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ABSTRACT The bilinear iterative rational Krylov algorithm (BIRKA) is a very popular, standard, and
mathematically sound algorithm for reducing bilinear dynamical systems that arise commonly in science
and engineering. This reduction process is termed as a model order reduction (MOR) and leads to a faster
simulation of such systems. An efficient variant of the BIRKA, Truncated BIRKA (TBIRKA) has also
been recently proposed. Like for any MOR algorithm, these two algorithms also require solving multiple
linear systems as part of the model reduction process. For reducing the MOR time, these linear systems are
often solved by an iterative solver, which introduces approximation errors (implying inexact solves). Hence,
stability analysis of the MOR algorithms with respect to inexact linear solves is important. In our past work,
we have shown that under mild conditions, the BIRKA is stable. Here, we look at the stability of the TBIRKA
in the same context. Besides deriving the conditions for a stable TBIRKA, our other novel contribution is the
more intuitive methodology for achieving this. The stability analysis techniques that we propose here can
be extended to many other methods for doing the MOR of bilinear dynamical systems, e.g., using balanced
truncation or the ADI methods.

INDEX TERMS Backward stability, bilinear dynamical systems, interpolatory projection, model order
reduction, perturbation analysis, stability analysis, volterra series interpolation.

I. INTRODUCTION
A dynamical system, usually represented by a set of differ-
ential equations, can be linear or non-linear [1]–[3]. Linear
dynamical systems have been studied more than the non-
linear ones because of the obvious ease in working with them.
Bilinear dynamical systems form a good bridge between the
linear and the non-linear cases, and are usually approximated
by a varying degree of bilinearity [4]–[6]. In this manuscript,
we focus on bilinear dynamical systems.

Dynamical systems coming from different real world
applications are very large in size. Thus, simulation and
computation with such systems is prohibitively expensive in
time. Model Order Reduction (MOR) techniques provide a
smaller system that besides being cheaper to work with, also
replicates the input-output behavior of the original system to a
great extent [7]–[16]. Since, bilinear dynamical systems have
been recently studied, the techniques for reducing them are
also recent.

Out of the many methods available for performing bilinear
MOR [14], [15], [17]–[22], we focus on a commonly used
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interpolatory projection method. BIRKA (Bilinear Iterative
Rational Krylov Algorithm) [15] is a very popular algorithm
based upon this technique for reducing first-order bilinear
dynamical systems.1 BIRKA’s biggest drawback is that it
does not scale well in time (with respect to increase in the size
of the input dynamical system). A cheaper variant of BIRKA,
called TBIRKA (Truncated Bilinear Iterative Rational Krylov
Algorithm) [21], [22] has also been proposed.

Like in any otherMOR algorithm, in BIRKA and TBIRKA
also, people often use direct methods like LU-factorization,
etc., to solve the arising linear systems, which have a high
time complexity (O(n3), where n is the original system size)
[23], [24]. A common solution to this scaling problem is to
use iterativemethods like theKrylov subspacemethods, etc.,2

which have a reduced time complexity (i.e., O(n× nnz),
where nnz is the number of nonzeros in the system matrix)
[23], [25]. Although iterative methods are cheap, they are
inexact too. Hence, studying stability of the underlying

1First-order implies that the highest derivative of the state variable in
the dynamical system is one. Second-order and higher-orders are similarly
defined.

2Here, a new iterative method for solving ‘‘Super Large Scale Systems’’,
with n = 1, 000, 000, can also be used [35].
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MOR algorithm (here BIRKA and TBIRKA) with respect
to such approximate (inexact) linear solves becomes
important [26], [27].

One of the first works that performed such a stability analy-
sis focused on popular MOR algorithms for first-order linear
dynamical systems [28]. Here, the authors briefly mention
that their analysis would be easily carried from the first-
order to the second-order case. A detailed stability analysis
focusing on reducing second-order linear dynamical systems
has been done in [29]. A different kind of stability analysis
for MOR of second-order linear dynamical systems has been
done in [30]. In this, the authors first show that the SOAR
algorithm (second order Arnoldi) is unstable with respect to
the machine precision errors (and not inexact linear solves).
Then, they propose a Two-level orthogonal Arnoldi (TOAR)
algorithm that cures this instability of SOAR. An extended
stability analysis for BIRKA (as above, a popular MOR algo-
rithm for first-order bilinear dynamical systems) has been
recently done in [31]. For rest of this manuscript, whenever
stability analysis is referred, we mean it with respect to
inexact linear solves.

We follow the stability analysis framework of BIRKA
from [31] and propose equivalent theorems for TBIRKA.
The approach here is slightly different, which forms our
most novel contribution. Norm of the dynamical system plays
an important role in stability analysis (the kind of norm is
discussed later). In BIRKA stability analysis, a single expres-
sion for bilinear dynamical system norm is used (involving
a Volterra series). In TBIRKA stability analysis, a similar
single expression (involving a truncated Volterra series) leads
to complications. Alternatively, in TBIRKA, because of trun-
cation, the bilinear dynamical system can be represented by
a finite set of functions. This was not possible in BIRKA
where infinite such functions were needed. Thus, in TBIRKA
stability analysis, we use norm of all such functions leading to
easier derivations. Our stability analysis, as done for BIRKA
earlier and for TBIRKA here, can be easily extended to
other MOR algorithms for bilinear dynamical systems, e.g.,
projection based [14], implicit Volterra series [17], balanced
truncation [18], gramian based [20], etc.

The rest of the paper is divided into three more parts.
In Section II, we first give a brief overview of MOR
for bilinear dynamical systems using a projection method.
Next, we review the stability analysis of BIRKA from [31].
Stability analysis of TBIRKA is discussed in Section III.
In Section IV, we give conclusions and discuss the future
work. For the rest of this paper, we use the terms and notations
as listed below.

a. The H2−norm is a functional norm defined as [21],
[22], [28]

‖Hk‖2H2
=

(
1
2π

)k ∫ ∞
−∞

. . .

∫
∞

−∞

× ‖Hk (iω1, . . . , iωk)‖2F dω1 . . . dωk , (1)

where i denotes
√
−1. Here, we assume that all

H2−norms computed further exist. In other words,
the improper integrals defined by the H2−norm give
finite value. This is a reasonable assumption because
this happens often in practice (see [28] and [31],
where stability analysis of IRKA and BIRKA is done,
respectively).

b. The H∞−norm is also a functional norm, defined as
[21], [22], [28]

‖Hk‖H∞ = max
ω1,..., ωk∈R

‖Hk (iω1, . . . , iωk)‖2 .

c. TheKronecker product between twomatricesP (of size
m× n) and Q (of size s× t) is defined as

P⊗ Q =

p11Q · · · p1nQ
...

. . .
...

pm1Q · · · pmnQ

 ,
where pij ∈ P and order of P⊗ Q is ms× nt .

d. vec operator on a matrix P is defined as

vec(P) =
(
p11, . . . , pm1, p12, . . . , pm2,

. . . , p1n, . . . , pmn
)T
.

e. Also, In denotes an identity matrix of size n× n and R
denotes the set of real numbers.

II. BACKGROUND
A first-order bilinear dynamical system is usually represented
as [14], [15]

ζ :

{
ẋ(t) = Ax(t)+ Nx(t)u(t)+ bu(t),
y(t) = cx(t),

(2)

where A,N ∈ Rn×n, b ∈ Rn×1, and c ∈ R1×n. Also,
u(t) : R→ R, y(t) : R→ R, and x(t) : R→ Rn, represent
input, output, and state of the bilinear dynamical system,
respectively. This is a Single Input Single Output (SISO) sys-
tem, which we have chosen for ease of our analysis. We plan
to look at Multiple Input Multiple Output (MIMO) systems
as part of our future work.

A bilinear dynamical system can also be represented by a
infinite set of transfer functions [21]. That is,

ζ = Lim
k→∞

ζ k , (3)

where ζ k = {H1 (s1) , H2 (s1, s2) , . . . , Hk (s1, s2, . . . ,
sk )}. Here, Hk (s1, s2, . . . , sk) is called the k th order
transfer function of the bilinear dynamical system and is
defined as

Hk (s1, . . . , sk) = c (sk I − A)−1 N (sk−1I − A)−1

. . .N (s1I − A)−1 b. (4)

After reduction, the bilinear dynamical system (2) can be
represented as

ζr :

{
ẋr (t) = Arxr (t)+ Nrxr (t)u(t)+ bru(t),
yr (t) = crxr (t),

(5)

72298 VOLUME 7, 2019



R. Choudhary, K. Ahuja: Inexact Linear Solves in Model Reduction of Bilinear Dynamical Systems

where Ar , Nr ∈ Rr×r , br ∈ Rr×1, and cr ∈ R1×r with
r � n. The main goal of model reduction is to approximate
ζ by ζr in an appropriate norm, such that for all admissible
inputs, yr (t) is nearly same to y(t).

As mentioned earlier, we use interpolatory projection for
performing model reduction. The two common and standard
algorithms here, BIRKA and TBIRKA, use a Petrov-Galerkin
projection. Let Vr and Wr be the two r-dimensional sub-
spaces, such that Vr = Range(Vr ) and Wr = Range(Wr ),
where Vr ∈ Rn×r and Wr ∈ Rn×r are matrices.
Also, let

(
W T
r Vr

)
be invertible. 3 Applying the projection

x(t) = Vrxr (t), and enforcing the Petrov-Galerkin conditions
[15], [22] on the original bilinear dynamical system (2),
we get the reduced system as

W T
r (Vr ẋr (t)− AVrxr (t)− NVrxr (t)u(t)− bu(t)) = 0,

y(t) = cVrxr (t).

Comparing the above two equations with their respective
equations in (5), we get a relation between the original system
matrices and the reduced system matrices, i.e.,

Ar =
(
W T
r Vr

)−1
W T
r AVr , Nr =

(
W T
r Vr

)−1
W T
r NVr ,

br =
(
W T
r Vr

)−1
W T
r b, and cr = cVr .

One way of obtaining subspaces Vr and Wr is
to use Volterra series interpolation. Further, to decide
where to interpolate so as to obtain an optimal reduced
model, an H2−optimization problem is commonly solved
(Theorem 4.7 from [21]).
Theorem 1 [21]: Let ζ be a bilinear system of order n. Let

ζr be an H2−optimal approximation of order r. Then, ζr sat-
isfies the following multi-point Volterra series interpolation
conditions:

∞∑
k=1

r∑
l1=1

. . .

r∑
lk=1

φl1, l2, ..., lk

×Hk
(
−λl1 , −λl2 , . . . , −λlk

)
=

∞∑
k=1

r∑
l1=1

. . .

r∑
lk=1

φl1, l2, ..., lk

×Hrk
(
−λl1 , −λl2 , . . . , −λlk

)
,

and
∞∑
k=1

r∑
l1=1

. . .

r∑
lk=1

φl1, l2, ..., lk

×

 k∑
j=1

∂

∂sj
Hk
(
−λl1 , −λl2 , . . . , −λlk

)
=

∞∑
k=1

r∑
l1=1

. . .

r∑
lk=1

φl1, l2, ..., lk

3Obtaining such an invertible matrix is not difficult [15], [22].

×

 k∑
j=1

∂

∂sj
Hrk

(
−λl1 , −λl2 , . . . , −λlk

) ,
where φl1, l2, ..., lk and λl1 , λl2 , . . . , λlk are residues
and poles of the transfer function Hrk associated with ζr ,
respectively.

BIRKA is designed in such a way that at convergence,
the conditions of Theorem 1 are satisfied leading to a locally
H2−optimal reduced model. Algorithm 1 lists BIRKA.

Algorithm 1 BIRKA [15], [21], [22]
1: Given an input bilinear dynamical system A, N , b, c.
2: Select an initial guess for the reduced system as
Ǎ, Ň , b̌, č. Also select stopping tolerance btol.

3: While
(
relative change in eigenvalues of Ǎ ≥ btol

)
a. R3R−1 = Ǎ, ˇ̌b = b̌TR−T , ˇ̌c = čR,
ˇ̌N = RT ŇR−T .

b. vec (V) =(
−3⊗ In − Ir ⊗ A−

ˇ̌NT
⊗ N

)−1 (
ˇ̌bT ⊗ b

)
.

c. vec (W) =(
−3⊗ In − Ir ⊗ AT −

ˇ̌N ⊗ NT
)−1 (

ˇ̌cT ⊗ cT
)
.

d. Vr = orth (V) , Wr = orth (W).

e. Ǎ = (WT
r Vr )−1WT

r AVr ,

Ň =
(
WT

r Vr
)−1WT

r NVr ,

b̌ =
(
WT

r Vr
)−1WT

r b, č = cVr .

4: Ar = Ǎ, Nr = Ň , br = b̌, cr = č.

TBIRKA is similar to BIRKA in most aspects except that
it performs a truncated Volterra series interpolation. Here,
instead of ζ in (2)-(3), they work with ζM , which is defined as

ζM =
{
H1 (s1) , H2 (s1, s2) , H3 (s1, s2, s3) ,

. . .HM (s1, . . . , sM )
}
, (6)

with Hk (s1, . . . , sk) for k ∈ {1, . . . , M} is given
by (4). Equivalent of Theorem 1 above is as follows
(Theorem 4.8 from [21]):
Theorem 2 [21]: Let ζ = (A,N , b, c) be an order n

bilinear system and ζM be the polynomial system determined
by ζ . Let ζr = (Ar ,Nr , br , cr ) be a bilinear system of order
r, and define ζMr as the polynomial system determined by
ζr . Suppose that ζMr is an H2−optimal approximation to ζM .
Then ζMr satisfies

M∑
k=1

r∑
l1=1

. . .

r∑
lk=1

φl1, l2, ..., lk

×Hk
(
−λl1 , −λl2 , . . . , −λlk

)
=

M∑
k=1

r∑
l1=1

. . .

r∑
lk=1

φl1, l2, ..., lk
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×Hrk
(
−λl1 , −λl2 , . . . , −λlk

)
,

and

M∑
k=1

r∑
l1=1

. . .

r∑
lk=1

φl1, l2, ..., lk

×

 k∑
j=1

∂

∂sj
Hk
(
−λl1 , −λl2 , . . . , −λlk

)
=

M∑
k=1

r∑
l1=1

. . .

r∑
lk=1

φl1, l2, ..., lk

×

 k∑
j=1

∂

∂sj
Hrk

(
−λl1 , −λl2 , . . . , −λlk

) ,
where φl1, l2, ..., lk and λl1 , λl2 , . . . , λlk are residues and
poles of the transfer function Hrk associated with ζMr ,
respectively.

Algorithm 2 lists TBIRKA.

Both BIRKA and TBIRKA in turn require solving
large sparse linear systems of equations. If we compare
Algorithm 1 and 2, we realize that the number of linear solves
at each step of the While loop in the former is 2 systems of
size nr×nr and in the latter is 2M systems of size nr×nr . This
makes it seem that TBIRKA is more expensive than BIRKA.
However, TBIRKA is implemented in such a way that the
Kronecker products are avoided making it more efficient than
BIRKA. For further details on this see chapter 4 in [21]
and Section 5.3 in [22]. These implementation details do not
affect our stability analysis, and hence, we use Algorithm 2
in the current form as our base.

As mentioned earlier, using iterative methods for solving
such linear systems introduces approximation errors.We have
done a detailed stability analysis of BIRKA with respect
to the inexact linear solves in [31], and we briefly revisit
this next. Generally, accuracy is the metric that tells about
the correctness in the output of an inexact algorithm. Due
to unavailability of the exact output, it is not possible to
determine accuracy [26], [31]. A more easier metric is sta-
bility. Backward stability is one such notation, which says
‘‘A backward stable algorithm gives exactly the right output
to nearly the right input’’ [26]. In our context, theoretically
we obtain two reduced systems. One by applying an inexact
MOR algorithm (with iterative linear solves) on the original
full model, and other by applying the same MOR algorithm
but exactly (with direct linear solves) on a perturbed full
model (the perturbation is introduced in the original full
model as part of stability analysis, and is an unknown quan-
tity). If these two reduced systems are equal (first condition),
with the difference between the original full model and the
perturbed full model equal to the order of perturbation (sec-
ond condition), then the MOR algorithm under consideration

Algorithm 2 TBIRKA [21], [22]
1: Given an input bilinear dynamical system A, N , b, c.
2: Select an initial guess for the reduced system as
Ǎ, Ň , b̌, č. Also select the truncation index M and
stopping tolerance tbtol.

3: While
(
relative change in eigenvalues of Ǎ ≥ tbtol

)
a. R3R−1 = Ǎ, ˇ̌b = b̌TR−T , ˇ̌c = čR,
ˇ̌N = RT ŇR−T .

b. Compute

vec (V1) = (−3⊗ In − Ir ⊗ A)−1
(
ˇ̌bT ⊗ b

)
,

vec (W1) =
(
−3⊗ In − Ir ⊗ AT

)−1 ( ˇ̌cT ⊗ cT) .
c. For j = 2, . . . ,M , solve

vec
(
Vj
)
= (−3⊗ In − Ir ⊗ A)−1(
ˇ̌NT
⊗ N

)
vec

(
Vj−1

)
,

vec
(
Wj
)
=
(
−3⊗ In − Ir ⊗ AT

)−1(
ˇ̌N ⊗ NT

)
vec

(
Wj−1

)
.

d. V =
M∑
j=1

Vj, W =
M∑
j=1

Wj.

e. Vr = orth (V) , Wr = orth (W).

f. Ǎ = (WT
r Vr )−1WT

r AVr ,

Ň =
(
WT

r Vr
)−1WT

r NVr ,

b̌ =
(
WT

r Vr
)−1WT

r b, č = cVr .

4: Ar = Ǎ, Nr = Ň , br = b̌, cr = č.

is called backward stable. The two theorems summarizing
this stability analysis for BIRKA are listed below.
Theorem 3 [31] : If the inexact linear solves in BIRKA

(lines 3b. and 3c. of Algorithm 1) are solved using
a Petrov-Galerkin framework, then BIRKA satisfies the
first condition of backward stability with respect to these
solves.

Theorem 4 [31] : Let Q̂ =
(
−

[
A 0
0 A

]
⊗

[
In 0
0 In

]
−[

In 0
0 In

]
⊗

[
A 0
0 A

]
−

[
N 0
0 N

]
⊗

[
N 0
0 N

])
, where In is an

identity matrix of size n × n and ⊗ denotes the standard
Kronecker product. Also, let ̂̂F = (

I2n ⊗ F̂ + F̂ ⊗ I2n
)
with

F̂ =
[
0 0
0 F

]
, where F is the perturbation introduced in A

matrix of the input dynamical system and I2n is an identity
matrix of size 2n × 2n. If Q̂ is invertible,

∥∥Q̂−1∥∥2 < 1,

and
∥∥∥̂̂F∥∥∥

2
< 1, then BIRKA satisfies the second condi-

tion of backward stability with respect to the inexact linear
solves.
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III. BACKWARD STABILITY OF TBIRKA
Here, the first condition is satisfied in a way similar to that of
BIRKA except that some extra orthogonality conditions are
imposed on the linear solver (discussed below).
Theorem 5: Let the inexact linear solves in TBIRKA

(lines 3b. and 3c. of Algorithm 2) are solved satisfying
VT
1

VT
2

...

VT
M


[
Rc1 Rc2 · · · RcM

]
= 0 and


WT

1

WT
2

...

WT
M


[
Rb1 Rb2 · · · RbM

]
= 0, (7)

where V1 and Vj are given by the first equations of lines
3b. and 3c. of Algorithm 2, respectively; Rc1 and Rcj are
the residuals in the second equations of lines 3b. and 3c. of
Algorithm 2, respectively;W1 andWj are given by the second
equations of lines 3b. and 3c. of Algorithm 2, respectively; Rb1
and Rbj are the residuals in the first equations of lines 3b. and
3c. of Algorithm 2, respectively; and j = 2, . . . , M. Then,
TBIRKA satisfies the first condition of backward stability with
respect to these solves.

Proof: Follows the same pattern as the proof for
Theorem 3 in [31]. �
From the above theorem, we infer that the underlying

iterative solver should firstly be based upon a Petrov-Galerkin
framework to achieve

VT
j Rcj = 0 and WT

j Rbj = 0, (8)

for j = 1, . . . , M . Since BiConjugate Gradient (i.e., BiCG)
is one such algorithm [23], we propose its use in TBIRKA.
This is exactly same as for BIRKA. Secondly, this particular
solver should also satisfy the remaining orthogonalities of (7).

These orthogonalities have a form similar to the
orthogonalities required while reducing second order linear
dynamical systems ((23) and (24) in [29]), and can be eas-
ily satisfied by using a recycling variant of the underlying
iterative solver. In [29], the ideal iterative solver to be used
is Conjugate Gradient (i.e., CG) [23] (due to the use of
Galerkin projection). Hence, to satisfy the similar orthogonal-
ities there, without any extra cost, the authors use Recycling
Conjugate Gradient (i.e., RCG) [32]. Since here BiCG is the
ideal iterative solver (as discussed above), we propose the use
of Recycling BiConjugate Gradient (i.e., RBiCG) [33], [34],
which would ensure that the remaining orthogonalities of (7)
(besides (8)) are satisfied without any extra cost.

To satisfy the second condition of backward stability of
TBIRKA, we need to show that∥∥∥ζM − ζ̃M∥∥∥

H2
= O (‖F‖2) , (9)

where ζM is given by (6) or

ζM =
{
H1 (s1) , H2 (s1, s2) , H3 (s1, s2, s3) ,

. . . ,HM (s1, . . . , sM )
}

(10a)

with Hk (s1, . . . , sk) for k ∈ {1, . . . , M} given by (4) or

Hk (s1, . . . , sk) = c (sk I − A)−1 N (sk−1I − A)−1

. . .N (s1I − A)−1 b, (10b)

ζ̃M =
{
H̃1 (s1) , H̃2 (s1, s2) , H̃3 (s1, s2, s3) ,

. . . , H̃M (s1, . . . , sM )
}
, (11a)

with for k ∈ {1, . . . , M}

H̃k (s1, . . . , sk)= c (sk I−(A+F))−1 N (sk−1I−(A+F))−1

. . .N (s1I − (A+ F))−1 b, (11b)

and assuming perturbation F in Amatrix of the input dynam-
ical system (as for BIRKA stability; see Theorem 4 earlier).

One way to satisfy (9) is to use the definition of the
H2−norm of ζM − ζ̃M , i.e., from Lemma 5.1 of [22]∥∥∥ζM − ζ̃M∥∥∥2

H2

=
([
c −c

]
⊗
[
c −c

])
×

M∑
j=0

[(
−

[
A 0

0 A+ F

]
⊗

[
In 0

0 In

]
−

[
In 0

0 In

]

⊗

[
A 0

0 A+ F

])−1 [N 0

0 N

]
⊗

[
N 0

0 N

]]j

×

(
−

[
A 0

0 A+ F

]
⊗

[
In 0

0 In

]
−

[
In 0

0 In

]

⊗

[
A 0

0 A+ F

])−1 ([b
b

]
⊗

[
b

b

])
. (12)

This approach is followed in satisfying the second con-
dition of backward stability of BIRKA, but for TBIRKA it
turns out to bemore challenging. The reason for this is that the
definition of theH2−norm of ζ−ζ̃ used in BIRKA is different
from (12), 4 i.e., from Corollary 4.1 of [15] or Theorem 4.5
of [21]∥∥ζ − ζ̃∥∥2H2

=
([
c −c

]
⊗
[
c −c

])
×

(
−

[
A 0

0 A+ F

]
⊗

[
In 0

0 In

]
−

[
In 0

0 In

]

⊗

[
A 0

0 A+ F

]
−

[
N 0

0 N

]
⊗

[
N 0

0 N

])−1 ([b
b

]
⊗

[
b

b

])
.

From (10) and (11), we know that both ζM and ζ̃M are
represented by a finite set of transfer functions, respectively.
Hence, another way to satisfy (9) in case of TBIRKA, which

4Recall, in BIRKA we work with ζ rather than ζM .
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turns out to be more easier and mathematically equivalent,
is to show that the norm of the difference between the respec-
tive order transfer functions of (10) and (11) is equal to the
norm of the perturbation. That is, instead of (9) we can show
that ∥∥H1 (s1)− H̃1 (s1)

∥∥
H2
∝ O (‖F‖2) ,∥∥H2 (s1, s2)− H̃2 (s1, s2)

∥∥
H2
∝ O (‖F‖2) ,

...∥∥HM (s1, . . . , sM )− H̃M (s1, . . . , sM )∥∥H2
∝ O (‖F‖2) ,

(13)

where Hk (s1, . . . , sk) for k ∈ {1, . . . , M} is given by (4)
and (10b), and H̃k (s1, . . . , sk) for k ∈ {1, . . . , M} is given
by (11b). This way was not possible in BIRKA because there
M →∞ (see (2)-(4)).
To prove this condition, we first abstract out the term

containing the perturbation F from the normed difference
between the two corresponding transfer functions (of the
original system and the perturbed system) in Lemma 6. Next,
in Lemma 7, for k = 2, we show that the norm of this term
is order of the norm of F . Finally, we generalize the result of
Lemma 7 in Lemma 8 (from k = 2 to any general k) by using
induction.
Note, that in all our subsequent derivations, we assume

that all inverses used exist. This is an acceptable assumption
because the inverse of matrices arising here are of the form
as in [28] and [31] (the papers that discuss stability of IRKA
and BIRKA, respectively).
Lemma 6: Let the original bilinear dynamical system be

defined as in (10) and the perturbed bilinear dynamical
system be defined as in (11). Then,∥∥Hk (s1, . . . , sk)− H̃k (s1, . . . , sk)∥∥2H2

≤

∥∥∥cK−1 (sk)∥∥∥2
H2

∥∥∥K−1 (sk−1)∥∥∥2
H2
. . .

∥∥∥K−1 (s1)∥∥∥2
H2

× ‖U (s1, . . . , sk )‖2H∞

∥∥∥K−1 (s1) b∥∥∥2
H∞

,

where K (si) = (siIn − A) for i = 1, . . . , k, and

U (s1, . . . , sk ) = K (s1) . . .K (sk−1)

×

(
NK−1 (sk−1) . . .NK−1 (s2)N

−

(
In − FK−1 (sk)

)−1
×NK−1 (sk−1)

(
In − FK−1 (sk−1)

)−1
. . .NK−1 (s2)

(
In − FK−1 (s2)

)−1
×N

(
In −K−1 (s1)F

)−1 )
. (14)

Proof: See Appendix A. �

Lemma 7: Let ‖F‖2 < 1, where F is the perturbation
introduced in the A matrix of the input dynamical system.
Also, let

∥∥K−1 (si)∥∥H∞ < 1 for i = 1 and 2, where
K (si) = (siIn − A) with In being the identity matrix.
Then,

‖U2‖H∞ ∝ O (‖F‖2) .

where U2 = U (s1, s2) from (14).
Proof: See Appendix B. �

Lemma 8: Let ‖F‖2 < 1, where F is the perturbation
introduced in the A matrix of the input dynamical system.
Also, let

∥∥K−1 (si)∥∥H∞ < 1 for i = 1, 2, . . . , k,
where K (si) = (siIn − A) with In being the identity matrix.
Then,

‖Uk‖H∞ ∝ O (‖F‖2) ,

where Uk = U (s1, . . . , sk ) from (14).
Proof: See Appendix C. �

Theorem 9: If hypotheses of Lemmas 6 and 8 holds,
then∥∥Hk (s1, . . . , sk)− H̃k (s1, . . . , sk)∥∥2H2

= O
(
‖F‖22

)
or TBIRKA satisfies the second condition of backward stabil-
ity with respect to inexact linear solves.

Proof: Directly follows from combining the results of
Lemmas 6 and 8. �

IV. CONCLUSIONS & FUTURE WORK
In this paper, we apply iterative linear solvers during model
order reduction (MOR) of bilinear dynamical systems. Since
such solvers are inexact, the stability of the underlying
MOR algorithm, with respect to these approximation errors,
is important. Here, we extend the earlier stability analysis
done for BIRKA in [31], to its cheaper variant TBIRKA.
Proving that an algorithm is stable, typically requires satisfy-
ing two conditions. In TBIRKA, fulfilling the first condition
for stability leads to constraints on the iterative linear solver,
which are similar to those obtained during BIRKA’s stability
analysis. The second condition for a stable TBIRKA is satis-
fied using an approach different than the one used in BIRKA,
and is more intuitive.

Our first future direction is to extend our analysis from
SISO (Single Input Single Output) to MIMO (Multiple Input
Multiple Output) systems. The stability analysis as done for
BIRKA earlier and TBIRKA here, all give us sufficiency con-
ditions for a stable underlying MOR algorithm. Hence, sec-
ond, we plan to derive the necessary conditions for the same.
In recent years, there have been a lot of efforts in performing
data-driven MOR algorithm (specially using Leowner frame-
work [19]). Our third future direction is to apply this stability
analysis to such classes of algorithms as well. Finally, and
fourth, our stability analysis can be extended to the cases
when instead of a dynamical system, the underlying differ-
ential equation is studied [35]–[37].

72302 VOLUME 7, 2019



R. Choudhary, K. Ahuja: Inexact Linear Solves in Model Reduction of Bilinear Dynamical Systems

APPENDIX A
Proof of Lemma 6: Using the definition of H2−norm (1), we get∥∥Hk (s1, . . . , sk)− H̃k (s1, . . . , sk)∥∥2H2

=

(
1
2π

)k
Lim
m→∞

∫ m

−m
. . .

∫ m

−m

∥∥∥cK−1 (iωk)NK−1 (iωk−1) . . .NK−1 (iω1) b

− c (K (iωk)− F)−1 N (K (iωk−1)− F)−1 . . .N (K (iω2)− F)−1 N (K (iω1)− F)−1 b
∥∥∥2
F
dω1 . . . dωk

=

(
1
2π

)k
Lim
m→∞

∫ m

−m
. . .

∫ m

−m

∥∥∥∥cK−1 (iωk)(NK−1 (iωk−1) . . .NK−1 (iω2)N

−

(
In − FK−1 (iωk)

)−1
NK−1 (iωk−1)

(
In − FK−1 (iωk−1)

)−1
. . .NK−1 (iω2)

(
In − FK−1 (iω2)

)−1
N
(
In −K−1 (iω1)F

)−1 )
K−1 (iω1) b

∥∥∥∥2
F
dω1 . . . dωk

=

(
1
2π

)k
Lim
m→∞

∫ m

−m
. . .

∫ m

−m

∥∥∥cK−1 (iωk)K−1 (iωk−1) . . .K−1 (iω1)

×K (iω1) . . .K (iωk−1)
(
NK−1 (iωk−1) . . .NK−1 (iω2)N

−

(
In − FK−1 (iωk)

)−1
NK−1 (iωk−1)

(
In − FK−1 (iωk−1)

)−1
. . . NK−1 (iω2)

(
In − FK−1 (iω2)

)−1
N
(
In −K−1 (iω1)F

)−1 )
K−1 (iω1) b

∥∥∥∥2
F
dω1 . . . dωk .

UsingU (s1, . . . , sk) given by (14), ‖XYZ‖F ≤ ‖X‖F ‖YZ‖F , ‖YZ‖F ≤ ‖Y‖F ‖Z‖2, and comparison integral inequality5 [38]
for any matrices X , Y , and Z , in the above equation, we have∥∥Hk (s1, . . . , sk)− H̃k (s1, . . . , sk)∥∥2H2

≤

(
1
2π

)k
Lim
m→∞

∫ m

−m
. . .

∫ m

−m

∥∥∥cK−1 (iωk)∥∥∥2
F

∥∥∥K−1 (iωk−1)∥∥∥2
F

. . .

∥∥∥K−1 (iω1)

∥∥∥2
F
‖U (iω1, . . . , iωk)‖22

∥∥∥K−1 (iω1) b
∥∥∥2
2
dω1 . . . dωk . (15)

From the mean value theorem of integration [38] we know∫ m

−m

∫ m

−m
f (iω2) g (iω1, iω2) h (iω1) dω1dω2 =

∫ m

−m
f (iω2)

(∫ m

−m
g (iω1, iω2) h (iω1) dω1

)
dω2

≤

∫ m

−m
f (iω2)

(
max
c∈R

(g(ic, iω2))
∫ m

−m
h (iω1) dω1

)
dω2

≤ max
c,d∈R

(g(ic, id))
∫ m

−m
f (iω2) dω2

∫ m

−m
h (iω1) dω1.

Using this property in (15) we get6∥∥Hk (s1, . . . , sk)− H̃k (s1, . . . , sk)∥∥2H2
≤

(
1
2π

)k
Lim
m→∞

∫ m

−m
. . .

∫ m

−m

∥∥∥cK−1 (iωk)∥∥∥2
F

×

∥∥∥K−1 (iωk−1)∥∥∥2
F
. . .

∥∥∥K−1 (iω1)

∥∥∥2
F
dω1 . . . dωk

× max
ω1, ..., ωk∈R

‖U (iω1, . . . , iωk)‖22 max
ω1∈R

∥∥∥K−1 (iω1) b
∥∥∥2
2

≤

∥∥∥cK−1 (sk)∥∥∥2
H2

∥∥∥K−1 (sk−1)∥∥∥2
H2
. . .

∥∥∥K−1 (s1)∥∥∥2
H2

× ‖U (s1, . . . , sk)‖2H∞

∥∥∥K−1 (s1) b∥∥∥2
H∞

.

�

5This inequality says if f (x) and g (x) are integrable over [a, b] and f (x) ≤ g (x), then
∫ b
a f (x) dx ≤

∫ b
a g (x) dx. Note that although we have improper

integrals here, this inequality still holds because of the earlier assumption that such integrals give a finite value.
6As mentioned in Footnote 5, the improper integrals here do not affect application of this mean value theorem because all such integrals are assumed to give

a finite value.
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APPENDIX B
Proof of Lemma 7: Substituting k = 2 in (14), we get

U2 = K (s1)
(
N −

(
In − FK−1 (s2)

)−1
N
(
In −K−1 (s1)F

)−1)
.

If
∥∥FK−1 (s2)∥∥H∞ < 1 and

∥∥K−1 (s1)F∥∥H∞ < 1, then by the Neumann series, we get7

U2 = K (s1)
(
N −

(
In + FK−1 (s2)+

(
FK−1 (s2)

)2
+ · · ·

)
N
(
In +K−1 (s1)F +

(
K−1 (s1)F

)2
+ · · ·

))
= K (s1)

(
N − N − NK−1 (s1)F

(
In +K−1 (s1)F + · · ·

)
− FK−1 (s2)

(
In + FK−1 (s2)+ · · ·

)
N

×

(
In +K−1 (s1)F +

(
K−1 (s1)F

)2
+ · · ·

))
= K (s1)

(
− NK−1 (s1)F

(
In −K−1 (s1)F

)−1
− FK−1 (s2)

(
In − FK−1 (s2)

)−1
N
(
In −K−1 (s1)F

)−1 )
= K (s1)

(
− NK−1 (s1)F − FK−1 (s2)

(
In − FK−1 (s2)

)−1
N
) (

In −K−1 (s1)F
)−1

.

TakingH∞−norm on both sides, and using ‖XY‖2 ≤ ‖X‖2 ‖Y‖2 and ‖X + Y‖2 ≤ ‖X‖2+‖Y‖2, for any two matrices X and Y ,
we get

‖U2‖H∞ ≤ max
ω1,ω2∈R

(
‖K (iω1)‖2

(
‖N‖2

∥∥∥K−1 (iω1)

∥∥∥
2
‖F‖2 + ‖F‖2

∥∥∥K−1 (iω2)

∥∥∥
2

∥∥∥∥(In − FK−1 (iω2)
)−1∥∥∥∥

2
‖N‖2

)
×

∥∥∥∥(In −K−1 (iω1)F
)−1∥∥∥∥

2

)
≤ ‖K (s1)‖H∞ ‖N‖2 ‖F‖2

(∥∥∥K−1 (s1)∥∥∥
H∞
+

∥∥∥K−1 (s2)∥∥∥
H∞

max
ω2∈R

∥∥∥∥(In − FK−1 (iω2)
)−1∥∥∥∥

2

)
× max
ω1∈R

∥∥∥∥(In −K−1 (iω1)F
)−1∥∥∥∥

2
. (16)

Technically by definition of the H∞−norm and how K (s) is defined in our hypotheses, ‖K (s1)‖H∞ = ‖K (s2)‖H∞ =
‖K (s)‖H∞ , however, for sake of exposition, we keep them separate. Similarly for theH∞−norm of inverses ofK (s1) andK (s2).

To abstract ‖F‖2 out from the above inequality, let us look at max
ω2∈R

∥∥∥(In − FK−1 (iω2)
)−1∥∥∥

2
separately. Recall, while

applying Neumann series we assumed that
∥∥FK−1 (s2)∥∥H∞ < 1 or max

ω2∈R

∥∥FK−1 (iω2)
∥∥
2 < 1. Since the maximum of such a

norm is less than one, we have for all ω2 ∈ R,
∥∥FK−1 (iω2)

∥∥
2 < 1. Using this along with Lemma 2.3.3 from [40]8 in the above

expression, we get

max
ω2∈R

∥∥∥∥(In − FK−1 (iω2)
)−1∥∥∥∥

2
≤ max

ω2∈R

1

1−
∥∥FK−1 (iω2)

∥∥
2

≤
1

1− max
ω2∈R

∥∥FK−1 (iω2)
∥∥
2

≤
1

1−
∥∥FK−1 (s2)∥∥H∞ . (17)

If we assume ‖F‖2 < 1 and
∥∥K−1 (s2)∥∥H∞ < 1 (as in our hypotheses), then using earlier used matrix norm properties, we get∥∥∥FK−1 (s2)∥∥∥

H∞
= max
ω2∈R

∥∥∥FK−1 (iω2)

∥∥∥
2
≤ ‖F‖2 max

ω2∈R

∥∥∥K−1 (iω2)

∥∥∥
2

≤ ‖F‖2
∥∥∥K−1 (s2)∥∥∥

H∞
≤ 1,

7From [39, page 527], we know (I − A)−1 =
∞∑
k=0

Ak when ‖A‖ < 1 for any matrix norm. Here, for the first inequality we have
∥∥∥FK−1 (s2)∥∥∥H∞ < 1

or max
ω2∈R

∥∥∥FK−1 (iω2)∥∥∥2 < 1, and hence, the applicable matrix norm is 2−norm. Similarly for the second inequality.

8If F ∈ Rn×n and ‖F‖p < 1, then I − F is nonsingular and (I − F)−1 =
∞∑
k=0

Fk with
∥∥∥(I − F)−1∥∥∥

p
≤

1
1− ‖F‖p

.
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as assumed for applying Neumann series earlier as well as Lemma 2.3.3 from [40] above. Thus, no extra assumptions beyond
those in hypotheses are needed. Further, we also get

1− ‖F‖2
∥∥∥K−1 (s2)∥∥∥

H∞
≤ 1−

∥∥∥FK−1 (s2)∥∥∥
H∞

or
1

1−
∥∥FK−1 (s2)∥∥H∞ ≤

1

1− ‖F‖2
∥∥K−1 (s2)∥∥H∞ . (18)

Similarly, by assuming ‖F‖2 < 1 and
∥∥K−1 (s1)∥∥H∞ < 1 (as in our hypotheses), we can bound the last term of (16) as

follows:

max
ω1∈R

∥∥∥∥(In −K−1 (iω1)F
)−1∥∥∥∥

2
≤

1

1−
∥∥K−1 (s1)F∥∥H∞ and (19)

1

1−
∥∥K−1 (s1)F∥∥H∞ ≤

1

1−
∥∥K−1 (s1)∥∥H∞ ‖F‖2 . (20)

Substituting (17)-(18) and (19)-(20) in (16), we get

‖U2‖H∞ ≤ ‖K (s1)‖H∞ ‖N‖2 ‖F‖2
[ ∥∥K−1 (s1)∥∥H∞ +

∥∥K−1 (s2)∥∥H∞
1− ‖F‖2

∥∥K−1 (s2)∥∥H∞
](

1

1−
∥∥K−1 (s1)∥∥H∞ ‖F‖2

)
.

From the above inequality it is clear that if ‖F‖2
∥∥K−1 (s2)∥∥H∞ < 1 and

∥∥K−1 (s1)∥∥H∞ ‖F‖2 < 1, which are true from our
hypotheses, then

‖U2‖H∞ = O (‖F‖2) .

�

APPENDIX C
Proof of Lemma 8:We prove this by mathematical induction.

Base Case :

k = 1 is the linear system case already proved in [28] (see Theorem 4.3 of [28]). k = 2 has been proved above (Lemma 7).

Induction Hypothesis :

From (14), we know for k = L

UL = K (s1) . . .K (sL−1)
(
NK−1 (sL−1) . . .NK−1 (s2)N −

(
In − FK−1 (sL)

)−1
×NK−1 (sL−1)

(
In − FK−1 (sL−1)

)−1
. . .NK−1 (s2)

(
In − FK−1 (s2)

)−1
N
(
In −K−1 (s1)F

)−1 )
. (21)

Let ‖UL‖H∞ = O (‖F‖2) .
Induction Step :

We show the above for k = L + 1. Again, from (14), we know

UL+1 = K (s1) . . .K (sL)
(
NK−1 (sL) . . .NK−1 (s2)N −

(
In − FK−1 (sL+1)

)−1
×NK−1 (sL)

(
In − FK−1 (sL)

)−1
. . .NK−1 (s2)

(
In − FK−1 (s2)

)−1
N
(
In −K−1 (s1)F

)−1 )
.

We first write UL+1 in terms of UL . Using our hypotheses, we have
∥∥FK−1 (sL+1)∥∥H∞ < ‖F‖2

∥∥K−1 (sL+1)∥∥H∞ < 1, and
hence, applying Neumann series above, we get

UL+1 = K (s1) . . .K (sL)
(
NK−1 (sL) . . .NK−1 (s2)N −

(
In + FK−1 (sL+1)+

(
FK−1 (sL+1)

)2
+ · · ·

)
×NK−1 (sL)

(
In − FK−1 (sL)

)−1
. . .NK−1 (s2)

(
In − FK−1 (s2)

)−1
N
(
In −K−1 (s1)F

)−1 )
= K (s1) . . .K (sL)

(
NK−1 (sL) . . .NK−1 (s2)N

−NK−1 (sL)
(
In − FK−1 (sL)

)−1
. . .NK−1 (s2)

(
In − FK−1 (s2)

)−1
N
(
In −K−1 (s1)F

)−1
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−FK−1 (sL+1)
(
In − FK−1 (sL+1)

)−1
NK−1 (sL)

(
In − FK−1 (sL)

)−1
. . .NK−1 (s2)

(
In − FK−1 (s2)

)−1
×N

(
In −K−1 (s1)F

)−1 )
.

In the above equation, taking NK−1 (sL) common from the first two terms of the bigger bracket, we have

= K (s1) . . .K (sL)
(
NK−1 (sL)

(
NK−1 (sL−1) . . .NK−1 (s2)N −

(
In − FK−1 (sL)

)−1
×NK−1 (sL−1)

(
In − FK−1 (sL−1)

)−1
. . .NK−1 (s2)

(
In − FK−1 (s2)

)−1
N
(
In −K−1 (s1)F

)−1 )
−FK−1 (sL+1)

(
In − FK−1 (sL+1)

)−1
NK−1 (sL)

(
In − FK−1 (sL)

)−1
. . .NK−1 (s2)

(
In − FK−1 (s2)

)−1
×N

(
In −K−1 (s1)F

)−1 )
. (22)

Now we look at expression of UL . Multiplying K−1 (sL−1) . . .K−1 (s1) on both the sides of (21) from left, we get

K−1 (sL−1) . . .K−1 (s1)UL =
(
NK−1 (sL−1) . . .NK−1 (s2)N −

(
In − FK−1 (sL)

)−1
×NK−1 (sL−1)

(
In − FK−1 (sL−1)

)−1
. . .NK−1 (s2)

(
In − FK−1 (s2)

)−1
N
(
In −K−1 (s1)F

)−1 )
. (23)

Substituting (23) in (22), we get

UL+1 = K (s1) . . .K (sL)
(
NK−1 (sL)

(
K−1 (sL−1) . . .K−1 (s1)UL

)
− FK−1 (sL+1)

(
In − FK−1 (sL+1)

)−1
×NK−1 (sL)

(
In − FK−1 (sL)

)−1
. . .NK−1 (s2)

(
In − FK−1 (s2)

)−1
N
(
In −K−1 (s1)F

)−1 )
.

Taking H∞−norm on both sides, and as earlier, using the norm inequality properties in the above equation, we get

‖UL+1‖H∞ ≤ max
ω1, ..., ωL+1∈R

[
‖K (iω1)‖2 . . . ‖K (iωL)‖2

(
‖N‖2

∥∥∥K−1 (iωL)∥∥∥
2
. . .

∥∥∥K−1 (iω1)

∥∥∥
2

× ‖U (iω1, . . . , iωL)‖2 + ‖F‖2
∥∥∥K−1 (iωL+1)∥∥∥

2

∥∥∥∥(In − FK−1 (iωL+1))−1∥∥∥∥
2

× ‖N‖2
∥∥∥K−1 (iωL)∥∥∥

2

∥∥∥∥(In − FK−1 (iωL))−1∥∥∥∥
2
. . . ‖N‖2

∥∥∥K−1 (iω2)

∥∥∥
2

∥∥∥∥(In − FK−1 (iω2)
)−1∥∥∥∥

2

× ‖N‖2

∥∥∥∥(In −K−1 (iω1)F
)−1∥∥∥∥

2

)]
.

Similar to (17) and (18), here also, using Lemma 2.3.3 from [40] we get

‖UL+1‖H∞ ≤ ‖K (s1)‖H∞ . . . ‖K (sL)‖H∞ ‖N‖2
∥∥∥K−1 (sL)∥∥∥

H∞
. . .

∥∥∥K−1 (s2)∥∥∥
H∞

[ ∥∥∥K−1 (s1)∥∥∥
H∞
‖UL‖H∞

+

‖N‖L−12

∥∥K−1 (sL+1)∥∥H∞(
1− ‖F‖2

∥∥K−1 (sL+1)∥∥H∞) . . . (1− ‖F‖2 ∥∥K−1 (s2)∥∥H∞) ·
‖F‖2

1−
∥∥K−1 (s1)∥∥H∞ ‖F‖2

]
.

From induction hypothesis we know ‖UL‖H∞ ∝ O (‖F‖2). Using this we get

‖UL+1‖H∞ ∝ O (‖F‖2) .

�
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