which the classical integer
SMC and FOSMC for attitude control are considered. For
both cases the same position is obtained based on the virtual
control. However, adjusting the value of integration obtains

more precise results. A novel robust FOSMC combined with
a state constrained controller is presented in [113]. The inner-
loop controllers are based on FOSMC for the attitude control,
while outer-loop controllers use the state constrained control
for the translational movements (x, y, z). The fractional order
slide mode surface is defined as:

S(t) = Dα+1e(t)+ m1e(t)+ n1β(e(t)) (17)

where e(t) is the respective orientation error (φ, θ, ψ), m1,
n1 are positive constants, α ∈ (0, 1) is the fractional order
derivative term. The function β(e(t)) is defined as:

β(e(t)) =

{
e(t)

p1
q1 , if S̄(t) = 0 or S̄(t) 6= 0, |e(t)| > u

e(t), if S̄(t) 6= 0, |e(t)| ≤ u
(18)

where u is the small positive threshold, p1, q1 are positive
odd integers with condition 1 < q1/p1 < 2 and S̄(t) =

Dα+1e(t) + m1e(t) + n1e(t)
p1
q1 . For the comparison purpose,

two additional integer SMC controllers are designed. The
simulations and experiments are implemented by using the
Quanser QBall 2 quadrotor driven by MATLAB. In addition,
lumped disturbances approximated by a sum of sinusoidal
functions are considered. Finally, the results demonstrate that
FOSMC has lower values of overshoot and convergence time
in comparison to the other controllers.

A FOSMC via disturbance observer for attitude control
of a quadrotor is presented [114]. Firstly, the estimation of
the fractional order derivative of the external disturbance is
realized by using a new fractional order disturbance observer
(FODOB), whose representation is given by:

D1+α−βp(t) = −LBd (Dα−βp(t)+ LDα ẋ(t))

−L(ADα−βx(t)+ BDα−βu(t))

D1+α−β d̂(t) = D1+α−βp(t)+ LDαx(t) (19)

where β ∈ (0, 1] is the system order, x(t) ∈ <n is the state
variable, u(t) ∈ <m is the control signal, A ∈ <n×n is the
state matrix, B ∈ <n×m is the control matrix, Bd ∈ <n×1

is the disturbance matrix, C ∈ <p×n is the output matrix,
d̂(t) is the estimated disturbance of d(t), p(t) is an auxiliary
vector, α ∈ (0, λ) depends on the order of FOSMC and L
is the observer gain matrix. Subsequently, a FOSMC for the
attitude control is designed, whose switching function (S(t))
and reaching law (Ṡ(t)) are defined as:

S(t) = a1ey(t)+ a2Dαey(t)

Ṡ(t) = −a1ėy(t)+ a2D1+α−βC(Ax(t)+ Bu(t)+ Bdd(t))

− a2Dα ẏd (t) (20)

where a1, a2 are real constants, α is the fractional order of
the sliding surface and ey(t) = y(t) − yd (t) is the tracking
error of the output. The FOSMC with FODOB is compared
with a SMC-DOB. The numerical simulations show that the
proposed method decreases the tracking error to high speed
and suppresses the chattering problem.
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FIGURE 4. Filter type 2DOF-FOPID control structure [110].

In contrast to the work presented in [111], a novel FOSMC
with a nonlinear PI nonlinear structure is proposed in [115].
The proportional term acts as a nonlinear dissipater, while the
fractional integral part removes the chattering effect out of the
control signal. The fractional-order control law is given by:

τi(t) = −k1 |Si(t)|α sign(Si(t))−k2 tniI
β
t sign(Si(t))+τi(tni)

(21)

where k1 > 0, k2 > 0 are the feedback gains, τi is the ith com-
ponent of the control torque vector τ = [τφ, τθ , τψ ]T , Si is the
sliding error manifold, α, β are the fractional order terms and
tni is the sequence of instants at which Si(tni) = 0. The simu-
lations and real-experiments are executed by usingMATLAB
and the AR.Drone 2.0 quad-rotor. Four different controllers
are used for the comparison purpose: fractional sliding mode
PI nonlinear controller, first-order sliding mode controller,
sliding mode PI-like controller and a second-order sliding
mode super-twisting controller. All the angle references are
considered as sinusoidal functions. The results show a similar
attitude tracking with all the controllers. However, when the
quaternion error vector and the control signals are compared
between the controllers, it is easy seen that the fractional con-
troller has less tracking error and smaller control effort signal
than the other methods. Likewise, the chattering phenomenon
is lesser than in the conventional controllers.

A fractional order filter with two-degrees-of-freedom PID
controller for the pitch control of a UAV is presented [110].
The structure is given in Fig. 4 and it consists of a filter
and a FOPID controller, which can be independently tuned
to ensure the disturbance rejection and trajectory tracking
performance. Firstly, the FOPID controller is tuned by using
the follow specifications: phase and gain margins, robustness
to variations in the gain of the system, robustness to high-
frequency noise and disturbance rejection. The controller
parameters (KP, KD, TI , λ and µ) are obtained by resolving
the set of five nonlinear equations generated with the spec-
ifications aforementioned using the optimization toolbox of

MATLAB. Finally, the filter parameters α ∈ [0, 1], β ∈
[1, 2], γ ∈ [0, 2] are computed by using a particle swarm
optimization (PSO) method to satisfy some performance cri-
teria such as rise time (tr ), settling time (ts), steady-state error
(Ess), overshoot (Mp) and integral absolute error (IAE). The
fitness function used to optimize is:

J (k) = w1Mp + w2tr + w3ts + w4Ess + w5IAE (22)

where k = [α β γ ] are the parameters to be optimized
and w = [w1.w2,w3,w4,w5] are the inertia weights. The
proposed controller presents a good disturbance rejection and
command tracking according to the MATLAB simulations.

Subsequently, a robust FOPID controller for the pitch angle
control of a Fixed-Wing UAV based on multi-objective bat
algorithm (MOBA) and multi-objective genetic algorithm
(MOGA) are presented in [116] and [117], respectively. The
objective functions used to optimize in both works are:

J1 = ‖S(jω)‖∞
J2 = ‖T (jω)‖∞ (23)

where ‖S(jω)‖∞ is the infinity norm of the sensitivity func-
tion and ‖T (jω)‖∞ is the complementary sensitivity function.
In MOBA approach, a combined objective function J (k) is
obtained by summing the objective functions given in (23),
using weighted-sum method.

J (k) =
2∑

k=1

Jkwk , w1,w2 > 0, w1 + w2 = 1 (24)

The MOGA approach uses each objective function indi-
vidually to find a set of solutions with a different trade-off
(the so-called Pareto front). Then a solution is selected with
the desired balance between conflicting design objectives.
The results show that the FOPID controllers track the tra-
jectory and satisfy the designed conditions of the objective
function. At the same time, they have a better performance
than the IOPID controllers.
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A new method to obtain a flat phase margin with FOPID
controller is proposed [118]. This method is applied for the
roll control of a UAV using the specifications: gain margin,
phase margin and robustness to gain variations of the system
with two different approaches. The first approach consists in
a limited number of frequency samples of G(s) around of its
crossover frequency for the controller design. This approach
allows greater computational efficiency than the classical
method, which uses a first order plus time delay (FOPTD)
model. In the second approach, an approximated open loop
system (G′(s)) with the same amplitude of G(s) and different
phase curve is used. Moreover, two additional controllers
are used: an IOPID controller and a classical FOPID. For
the performance evaluation of the controllers, uncertainties
in the aerodynamic parameters of the UAV are added. The
simulation results in MATLAB demonstrate that the new
FOPID controller is more robust than the other controllers
in closed loop.

A fractional order proportional-integral (FOPI) controller
design for the roll-channel or lateral direction control of a
fixed-wing UAV is presented [85]. The transfer function of
the controller is:

C(s) = kp

(
1+

ki
sλ

)
(25)

where, kp and ki are the proportional and integral terms
respectively, λ ∈ (0, 2) is the fractional order integral term.
Firstly, the roll-channel model of the UAV is obtained using
closed-loop system identification, which requires a rough
PID tuning to determine C0(s). Once the roll-channel model
is obtained, it is necessary to approximate a FOPTD sys-
tem. The outer loop FOPI controller is tuned based on the
performance specifications described in (10). The proposed
FOPI controller is compared with an integer order PI (IOPI)
controller through simulation and real flight experiments,
by considering the effect of wind gust disturbances and pay-
load variation, which demonstrate the robustness of the FOPI
controller with respect to IOPI controller.

A variant of fractional order proportional-integral FO[PI]
controller for the roll-channel or lateral direction control of a
fixed-wing UAV is presented in [86], whose representation in
transfer function is:

C(s) =
(
kp +

ki
s

)λ
(26)

where, kp and ki are the proportional and integral term respec-
tively, λ ∈ (0, 2) is the fractional order term. For comparison
purpose, four controllers are designed: IOPI based on mod-
ified Ziegler-Nichols (MZNs) tuning method, IOPID, IOPI
and FO[PI] are tuned based on the performance specifica-
tions described in (10). These four controllers are evaluated
by simulation and real flight experiments under the effect
of payload variations. The results show that the designed
FO[PI] controller has a better performance than the inte-
ger order controllers. The same FO[PI] control structure is
used for the pitch control of a vertical takeoff and land-
ing (VTOL) UAV [119] and the lateral longitudinal attitude

control of a fixed-wing UAV [120]. The controller parameters
are obtained based on the performance specifications given
in (10). For the VTOL UAV, three additional controllers
MZNs IOPI and IOPID are designed to compare the perfor-
mance with respect to the proposed FO[PI]. The simulation
results under effect of wind gust disturbances and payload
variations show that the proposed strategy has better transient
response and robustness than the other controllers. Similarly,
two additional controllers IOPID, FOPI are designed for the
fixed-wing aircraft for comparison purpose. The simulation
through MATLAB indicates that the FO[PI] has a better
performance with respect to the other controls under wind
gust disturbances.

D. STATE ESTIMATION CONTROL
A new fractional order complementary filters (FOCF)
approach for the attitude estimation of small low-cost UAVs
is presented [121]. The purpose of complementary filters is to
combine the outputs of two or more sensors that complement
each other over different parts of the system bandwidth.
It means that a sensor has reliable data in high frequencies
while the other should has reliable data in low frequencies.
Two sensors that satisfy this condition are: a gyroscope and
an inclinometer. Fig. 5 shows the idea of the complementary
filter in frequency domain and its equivalent representation in
a closed-loop system.

FIGURE 5. Complementary Filter. (a) frequency domain. (b) closed-
loop [121].

where φi, φg are the outputs of the inclinometer and gyro-
scope respectively. Gi(s), Gg(s) are the filters for the incli-
nometer and gyroscope, φ̂ is the estimation of φ. It is impor-
tant to indicate that the condition for complementary filters is
Gi(s)+Gg(s) =1. These filters could be chosen as following:

Gi(s) =
C(s)

C(s)+ s
Gg(s) =

s
C(s)+ s

(27)
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According to the Fig. 5(a) and (27), φ̂ is defined as:

φ̂ = φi
C(s)

C(s)+ s
+
φg

s
s

C(s)+ s

φ̂ =
(
sφiC(s)+ φg − φ̂C(s)

) 1
s

sφ̂ = (φi − φ̂)C(s)+ φg (28)

From (28), an equivalent representation of the comple-
mentary filter in closed loop is obtained and represented
in Fig. 5(b). It is important to notice that this scheme permits
to use control theory for designing the complementary filter.
In this way, three complementary filters are designed with
several control structures such as proportional (P), IOPI and
fractional order integrator (FOI) whose structure is given as:

C(s) =
k
sα
, α ∈ (0, 1), k ∈ <. (29)

For validation of the controller performances, Gaussian
and non-Gaussian noise are applied. The numerical simula-
tions show that FOCF presents a better performance than the
traditional integer order approach.

E. FORMATION CONTROL
A research about formation control based on leader-follower
approach so-called distributed fractional order finite-time
control (DFOFTC) for a group of UAVs is presented [122].
There are two stages during its operation. Firstly, a distributed
sliding-mode observer (DSMO) is designed to approximate
the tracking error between the leader UAV and its reference.
Secondly, a FOSMC is used to ensure the finite-time con-
vergence of the tracking errors between followers and leader,
whose switching function (S(t)) is chosen as:

S(t) = Dα+1e(t)+ σ1e(t)+ σ2e(t)q/p (30)

where α is the fractional-order derivative term, σ1 and σ2 are
positive constants, q and p are positive odd integers. These
two strategies are implemented in the follower UAVs. The
numerical simulations show the efficacy of the presented
approaches.

F. FAULT TOLERANT CONTROL
An adaptive fractional-order fault tolerant control for an
UAV under external disturbance and actuator fault is
designed [123]. The dynamics of the UAV are separated into
two subsystems: velocity and altitude. The actuator fault is
considered using the model described as:

δe = ρf δe0 + uf (31)

where, 0 < ρf < 1 is the degrade of the control signal,
δe0 is the applied control signal and uf is the bounded bias
fault signal. The fractional-order derivative of the external
disturbance and actuator fault are estimated using an adap-
tive technique, while the virtual control signal and its first
derivative are estimated with a high gain observer. It per-
mits to eliminate the problem of explosion of complexity

in backstepping technique. Moreover, a fractional order ter-
minal sliding mode control (FOTSMC) to pitch dynamics
control is used, whose switching function (S(t)) is defined the
same as the one presented in (30). The simulations show the
effectiveness of the designed control strategy, when external
disturbances and actuator faults are presented in the system.
The control problems inUAVs analyzedwith FOC techniques
are summarized in Table 1.

IV. FRACTIONAL ORDER CONTROL TECHNIQUES
APPLIED TO THE CONTROL PROBLEMS IN UGVs
In this section, the literature of last decade regarding con-
trol problems in UGV addressed by fractional order control
(FOC) techniques is revised. It was found that trajectory
tracking control, path planning and collision avoidance are
among the problems treated with different FOC approaches.

A. TRAJECTORY TRACKING CONTROL
The lateral control of a networked UGV based on a fractional
order generalized predictive control (FOGPC) is presented
in [124]. The cost function of the FOGPC is defined as:

J =
∫ N2

N1

Dα[r(t + j|t)− y(t + j|t)]2dt

+

∫ Nu

1
Dβ [1u(t + j− 1|t)]2dt; α, β ∈ < (32)

where, N1 and N2 are the minimum and maximum prediction
horizons, Nu is the control horizon, y(t) is the system output
and r(t) is the reference signal. The FOGPC strategy is
compared with an integer order GPC (IOGPC) considering
two different simulation cases: sensor noise environment and
communication network. The results demonstrated that the
FOGPC is more robust to sensors noise and communication
network, besides it presents lower values of control efforts in
the lateral control than the IOGPC. Furthermore, a FOSMC
for a four-wheel steering (4WS) vehicle is proposed [125],
where a fractional-order sliding surface is used to eliminate
the steady-state error produced by the parameter uncertainties
of the real vehicle and reference model.

S(t) = −1D−αS(t)− εD−αsign(S(t)) (33)

where1 is a diagonal matrix of positive real values, ε is a real
constant, sign(.) is the signum function and α ∈ (0, 1) is the
fractional order derivative. A group of simulations to analyze
the influence of α and variation of the 4WS parameters on
the efficiency and robustness of the system are made. The
results indicate that the FOSMC has improved the robustness
of the 4WS vehicle.

In [87], FOPID controllers based on PSO algorithm are
designed. The trajectory tracking controllers are tuned and
applied for driving each wheel of the UGV as shown in Fig. 6.
In which, θd is the desired orientation, vr is the desired veloc-
ity, θa is the actual orientation and va is the actual velocity.
The fitness function is based on the ISE index:

ISE =
(∫
∞

0
[eθ (t)]2dt

)
+

(∫
∞

0
[ev(t)]2dt

)
(34)

VOLUME 7, 2019 66871



R. Cajo et al.: Survey on Fractional Order Control Techniques

TABLE 1. Control problems in UAVs addressed by fractional order control techniques.

FIGURE 6. Closed-loop structure for tuning FOPID based on PSO
algorithm [87].

where eθ = θd − θa is the orientation error and ev =
vr − va is the velocity error. For comparison purpose, two
IOPID controllers are designed using the same scheme as
in FOPD. The tracking performance is implemented through
the numerical simulation in MATLAB by using a circular
and linear trajectory. A notable improvement over the track-
ing error is obtained with the FOPD for both trajectories.
A longitudinal control for an autonomous Citroën vehicle
based on a FOPI controller is proposed in [128]. Firstly,
the dynamical longitudinal model is obtained by using an
identification process in MATLAB based on the frequency

FIGURE 7. Scheme of the FOPI-based gain-scheduled [126].

domain. Secondly, the FOPI controller is tuned based on the
specifications of phase margin, gain crossover frequency and
disturbance rejection. Its last specification is defined as a
value of the sensitivity function for a determine frequencies
range. The performance of the FOPI controller is tested in
simulation and real vehicle by considering an environment
close to reality. The results show the good performance of the
fractional controller during changes in the navigation speed,
which is important for the comfort of passengers.

An extension of this work for the case of networked control
system is presented in [126]. Where a novelty FOPI-based
gain-scheduled controller is designed and Its scheme is show
in the Fig.7. In which, τnet is the network delay, vref is the
speed reference of the vehicle and β is the external gain in
function of network delay. The local station is responsible
for detecting traffic risk situations. The adaptive speeds is
applied to avoid or reduce possible accidents in its dangerous
area. The results demonstrate that when the FOPI-based gain-
scheduled controller is implemented, it produces a better
performance with respect to using the traditional one.
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FIGURE 8. Closed-loop structure for the trajectory control of the WMR [127].

In another work, FOPI controllers are designed and applied
to the UGV for trajectory tracking [88]. Similarly, IOPI and
FOPI controllers for orientation and velocity are designed.
The performances of both controllers are evaluated using
three different trajectories for the velocity reference and
a sinusoidal orientation reference in real experiments. The
results indicate that the FOPI has a better performance for
control of velocity and orientation of the UGV, considering
the trajectory tracking error.

FOPD controllers for a differential drive WMR QBot2 of
Quanser Company are designed [127]. The trajectory track-
ing is based on velocity control of WMR in closed-loop
scheme as shown in Fig. 8.

In Fig. 8, vR is the right wheel velocity, vL is the left wheel
velocity, vC is the chassis linear velocity and ω is the chassis
angular velocity. The inverse and forward kinematics blocks
define the relation between the desired linear velocity and
angular velocity of the vehicle for a trajectory. Subsequently,
an IOPD controller is designed and compared with the FOPD
controller on simulation and real application. It shows that the
FOPD controller improves the trajectory tracking error with
83% compared to IOPD controller. Nevertheless, this exper-
iment is performed for a straight path without considering a
more realistic case of a circular trajectory.

A novel fractional order extremum seeking controller
(FOESC) for trajectory tracking of an UGV is presented
in [129]. This approach consists in applying fractional order
filters instead of integer order filters in a classical extremum
seeking controller (ESC). The FOESC scheme is given
in Fig. 9. where (x, y) are the coordinates of the center of
the vehicle, v is the optimal signal estimate, sq

(sq+h) is the
fractional order filter, q ∈ (0, 1) is the fractional order
derivative, sin(ωt) is a periodic perturbation signal, a, c, ω
and h are design parameters, J = f (x, y) is the nonlinear map
defined as:

J = f ∗ − qx(x − xd )2 − qy(y− yd )2 (35)

The extremum seeking algorithm is designed to ensure
the output J = f (x, y) converges to its minimal f ∗, where
f ∗ = f (xd , yd ) is the unknown extremum point, qx and qy are
positive constants. Finally, the simulation based on a vehicle

FIGURE 9. Closed-loop FOESC scheme for UGV [129].

model using a FOESC and ESC for performance comparison
is presented. The results show that FOESC is more efficient
with respect to the rate of convergence and steady-state error
than the classical extremum seeking controller.

B. PATH PLANNING/COLLISION AVOIDANCE
A strategic schematic to use fractional order potential field
(FOPF) method for path planning and collision avoidance of
UGV is developed in [130]. The strategies schematic is shown
in Fig.10.

The strategic schematic has three stages but only the tac-
tical stage is addressed in this work. This stage uses the
attractive and repulsive forces of the FOPF method to avoid
the obstacles and to move toward the target. A simple model
permits to calculate the position, velocity and acceleration.
The repulsive FOPF is described in (14) and its resultant force
is given by:

EFrep = −∇(Urep(r)) (36)

The attractive FOPF is designed as:

EFatt = αp(Extarget − Ex)+ αvDn(Evtarget − Ev) (37)

where Ex and Extarget are the particle and target positions, αp and
αv are weighting coefficients, Ev and Evtarget are the particle and
target velocities and n is the fractional order derivative term.
For the attractive FOPF, a limitation of vehicle acceleration
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FIGURE 10. Strategic schematic for UGV using FOPF [130].

TABLE 2. Control problems in UGVs addressed by fractional order control techniques.

is imposed to avoid an uncomfortable trip to the passengers.
The performance of the FOPF is compared with the classical
IOPF. The results show that the FOPF does not present phase
variations around the gain cross-over frequency during the
mass variations in the vehicle. The control problems in UGVs
analized with FOC techniques are summarized in Table 2.

V. DISCUSSION AND CONCLUSIONS
The FOC techniques are analized according to the control
problems of trajectory tracking, attitude control, path plan-
ning, state estimation, formation control, fault tolerant con-
trol, collision avoidance, fault detection and diagnosis present
in UAVs and UGVs.The results of the study indicate that
FOD, FOPD, FOPI, FO[PI], FOPID, FOBSMC, FOSMC,
FOPF, FOGPC, FOESC and FOTSMC are the fundamental
control techniques applied to UAVs and UGVs in the last
decade.

In addition, the FOC techniques present some advantages.
Firstly, FOC techniques are more flexible in tuning the
parameters of the controller as order derivative terms are not
restricted to integer. Secondly, it has improvement in robust-
ness of closed loop systems under disturbances such as wind

gusts, payload variations, friction, manufacturing variations,
modeling uncertainties, etc. [85]–[88], [99]–[110], [114],
[116]–[125], [127], [129], [130]. Finally, FO controllers can
be compensate certain nonlinearities in the systems some of
which are hysteresis, dead zone, backlash, etc. [89].

However, very few controllers have been implemented and
embedded in the limited control units of the UAVs or UGVs
by using continuous or discrete approximation methods.
Most of these controllers have been used in trajectory track-
ing or attitude control, because these problems present in the
autonomous vehicles require a robust and fast controller.

Contrarily, a serious drawback in FOC techniques is the
approximation of the fractional operator Dβ in continu-
ous or discrete time form, which requests a high-order
approximation [89]. It increases the computational complex-
ity and may generates in a complicate transfer function to
implement by numerical issues. Therefore, an adequate and
efficient discrete-time approximation or direct method is
required for a practical implementation on limited control
units.

Recently, an novel discretization method that produces
low integer order discrete-time transfer functions and
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computationally efficient is developed in [131]. Furthermore,
a methodology to emulate FOPID using a linear model based
on artificial neural network is presented, whose purpose is to
reduce the computational complexity for a real-time embed-
ded implementation on commercial microcontrollers [100].

In the last decade, a significant advance in the development
of new FOC techniques has been realized. This survey has
studied the current state of FOC techniques applied to UAVs
and UGVs to address their different control problems. The
presented studies for both types of vehicles are given in the
table 1 and table 2 respectively.

In the future, the development of efficient methods to
implement the FOC techniques with a lower computational
complexity will be a necessity with respect to commercial
applications.
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