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ABSTRACT Fluctuation-based dispersion entropy (FDispEn) is a new approach to estimate the dynamical
variability of the fluctuations of signals. It is based on Shannon entropy and fluctuation-based dispersion
patterns. To quantify the physiological dynamics over multiple time scales, multiscale FDispEn (MFDE) is
developed in this paper. MFDE is robust to the presence of baseline wanders or trends in the data.We evaluate
MFDE, compared with popular multiscale sample entropy (MSE), multiscale fuzzy entropy (MFE), and the
recently introduced multiscale dispersion entropy (MDE), on selected synthetic data and five neurological
diseases’ datasets: 1) focal and non-focal electroencephalograms (EEGs); 2) walking stride interval signals
for young, elderly, and Parkinson’s subjects; 3) stride interval fluctuations for Huntington’s disease and
amyotrophic lateral sclerosis; 4) EEGs for controls and Alzheimer’s disease patients; and 5) eye movement
data for Parkinson’s disease and ataxia. The MFDE avoids the problem of the undefined MSE values and,
compared with the MFE and MSE, leads to more stable entropy values over the scale factors for white and
pink noises. Overall, the MFDE is the fastest and most consistent method for the discrimination of different
states of neurological data, especially where the mean value of a time series considerably changes along with
the signal (e.g., eye movement data). This paper shows that MFDE is a relevant new metric to gain further
insights into the dynamics of neurological diseases’ recordings. The MATLAB codes for the MFDE and its
refined composite form are available in Xplore.

INDEX TERMS Complexity, multiscale fluctuation-based dispersion entropy, biomedical signals, electroen-
cephalogram, stride interval fluctuations, eye movements.

I. INTRODUCTION
One of the most popular and powerful nonlinear measures
used to evaluate the dynamical characteristics of signals is
entropy [1]–[4]. Shannon entropy (ShEn) and conditional
entropy (ConEn) are two key fundamental concepts in infor-
mation theory widely used for characterization of physio-
logical signals [2], [3]. ShEn and ConEn show the amount
of information and rate of information production, respec-
tively, and are related to the uncertainty or irregularity of
data [2]–[5]. A higher entropy value demonstrates higher

The associate editor coordinating the review of this manuscript and
approving it for publication was Alberto Botter.

irregularity, while smaller entropy values show lower irreg-
ularity or uncertainty in a time series [2], [4], [6].

Existing entropy techniques, such as sample entropy
(SampEn), fuzzy entropy (FuzEn), and permutation entropy
(PerEn), are widely used to quantify the irregularity of signals
at one temporal scale [4], [5], [7]. However, these techniques
fail to account for themultiple time scales inherent in biomed-
ical recordings [8], [9]. To deal with this limitation, multiscale
SampEn (MSE) was proposed [10] and it has become a
prevalent algorithm to quantify the complexity of univariate
time series, especially physiological recordings [8], [11].

Following [8], [10], the concept of complexity stands
for ‘‘meaningful structural richness’’, which may be in
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contrast with uncertainty or irregularity of time series
defined by classical entropy approaches such as SampEn and
PerEn [4], [8], [12], [13]. As mentioned above, these entropy
approaches evaluate repetitive patterns and return maximum
values for completely random processes [8], [13], [14]. How-
ever, a completely ordered time series with a low entropy
value or a completely disordered signal with a high entropy
value is the least complex [8], [13], [15]. For instance, white
noise is more irregular than pink noise (1/f noise) even
though the latter is more complex since the pink noise has
long-range correlations and its 1/f decay produces a fractal
structure in time [8], [13], [15].

In brief, the concept of complexity builds on three hypothe-
ses: I) the complexity of a physiological time series indicates
its ability to adapt and function in an ever-changing environ-
ment; II) a biological time series requires to operate across
multiple temporal scales and so, its complexity is similarly
multiscaled and hierarchical; and III) a wide class of disease
states, in addition to aging, decrease the adaptive capacity
of the individual, thus reducing the information carried by
output variables. Therefore, the MSE focuses on quantifying
the information expressed by the physiologic dynamics over
multiple temporal scales [8], [13].

In spite of its popularity, MSE is undefined or unreliable
for very short signals and computationally expensive for real-
time applications as a result of using SampEn [9], [16].
To address the first shortcoming, refined composite MSE
(RCMSE) [17], multiscale FuzEn (MFE) [18], and refined
composite MFE (RCMFE) [9], [19], [20] have been devel-
oped. However, RCMSE, MFE, and RCMFE are even slower
for some real-time applications. Furthermore, RCMSE may
still lead to undefined or unreliable results for short
signals [9].

To address the high computational time of MSE, MFE,
RMCSE and RCMFE, multiscale PerEn (MPE) has been pro-
posed [16]. Although MPE is considerably faster than MSE
andMFE, it does not fulfill the key hypotheses of the concept
of complexity as described above [21]. For example, white
noise would be considered more complex than white noise
usingMPE,which is in contradictionwith the results obtained
by MSE and MFE [9]. Furthermore, the behavior of MPE is
different from that of MSE in some cases so, in reality, MPE
does not replaceMSE in all aspects [9], [21]. To overcome the
limitations of MPE, MFE, and MSE, RCMFE, and RCMSE
at the same time, we have recently introduced multiscale
dispersion entropy (DispEn - MDE) and refined composite
MDE (RCMDE), based on our developed DispEn [4], [22],
to quantify the complexity of signals [23].

Compared with the conventional complexity approaches,
1) MDE and RCMDE increase the reliability of the results
and at the same time do not lead to undefined values for
short signals, 2) MDE and RCMDE are markedly faster,
especially for long signals, and 3) they yield larger differ-
ences between physiological conditions, such as subjects with
epilepsy disorders or Alzheimer’s disease (AD) vs. matched
controls [23].

The complexity methods have been applied in different
research fields, including biomedical engineering and neu-
roscience [11], [24]. MSE was successfully used for the
diagnosis of depression using heart rate variability, speech
recordings, and electroencephalograms (EEGs) [25]. Using
MSE, an increased EEG signal complexity was found in
Parkinson’s disease (PD) patients during non-rapid eyemove-
ment sleep at high scale factors [26]. MDE was success-
fully used for sleep stage classification using single-channel
electrooculography signals [27]. Miskovic et al. showed that
slow sleep EEG data were characterized by reduced MDE
values at low scales and increased MDE values at high scale
factors [28]. MDE, MFE, andMSE were used to discriminate
AD patients from age-matched controls using magnetoen-
cephalogram signals [9], [29]. The differences between the
MDE values for the AD vs. healthy subjects were more
significant than their corresponding MSE-based values.

In many real-world applications (e.g., in computing the
correlation function and in spectral analysis), the (local or
global) trends from a signal [30], [31] need to be removed.
In such methods, after detrending the local or global trends of
a time series, the fluctuations are evaluated [30], [31]. When
only the fluctuations of data are relevant or local trends of
a time series are irrelevant [30]–[32], there is no difference
between dispersion patterns {11}, {22}, and {33} or {12}
and {23}. That is, the fluctuations of {11}, {22}, and {33} or
{12} and {23} are equal as we are interested in the relative
rather than absolute values. Thus, we have very recently
introduced fluctuation-based DispEn (FDispEn) [22]. The
potential of FDispEn for characterization of various synthetic
and biomedical data was shown. For example, FDispEn sig-
nificantly discriminated eleven 3-4 years old children from
twelve 11-14 years old subjects using their stride interval
fluctuations [22]. However, this was never extended to multi-
scale for covering a wider range of applications.

Therefore, the main contributions of this study are propos-
ing multiscale FDispEn (MFDE) and refined composite
MFDE (RCMFDE) and evaluating these techniques on
selected synthetic signals and five neurological datasets: focal
and non-focal EEGs, stride interval fluctuations in PD, young
and elderly individuals as well as Huntington’s disease (HD)
and amyotrophic lateral sclerosis (ALS), resting-state EEG
activity in AD, and eye movement data in ataxia vs. PD.

This article is structured as follows. In Section II, the
MFDE and RCMFDE algorithms are detailed. The synthetic
and real datasets used here are briefly described in Section III.
The results and discussion are provided in Section IV. After
describing future works in Section V, we conclude the paper
in Section VI.

II. METHODS
A. MULTISCALE FLUCTUATION-BASED
DISPERSION ENTROPY (MFDE)
MFDE is based on the coarse-graining process [8] and
FDispEn [22]. Assume we have a univariate signal of
length L: u = {u1, u2, . . . , uL}. In the MFDE algorithm,
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the original signal u is first divided into non-overlapping seg-
ments of length τ , named scale factor. Afterwards, the aver-
age of each segment is calculated to derive a coarse-grained
time series as follows [8]:

xj(τ ) =
1
τ

jτ∑
b=(j−1)τ+1

ub, 1 ≤ j ≤
⌊
L
τ

⌋
= N (1)

Of note is that other coarse-graining processes can be used
in this step [24], but, for the sake of clarity, we focus on the
original definition in this paper. Finally, the FDispEn of each
coarse-grained signal xj(τ ) is calculated.
The FDispEn of the univariate signal of length N : x =
{x1, x2, . . . , xN } is defined as follows:

Step 1) First, xj(j = 1, 2, . . . ,N ) are mapped to c classes
with integer indices from 1 to c. To this end, the normal
cumulative distribution function (NCDF) is first utilized to
overcome the problem of assigning the majority of xi to
only few classes, especially when the maximum or minimum
values are noticeable larger or smaller than the mean/median
value of the signal [4], [22], [23]. For more information about
the reasons behind using NCDF, please see [4], [22].

The NCDFmaps x into y = {y1, y2, . . . , yN } from 0 to 1 as
follows:

yj =
1

σ
√
2π

xj∫
−∞

e
−(t−µ)2

2σ2 dt, (2)

where σ and µ are the standard deviation (SD) and mean of
time series x, respectively. Then, we linearly assign each yi
to an integer from 1 to c. To do so, for each member of the
mapped signal, we use zcj = round(c · yj + 0.5), where zcj
denotes the jth member of the classified time series and the
rounding operator involves either increasing or decreasing a
number to the next digit [4], [22], [23].

Step 2) Time series zm,ci are defined with respect to
embedding dimension m − 1 and time delay d according
to zm,ci = {zci , z

c
i+d , . . . , z

c
i+(m−1)d }, i = 1, 2, . . . ,N −

(m − 1)d [4], [22]. Each time series zm,ci is mapped to
a fluctuation-based dispersion pattern πv0v1...vm−1 , where
zci = v0, zci+d = v1, . . . , zci+(m−1)d = vm−1. The number
of possible fluctuation-based dispersion patterns that can be
assigned to each time series zm,ci is equal to (2c−1)(m−1) [22].
Step 3) For each (2c− 1)m−1 potential dispersion patterns

πv0...vm−1 , relative frequency is obtained as follows:

p(πv0...vm−1)

=
#{i
∣∣i ≤ N−(m−1)d, zm,ci has type πv0...vm−1 }

N−(m−1)d
, (3)

where # means cardinality. In fact, p(πv0...vm−1 ) shows the
number of dispersion patterns of πv0...vm−1 that is assigned
to zm,ci , divided by the total number of embedded signals with
embedding dimension m.

Step 4) Finally, based on Shannon’s definition of entropy,
the FDispEn value is calculated as follows:

F DispEn(x,m, c, d)

= −

(2c−1)m−1∑
π=1

p(πv0...vm−1 ) · ln
(
p(πv0...vm−1 )

)
, (4)

It is worth noting that themapping based on the NCDF used
in the calculation of FDispEn [4] for the first temporal scale
is maintained across all scales. In fact, in MFDE, µ and σ of
NCDF are respectively set at the average and SD of the origi-
nal signal and they remain constant for all scale factors. This
approach is similar to keeping r constant (usually 0.15 of the
SD of the original signal) in the MSE-based algorithms [8].
FDispEn deals with the differences between adjacent ele-

ments of dispersion patterns, named fluctuation-based disper-
sion patterns [22]. In this way, we have vectors with length
m − 1, which each of their elements changes from −c + 1
to c − 1. Thus, there are (2c − 1)m−1 potential fluctuation-
based dispersion patterns. For instance, let us have a series
x = {3.6, 4.2, 1.2, 3.1, 4.2, 2.1, 3.3, 4.6, 6.8, 8.4}, shown on
the top left of Fig. 1. We want to calculate the FDispEn value
of x. For simplicity, we set d = 1, m = 2, and c = 3. The
five potential fluctuation-based dispersion patterns vs. nine
potential dispersion patterns are depicted on the right of
Fig. 1. Step 1: xj (j = 1, 2, . . . , 10) are linearly mapped
into three classes with integer indices from 1 to 3, as can be
seen in Fig. 1. Step 2: a window with length 2 (embedding
dimension) moves along the signal and the number of each of
the fluctuation-based dispersion patterns is counted. Step 3:
the relative frequency for both DispEn and FDispEn are
shown on the bottom left of Fig. 1. Step 4: using Equation (4),
the FDispEn value of x is equal to −( 49 ln(

4
9 ) +

3
9 ln(

3
9 ) +

2
9 ln(

2
9 )) = 1.0609.

When all possible fluctuation-based dispersion patterns
have equal probability value, the highest value of FDispEn is
obtained, which has a value of ln((2c− 1)m−1). In contrast,
if there is only one p(πv0...vm−1) different from zero, which
demonstrates a completely regular/predictable time series,
the smallest value of FDispEn is obtained [22].

B. REFINED COMPOSITE MULTISCALE
FLUCTUATION-BASED DISPERSION
ENTROPY (RCMFDE)
For completeness, we also describe RCMFDE. This is based
on the idea of considering τ versions of the coarse-grained
sequence at each temporal scale. Each version of the coarse-
grained sequence corresponds to a different starting point of
the coarse-graining process. Then, for each of these shifted
series, the relative frequency of each fluctuation-based dis-
persion pattern is calculated. Finally, the RCMFDE value is
defined as the Shannon entropy value of the averages of the
rates of appearance of fluctuation-based dispersion patterns
of those shifted sequences [23], [24].
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FIGURE 1. Illustration of the FDispEn vs. DispEn algorithms using linear mapping of
x = {3.6, 4.2, 1.2, 3.1, 4.2, 2.1, 3.3, 4.6, 6.8, 8.4} (top left) with the time delay 1, number of classes 3, and embedding
dimension 2. The nine dispersion patterns {11, 12, 13, 21, 22, 23, 31, 32, 33} and five fluctuation-based dispersion
patterns {11, 12, 13, 21, 31} are shown on the right of Figure. The relative frequency for both DispEn and FDispEn are
illustrated on the bottom left of Figure.

III. EVALUATION SIGNALS
To assess the ability of MFDE, compare it with MFE, MSE,
and MDE, and to characterize various univariate time series,
we use the following synthetic and neurological datasets.

A. SYNTHETIC SIGNALS
1) The complexity of pink noise (1/f noise) is higher than
white noise, whereas the irregularity or uncertainty of the
former signal is lower than the latter [8], [13], [23]. Thus,
white and pink noise are two suitable data for assessing the
multiscale entropy techniques [8], [13], [15], [21], [33]. For
more information about white vs. pink noise, please refer
to [8], [34].
2) Physiological signals are often corrupted by differ-

ent kinds of noise, such as additive white Gaussian noise
(WGN) [35]. A WGN is also considered as a basic statis-
tical model used in information theory to mimic the effect
of random processes that occur in nature [36]. In order to
understand the relationship betweenMFDE,MSE, andMDE,
and the level of noise affecting periodic time series, we gen-
erated an amplitude-modulated periodic signal with a WGN
with diverse power. First, we generated a time series as an
amplitude-modulated sum of two cosine waves with frequen-
cies at 0.5 Hz and 1 Hz. The first 20 s of this series (100 s)
does not have any noise. Then, WGN was added to the time
series [34].

B. NEUROLOGICAL DATASETS
Diagnosing of people with neurological diseases from
healthy subjects, or among different neurological diseases,

by analysis of their recorded time series is a long-standing
challenge in the physiological complexity literature [8], [23],
[26], [37]–[39]. EEGs, walking stride interval time series, and
eye movement are clinical pavements that may be helpful
in diagnosis and tracking of neurological diseases states [6],
[23], [39], [40]. Using these recordings, MFDE, MDE, and
MSE are used to characterize several neurological diseases
such as ALS, AD, PD, cerebellar ataxias, and HD.

1) DATASET OF FOCAL AND NON-FOCAL
ELECTROENCEPHALOGRAMS (EEGS)
Epilepsy is a common neurological condition. EEG signals
are used to identify areas that generate or propagate by
seizures [39], [41]. Generally, focal EEG signals are recorded
from the epileptic part of the brain, whereas non-focal EEGs
correspond to brain regions unaffected by epilepsy [41]. The
ability of MFDE, MDE, and MSE to discriminate focal from
non-focal signals is evaluated by the use of an EEG dataset
(publicly-available at [42]) [39].
The dataset includes 5 patients and, for each patient, there

are 750 focal and 750 non-focal bivariate time series. The
length of each signal was 20 s with sampling frequency
of 512 Hz (10240 samples). Focal and non-focal EEG time
series samples are depicted in Fig. 2. For more information,
please, refer to [39]. All subjects gave written informed con-
sent that their signals from long-term EEG might be used
for research purposes [39]. Before applying the complex-
ity methods, the time series were digitally filtered using a
Hamming window FIR band-pass filter of order 200 and cut-
off frequencies 0.5 Hz and 40 Hz, a band typically used in the
analysis of brain activity.
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FIGURE 2. Example of a focal and non-focal EEG time series.

2) DATASET OF WALKING STRIDE INTERVAL TIME SERIES
FOR YOUNG, ELDERLY, AND PARKINSON’S
DISEASE (PD) SUBJECTS
It was shown that aging leads to less complex recordings
of stride [8], [40]. It was also documented that the gait of
ALS patients is less stable and more temporally disorganized
in comparison with that of healthy individuals. Furthermore,
advanced ALS, HD, and PD were associated with certain
common, but also distinct, features of altered stride dynam-
ics [40], [43]. To this end, we use the walking stride interval
fluctuations to distinguish PD patients from healthy elderly
subjects, young from elderly people, and ALS from HD
patients (next dataset).
To compare MFDE, MDE, MFE, and MSE, publicly-

available stride interval recordings were used [40], [44].
The signals were recorded from five young, healthy men
(23 - 29 years old), five healthy old adults (71 - 77 years
old), and five elderly adults (60 - 77 years old) with PD. All
the individuals walked continuously on level ground around
an obstacle-free path for 15 minutes. The stride interval was
measured by the use of ultra-thin, force sensitive resistors
placed inside the shoe. Fig. 3 shows an example of the stride-
interval time series for a young, an elderly, and a PD subject.
For more information, please refer to [44].

3) DATASET OF WALKING STRIDE INTERVAL TIME SERIES
FOR HUNTINGTON’S DISEASE (HD) VS. AMYOTROPHIC
LATERAL SCLEROSIS (ALS) PATIENTS
For the HD subjects, there is an increased randomness in
stride interval fluctuations as compared with healthy peo-
ple [40], [43]. On the other hand, gait usually becomes
abnormal during the course of the ALS disease. A decreased
(average) walking velocity was reported in ALS [45]. It is yet
unknown if the loss of motoneurons also changes the stride-
to-stride complexity of gait.

FIGURE 3. Example of effects of aging and Parkinson’s disease on
fluctuations of stride-interval dynamics.

FIGURE 4. Example of effects of amyotrophic lateral sclerosis and
Huntington’s disease on fluctuations of stride-interval dynamics.

The recordings, which are available at [46], are from 20HD
and 13 ALS patients. The mean age of the HD and ALS
patients respectively were 47 (range 29-71) and 54.9 years
(range 36-70). Subjects with ALS were able to walk inde-
pendently for five minutes and did not use a wheelchair or
assistive device for mobility. The subjects were instructed
to walk at their normal pace along a 77-m-long hallway for
5 minutes. To measure the gait rhythm and the timing of the
gait cycle, force-sensitive insoles were placed in the patients’
shoes. The sampling frequency of the data was 300 Hz.
Fig. 4 shows an example of the stride-interval time series
for a HD and an ALS subject. Note that all the patients pro-
vided informed, written consent and the study was approved
by the Massachusetts General Hospital (MGH) Institutional
ReviewBoard. Formore information about the dataset, please
refer to [43].
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4) SURFACE ELECTROENCEPHALOGRAM (EEG) DATASET
OF BRAIN ACTIVITY IN ALZHEIMER’S DISEASE (AD)
AD, as a neurodegenerative disease, is the most common
form of dementia [47], [48]. AD changes the interaction
between neurons in the brain during its progression. Conse-
quently, it alters brain activity. Some of these changes may be
recorded by the EEG technique [49]–[52].
The 16-channel EEG dataset includes 11 AD patients

(5 men; 6 women; age: 72.5 ± 8.3 years, all data given as
mean ± SD) and 11 age-matched control healthy subjects
(7 men; 4 women; age: 72.8 ± 6.1 years) [53]. To screen
their cognitive status, a mini-mental state examination
(MMSE) [54] was done. The MMSE scores for AD patients
and healthy subjects are 13.3 ± 5.6 and 30 ± 0, respectively.

FIGURE 5. Example of effects of Alzheimer’s disease on EEG time series.

The subjects were recruited from the Alzheimer’s Patients’
Relatives Association of Valladolid (AFAVA), Spain. The
EEG time series were recorded with Oxford Instruments
Profile Study Room 2.3.411 EEG equipment at the Hospi-
tal Clínico Universitario de Valladolid (Spain). The EEGs
were recorded using the international 10-20 system, in an
eyes closed and resting state. All 16 electrodes were refer-
enced to the linked ear lobes of each individual. The signals
were sampled at 256Hz and digitized with a 12-bit analog-
to-digital converter. Informed consent was obtained for all
22 subjects and the local ethics committee approved the study.
Before band-pass filtering with cut-off frequencies 1 and
40 Hz and a Hamming window with order 200, the signals
were visually examined by an expert physician to select 5 s
epochs (1280 samples) with minimal artifacts for analysis.
On average, 30.0 ± 12.5 epochs (mean±SD) were selected
from each electrode and each subject. An example of an
AD EEG signal vs. an age-matched healthy control’s EEG
is shown in Fig. 5.

5) EYE MOVEMENT DATASET FOR PARKINSONISM
AND ATAXIA PATIENTS
Neurodegenerative diseases affect oculomotor function in
a variety of ways, which impact vision and also provide
clues into the underlying pathology and diagnosis. Cerebellar
ataxias are a heterogeneous group of inherited and acquired
diseases. As a broad group, ataxias cause profound and char-
acteristic abnormalities in smooth pursuit, saccades, and fixa-
tion [55]. Oculomotor abnormalities in PD are clinicallymore
subtle, but quantitative testing demonstrates abnormalities in
both saccades and in smooth pursuit [56], [57].

FIGURE 6. Example of eye movements for Parkinson’s disease vs. ataxia.

Participants with cerebellar ataxia and parkinsonism were
recruited to participate in eye movement testing in MGH
Neurology clinics. Stimuli for the antisaccades task were
presented on an Apple iPad screen, while simultaneously
recording each participant’s face from an Apple iPhone cam-
era sampling at 240fps. The videowas processed using [58] to
extract facial landmarks, in particular the iris center. 57 partic-
ipants with cerebellar ataxia and 20 participants with parkin-
sonism (18 with Parkinson’s disease and 2 with atypical
parkinsonism) were included in this dataset. An example of
eye movements for Parkinson’s disease vs. ataxia is depicted
in Fig. 6.

IV. RESULTS AND DISCUSSION
A. SYNTHETIC SIGNALS
1) WHITE AND PINK NOISE
Fig. 7 and Fig. 8 demonstrate the results obtained for
MFDE, MDE, MSE, MFE, RCMFDE, RCMDE, RCMSE,
and RCMFE using 40 different white and pink noise sig-
nals with lengths 400 and 2,000 sample points, respec-
tively. The Refined Composite methods (RC-) are included
for completeness. All the results are in agreement with

VOLUME 7, 2019 68723



H. Azami et al.: MFDE and Its Applications to Neurological Diseases

FIGURE 7. Mean value and SD of the MFDE, MDE, MSE, MFE, RCMFDE, RCMDE, RCMSE, and RCMFE results for 40 different
realizations of pink and white noise time series of 400 sample lengths. The MSE and RCMSE values are undefined at several
high scale factors.

FIGURE 8. Mean value and SD of the MFDE, MDE, MSE, MFE, RCMFDE, RCMDE, RCMSE, and RCMFE results for 40 different
realizations of pink and white noise time series of 2,000 sample lengths.

the fact that pink noise has more complex structure than
white noise, and white noise is more irregular than pink
noise [8], [13], [15]. Thus, at short scale factors, the entropy
values of white noise are higher than those of pink noise.
At high scale factors the entropy value for the coarse-grained
pink noise time series stays almost constant, whereas for
the coarse-grained white noise data monotonically decreases.
A slightly decreasing trend in MDE for pink noise is
observed, but not so much in MFDE, showing an advantage
of MFDE over MDE. For white noise, when the length of

the signal, obtained by the coarse-graining process, decreases
(i.e., the scale factor increases), the mean value of each
segment converges to a constant value and the SD at that scale
becomes smaller. Therefore, no new structures are revealed
on higher scales. This demonstrates white noise signals con-
tain information only at short time scales [8], [15]. For all
the methods, we set m = 2 and d = 1, according to
Subsection IV.2.
For the noise signals with length 400, theMSE andRCMSE

values at some high scale factors are undefined, showing that
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TABLE 1. CVs of MFDE, MDE, MSE, MFE, RCMFDE, RCMDE, RCMSE, and RCMFE at scale 10 for 40 different realizations of pink and white noises
of 400 and 2,000 sample lengths.

FIGURE 9. Mean value and SD of the MFDE, MDE, MFE, and MSE results for the quasi-periodic time series with increasing additive noise
power using a window moving along the signal (temporal window). The MSE values at a couple of temporal scale factors are undefined.

RCMSEmay not be able to address the problem of undefined
entropy values at high scale factors [9].
To compare the results obtained by the complexity

approaches, we used the coefficient of variation (CV) at
temporal scale factor 10, as a trade-off between short and
long scales. CV is defined as the SD divided by the mean.
We use such a metric as the SDs of signals may increase
or decrease proportionally to the mean. The results, demon-
strated in Table 1, show that the refined composite algorithm
makes all the MSE, MDE, MFE, and MFDE more stable.
MFDE- and MDE-based CV values are considerably smaller
than those based on MSE or MFE. Additionally, RCMFDE
and RCMDE led to the most stable results (lowest CV values)
for white and pink noises, respectively.
Of note, we used the refined composite-based complex-

ity methods for the neurological datasets. These complexity
techniques considerably increased the computational time
(data not shown). However, they did not improve the stability
of results noticeably for the neurologic datasets, in agree-
ment with [24], [59]. Therefore, the refined composite-based
results are not shown for the following datasets.
The MFDE, MFE, MDE, and MSE methods are applied to

the quasi-periodic signals with additive noise using a mov-
ing window of 450 samples (3 s) with 50% overlap. Fig. 9
demonstrates the MFDE-, MDE-, MFE-, and MSE-based
profiles using the quasi-periodic signal with increasing addi-
tive noise power. As expected, the entropy values for all
the four methods increase along the signal. At high scale
factors, the entropy values decrease due to the filtering nature
of the coarse-graining process [24]. To sum up, the results
show that all the methods lead to the similar findings,
although the MFE, MDE, and MFDE values are slightly
more stable than the MSE ones, as demonstrated by the

smoother nature of variations for MFE, MDE, and MFDE,
compared with MSE. Therefore, when a high level of noise is
present, MFE,MDE, andMFDE result in more stable profiles
than MSE.

2) PARAMETERS OF MFDE
There are four parameters for MFDE, namely the embedding
dimension m, the number of classes c, the time delay d,
and the maximum scale factor τmax . To work with reliable
statistics to calculate FDispEn, it is recommended that the
number of potential fluctuation-based dispersion patterns is
smaller than the length of the signal ((2c− 1)m−1 < L) [22].
For MFDE, the coarse-graining process causes the length of
a signal decreases to

⌊
L
τmax

⌋
. Therefore, it is recommended to

have (2c− 1)m−1 <
⌊

L
τmax

⌋
.

c > 1 must be used to avoid the trivial case of having only
one fluctuation-based dispersion pattern. To assess the sensi-
tivity of MFDE to the number of classes c, we used 40 real-
izations of univariate white and pink noises of 2,000 sample
lengths. The mean and SD of results for c = 3 to 10, depicted
in Fig. 10, show that pink noise is more complex than white
noise for MFDE with different c values.
To compare the stability of results, we calculated CV values

at scale factor 10. The results are illustrated in Table 2. c = 7
led to the smallest CV. Nevertheless, since we did not select
the optimum parameter values for the other complexity meth-
ods and there is no noticeable difference between the CVs for
c = 6 and c = 7, the number of classes is equal to 6 for both
the MDE and MFDE techniques [22], [23]. Note that since
the number of potential fluctuation-based dispersion patterns
(ln((2c − 1)m−1)) is higher for a higher c, the MFDE values
are larger.
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FIGURE 10. Mean value and SD of the MFDE results for different numbers of classes (c = 3 to 10) using 40 different
realizations of pink and white noise time series of 2,000 sample lengths.

TABLE 2. CVs for MFDE with different numbers of classes (c = 3 to 10) at scale 10 for 40 different realizations of pink and white noises of 2,000 sample
lengths.

FIGURE 11. Mean value and SD of the MFDE results for different embedding dimension values (m = 2 to 5) using 40 different
realizations of pink and white noise time series of 2,000 sample lengths.

TABLE 3. CVs for MFDE with different embedding dimension values
(m = 2 to 5) at scale factor 10 for 40 different realizations of pink and
white noises of 2,000 sample lengths.

The mean and SD of results for m = 2 to 5, depicted
in Fig. 11, demonstrate that MFDE is consistent with dif-
ferent m values. It is worth noting that because of increased
computational times, we did not consider m > 5, although
the MFDE method is still faster than the other complexity
methods (please see Table 5). To compare the stability of
results, we calculated CV values at scale factor 10. These
are illustrated in Table 3. m = 2 led to the smallest CV.
Therefore, for all the following experiments, we set m = 2

for MFDE, MFE, MDE, and MSE [8], [9], [23]. Note that for
a higher m, since the number of potential fluctuation-based
dispersion patterns (ln((2c − 1)m−1)) is higher, the MFDE
values are larger.
If the sampling frequency is noticeably larger than the

highest frequency component of a signal, the first minimum
or zero crossing of the autocorrelation function or mutual
information can be used for the selection of an appropriate
time delay [24], [60]. We show the results for MFDE with
d = 1 to 8 in Fig. 12. The results do not considerably change
with different time delay values. The CV values, illustrated
in Table 4 at scale factor 10, show that there is no major
difference between the CV values. Based on the existing
complexity-based approaches [8]–[10], [16], the time delay
was set to 1 for all the methods in this study.
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FIGURE 12. Mean value and SD of the MFDE results for different time delay values (d = 1 to 8) using 40 different realizations
of pink and white noise time series of 2,000 sample lengths.

TABLE 4. CVs for MFDE with different time delay values (d = 1 to 8) at scale factor 10 for 40 different realizations of pink and white noises
of 2,000 sample lengths.

TABLE 5. Computational time of MFDE, MDE, MSE, and MFE for white noise with different lengths.

It is worth noting that white noise is uncorrelated and its
samples are independent, so, naturally, there is no difference
between d = 1 and d = 8. A similar situation happens for
pink noise: due to the long term correlations it has, it should
be relatively independent from the choice of d. However,
the time delay d may play a bigger role in band-limited sig-
nals. We will investigate the effect of d on all the complexity
methods in the future.
The threshold r for MSE and MFE, which is used as a

benchmark, was chosen as 0.15 of the SD of a signal [8].
Finally, for consistency, the maximum scale factor τmax was
set based on cm <

⌊
L
τmax

⌋
for all the complexity techniques

used herein [23].

3) COMPUTATIONAL TIME

To evaluate the computational time of MFDE (with m = 2
and 3 for completeness), MDE (m = 2 and 3), MFE (m = 2
and 3), and MSE (m = 2 and 3), we use white noise signals
with different lengths, changing from 100 to 100,000 sample
points. The results are shown in Table 5. The simulationswere
carried out using a PC with Intel (R) Xeon (R) CPU, E5420,
2.5 GHz and 8-GB RAM by MATLAB R2015a. For 100 and
300 sample points, MSE (m = 2 and 3) results in undefined
values at least at several scale factors. This does not happen
for MDE and MFDE, demonstrating the advantage of these
methods over MSE for short time series. There is no major
difference between the computational time for the MSE with
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FIGURE 13. Mean value and SD of the results obtained by the MFDE, MDE, MSE, and MFE computed from the focal and
non-focal EEGs. The scale factors with p-values between 0.01 and 0.05, and smaller than 0.01 are respectively shown with +

and *. The MSE values are undefined at high scale factors.

m = 2 and 3. The results show that for the different numbers
of sample points, MFDE and MDE are considerably faster
than MSE and MFE for long signals. This computational
advantage of MFDE and MDE increases markedly with the
data length. It is consistent with the fact that the compu-
tational cost of SampEn, FuzEn, FDispEn, and DispEn are
O(N 2), O(N 2), O(N ), and O(N ), respectively [4], [21], [22].
Note that the MSE/MFE and MDE codes used in this paper
are publicly-available at http://dx.doi.org/10.7488/ds/147 and
http://dx.doi.org/10.7488/ds/1982, respectively.

B. NEUROLOGICAL DATASETS
In the physiological complexity literature, it is hypothesized
that healthy conditions correspond to more complex states
due to their ability to adapt to adverse conditions, exhibiting
long range correlations, and rich variability at multiple scales,
while aged and diseased individuals demonstrate complexity
loss. That is, they lose the capability to adapt to such adverse
conditions [8]. Therefore, we employ MFDE, compared with
MDE and MSE, to characterize different pathological states
using several neurological datasets. Note that we use these
standard datasets only to evaluate the complexity methods,
not to compete with other signal processing approaches.

1) DATASET OF FOCAL AND NON-FOCAL EEGS
The ability of the MFDE, MDE, MFE, and MSE techniques
to distinguish the focal from non-focal signals is evaluated
here. The results, depicted in Fig. 13, show that the non-
focal signals are more complex than the focal ones. This fact
is in agreement with previous studies [39], [61]. Note that
because the entropy-based methods are used for stationary
signals [2], [22], we separated each signal into segments of
length 2 s (1024 sample points) and applied the algorithms to
each of them. The results demonstrate that all the techniques
lead to the similar findings, albeit MDE and MFDE are
significantly faster than MSE and MFDE ones, as illustrated
in Section III. It should be mentioned that the average entropy
values over 2 channels for these bivariate EEG signals are
reported for these univariate complexity techniques.
The non-parametric Mann-Whitney U-test was employed

to evaluate the differences between results for focal vs. non-
focal signals at each scale factor. In this study, the scale

factors with p-values between 0.01 and 0.05, and smaller
than 0.01 are respectively shown with + and *. The p-values
demonstrate that MFDE is the only complexity method with
significant differences at all scale factors, showing its advan-
tage over MFE, MSE, and MDE.

2) DATASET OF WALKING STRIDE INTERVAL TIME SERIES
FOR YOUNG, ELDERLY, AND PD SUBJECTS
As shown in Fig. 14, for most scale factors the average
MFDE, MDE, MSE, and MFE values are smaller in elderly
subjects compared with young subjects. This is consistent
with those obtained by transfer entropy [62] and the fact
that recordings from healthy young subjects correspond to
more complex states due to their ability to adapt to adverse
conditions, whereas older individuals’ signals demonstrate
complexity loss [8], [13], [63]. The results also show that
the PD patients’ stride interval recordings are less complex
than those for the elderly subjects, which is in agreement
with the fact that some diseases lead to lower complexity
values [8], [10]. Since the length of each stride interval signal
was between 200 to 700 samples, we did not separate the
signals into smaller epochs.
The non-parametric Mann-Whitney U-test was employed

to evaluate the differences between results for young
vs. elderly individuals and elderly vs. PD patients at each
scale factor. The p-values demonstrate that the most con-
sistent algorithm for the discrimination of PD from elderly
subjects and elderly from young individuals is MDE.

3) DATASET OF WALKING STRIDE INTERVAL TIME
SERIES FOR HD VS. ALS PATIENTS
Due to their long length, the signals were separated into
epochs of 3 s. The MFDE-, MFE-, and MSE-based results,
depicted in Fig. 15, show that the stride interval fluctuations
for HD are more complex than those for the ALS patients
walking without any wheelchair or assistive device for mobil-
ity. This is in agreement with [40], [43]. The p-values show
that MFE, MFDE, and MSE, unlike MDE, significantly dis-
criminated the ALS from HD patients. Note that the only
method is able to significantly discriminate the ALS fromHD
patients at all scale factors is MFDE.
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FIGURE 14. Mean value and SD of the results obtained by the MFDE, MDE, MSE, and MFE techniques computed from the
young, elderly, and old Parkinson’s subjects’ stride interval recordings. The scale factors with p-values between 0.01 and 0.05,
and smaller than 0.01 are respectively shown with + and *. The MSE values are undefined at high scale factors.

FIGURE 15. Mean value and SD of results obtained by the MFDE, MDE, MSE, and MFE techniques computed from the HD and
ALS subjects’ stride interval recordings. The scale factors with p-values between 0.01 and 0.05, and smaller than 0.01 are
respectively shown with + and *.

FIGURE 16. Mean value and SD of results of the MFDE, MDE, MSE, and MFE for 11 AD subjects vs. 11 age-matched controls.
The scale factors with p-values between 0.01 and 0.05, and smaller than 0.01 are respectively shown with + and *. The MSE
values are undefined at high scale factors.

4) SURFACE EEG DATASET IN AD
As the length of each EEG is 5 s, we do not separate the sig-
nals into smaller epochs. MFDE, MDE, MSE, andMFE were
used to characterize the time series recorded from 11 AD
patients vs. 11 age-matched healthy controls. The results are

depicted in Fig. 16. The average of MFDE, MDE, MFE,
and MSE values for AD patients was smaller than those for
healthy controls at short-time scale factors, while the AD
subjects’ EEGs had larger entropy values at long-time scale
factors. Herein, short-time (or low) scale factors mean the
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FIGURE 17. Mean value and SD of results obtained by the MFDE, MDE, MSE, and MFE techniques computed from the ataxia’
and parkinsonism subjects’ eye movement recordings. The scale factors with p-values between 0.01 and 0.05, and smaller than
0.01 are respectively shown with + and *.

temporal scales that are smaller than or equal to the scale
of crossing point of the curves for AD patients vs. controls.
Long-time (or high) scale factors denote the temporal scales
that are larger than the scale of crossing point of the curves
for AD patients vs. controls. For example, short-time and
long-time scale factors are 1-12 and 13-30, respectively, for
MFE in Fig. 16. All the results are consistent with [23], [37],
[38], [64], [65]. Nevertheless, for MSE, unlike MDE and
MFDE, values at high scale factors are undefined, showing an
advantage of MFDE andMDE overMSE. Another advantage
ofMFDE andMDE overMSE andMFE is that these methods
led to larger differences at a number of temporal scale factors.
Of note is that the average of the entropy values for all the
channels is reported for the univariate multiscale entropy
methods herein.

5) EYE MOVEMENT DATASET FOR PARKINSONISM
VS. ATAXIA PATIENTS
To deal with the stationarity of signals, we separated each sig-
nal into epochs with length 1 s. The mean and SD of MFDE,
MDE, MFE, and MSE values for parkinsonism vs. ataxia
patients are depicted in Fig. 17. The results show that the
mean values for all the complexity methods computed from
the parkinsonism subjects are higher than those recorded
from the ataxia patients. This is consistent with the fact that
oculomotor impairment is dramatic and a core clinical feature
of cerebellar ataxia, whereas eye movement abnormalities in
Parkinson’s disease are relatively mild.
The Mann-Whitney U-test p-values show that only MFDE

was significantly different in parkinsonism and ataxia
patients across the range of scale factors. This shows that
where the mean value of a time series noticeably changes
along the signal, MFDE may be better than MFE, MSE,
and MDE in detecting different states of physiological
data.
On the whole, the results support that, in general, MDE and

MFDE perform better than MSE and MFE based on Mann-
Whitney U-test p-values and CV values. MSE values were
undefined for high scale factors. We also showed that MSE
and MFE are considerably slower than MDE and MFDE
in Table 5. Thus, we recommend MFDE and MDE over

MSE and MFE for the analysis of physiological recordings.
Between MDE and MFDE, based on the p-values, MDE
was better than MFDE only for the dataset of walking stride
interval signals for young, elderly, and PD subjects (Fig. 14).
However, MFDE outperformedMDE for the characterization
of three neurological datasets: 1) focal vs. non-focal EEGs
(Fig. 13); 2) stride interval fluctuations for Huntington’s
disease vs. amyotrophic lateral sclerosis (Fig. 15); and 3)
eye movement data for parkinsonism vs. ataxia (Fig. 17).
In addition, MFDE results for pink noise were more sta-
ble than those for MDE (Fig. 8). Furthermore, MFDE was
slightly faster thanMDE (Table 5). In sum, the results indicate
that MFDE was the fastest and most consistent technique
to distinguish various dynamics of the synthetic and real
data, especially when dealing with the presence of baseline
wanders, or trends, in signals.

V. FUTURE WORK
In spite of the promising findings based on MFDE and MDE,
these novel signal processing approaches should be employed
on various physiological datasets with a higher number of
subjects in order to evaluate their ability for detection of
dynamical variability of different kinds of time series.
The physiological nature of the findings for AD vs. con-

trols needs to be further investigated to understand why AD
patients’ EEGs are less complex at low scale factors while
the controls’ recording are less complex at high temporal
scales. With regard to eye movement, the higher complexity
signal in PD compared with ataxia can be coarsely explained
by the fact that eye movements are more impaired in ataxia.
However, in future work we hope to better understand more
precisely how and why abnormalities seen in ataxia result in
a lower complexity signal.
In this article, the most commonly used coarse-graining

process was used [8], [9], [16], [23]. The alternative coarse-
graining processes based on empirical mode decomposition
and finite impulse response (FIR) filters [24] can be employed
instead of the classical implementation of coarse-graining
process used herein. The multivariate extension of MFDE
dealing with both the time and spatial domain at the same
time can also be developed.
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VI. CONCLUSIONS
In this paper, we introduced MFDE to quantify the complex-
ity of time series based on their fluctuation-based dispersion
patterns. The results on synthetic data showed that MFDE,
MDE, MFE, and MSE lead to similar findings although MSE
values were undefined at high scales. This fact, together with
their lower coefficient of variations andmuch faster computa-
tional time,makes us recommendMFDE andMDEoverMSE
and MFE for the analysis of biomedical signals. Based on the
Mann-Whitney U-test p-values, MDE outperformed MFDE
only for the dataset of walking stride interval signals for
young, elderly, and PD subjects. Both the MDE and MFDE
methods significantly discriminated the AD patients from
healthy controls. However, MFDE was better than MDE for
the characterization of three neurological datasets: 1) focal
vs. non-focal EEGs; 2) stride interval fluctuations for Hunt-
ington’s disease vs. amyotrophic lateral sclerosis; and 3) eye
movement data for Parkinson’s disease vs. ataxia, potentially
because MFDE is robust to changes in the mean value of
a time series, as seen in the eye movement dataset. Addi-
tionally, MFDE, compared with MDE, led to more stable
entropy values over the scale factors for pink noise. These
observations suggest that MFDEmay be better thanMSE and
MDE in detecting different states of synthetic and physiolog-
ical recordings. We expect MFDE, in addition to MDE, to be
widely used for the characterization of different physiologic
data in various neurological diseases.
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