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ABSTRACT In this paper, the angle-of-arrival (AOA) measurements are adapted to locate a target using the
UAV swarms equipped with passive receivers. The measurement noise is considered to be target-to-receiver
distance dependent. The Cramer–Rao low bound (CRLB) of the AOA localization is calculated, and the
optimal deployments are explored through changing angular separations and distances. Then, a distributed
collaborative autonomous generation (DCAG) method is proposed based on the deep neural network (NN).
The off-line training and on-line application rules are applied to generate the optimal heading angles for
the UAV swarms in the AOA localization. The simulation results show that through the DCAG method,
the generated heading angles for UAV swarms enhance the localization accuracy and stability.

INDEX TERMS AOA localization, distributed collaborative autonomous generation (DCAG), Cramer-Rao
low bound (CRLB), deep neural network (NN).

I. INTRODUCTION
Localization of a radio frequency (RF) with static and mov-
able sensor platforms has received significant interest in
both civil and defense applications, such as search, rescue,
and surveillance. The purpose of passive localization is to
estimate the location of a target by processing the emitter
signals, which is widely applied in wireless sensor networks
(WSN) [1]–[4]. Currently, localization in sensor networks
using passive measurements can be based on various type of
measurements such as time difference of arrival (TDOA) [1],
angle of arrival (AOA) [2] as well as received signal strength
(RSS) [3], etc. AOA localization, which is predicated on
the triangulation of AOA lines emanating from multiple
receivers, has been a research area of significant interest for
several decades.

The AOA measurements can be calculated by maximum
likelihood (ML) estimator [4], pseudo-linear estimator [5],
etc. The Recursive algorithm based on extendedKalman filter
(EKF) was also applied for tracking moving targets using
bearings-only measurements [6], [7]. It is well known that the
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performance of localization is highly related to the
receiver-target deployment [1]–[10]. Therefore, an opti-
mal deployment can further improve the localization accu-
racy. The optimal receiver-target deployment analyzed by
the Fisher information matrix (FIM) had been explored
in [8]–[10]. Paper [8] provided the rigorous proof of the
relative receiver-target deployment for AOA localization.
Paper [9] mainly studied the optimal angular receiver separa-
tion. In [10], the optimal receiver-target geometries for both
TDOA and AOA localization were identified and studied.
In paper [11], AOA localization in three-dimensional space
was applied based on the Cramer-Rao low bound (CRLB).
Most of the works deal with AOA optimal deployment with
independent and changeless variance. In this paper, we firstly
studied a more realistic model, where the localization error
variance is target-to-receiver distance dependent. The optimal
deployments of AOA localization are explored through angle
and distance criteria based on the CRLB.

Recently, passive localization with UAV swarms has great
potential in military reconnaissance, anti-terrorism stability
and emergency response [12]. Therefore, we extend our work
to the application of AOA localization with UAV swarms.
How to generate real-time heading angles of UAV swarms
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on-line and realize the optimal dynamic receiver-target
deployments have become one of the hot research issues.
For this issue, the centralized real-time optimization (CRTO)
method [13] was applied and FIM was adopted as the
optimization function for path planning optimization. Then,
the combined heading angles of UAV swarms that corre-
sponding to the maximum value of the determinant of the
FIM are calculated within each time step. There are two
weaknesses in this method. One is that the passive local-
ization accuracy is sensitive to the heading angles of
UAV swarms. With the increase of the number of UAVs,
the space of the optional combined heading angles increases
exponentially, which leads to large calculation delay and is
difficult to meet the needs of high maneuvering target local-
ization. The other is that structure of CRTO is centralized,
which increases the communication delay and results poor
stability.

Aiming at the problems of CRTO method, this paper pro-
poses a Distributed Cooperative and Autonomous Genera-
tion (DCAG) method, which is based on neural network
(NN) [14]. Neural network (NN) methods have been broadly
applied to optimal control [15], [16], collision avoidance [17],
coverage [18], but most of them deal with single UAV or
robot [19] and cannot be applied in the cooperative local-
ization mission. This method contains two parts. The first
part is the off-line training, large-sample simulations of
UAV swarms and target data set in different deployments
are generated based on the analysis of CRLB. The optimal
heading angles data set are constructed to explore whether
a deep neural network can effectively be used to learn opti-
mal heading angles of UAV swarms from different deploy-
ments. The second part is on-line application, the autonomous
and rapid output of optimal heading angles are generated
through to ensure the improvement of localization. Therefore,
the problem of generating real-time optimization of heading
angles with large amount of computation is transformed into
a distributed online prediction problem with low power con-
sumption and time delay, which makes the problem effec-
tively solved.

The remainder of this paper is organized as follows. Prob-
lem description and modeling are given in Sec. II and perfor-
mance analysis of AOA localization based on CRLB is given
in Section III. In Sec. VI, The CRTO method is given. Then,
DCAG method is proposed in Sec. V. These algorithms are
verified via simulation results of UAV swarms, in Sec. VI,
and finally Sec. VII concludes the paper.

II. PROBLEM DESCRIPTION AND MODELING
We consider the situation with M receivers localizing a tar-
get in the 2D. The state vector of each movable receiver is
χi(k) =

[
xi(k)T , ẋi(k)T

]1
, i = 1, 2, · · ·M , where xi(k) =

[xi(k), yi(k)]T is the position and ẋi(k) = [ẋi(k), ẏi(k)]T

represents the velocity vector. Let xt = [xt , yt ]T ∈ R2

be the unknown location of an emitter, ri is the distance
between emitter and thei-th receiver, i.e. ri = ‖xt − xi‖.
Then AOA estimate equation by the receiver can be

FIGURE 1. AOA localization geometry with M receivers.

written as [8]

φ̂i = φi (xt)+ ei (1)

where φi (xt) = arctan 2 (xt − xi, yt − yi) .ei is the measure-
ment error and is assumed to be zero-mean Gaussian white
noise with variance σ 2

i , i.e. ei ∼ N
(
0, σ 2

i

)
.

For assumption of distance-dependent noise, the vari-
ance of localization error is inversely proportional to the
SNR of the signal, and the SNR is inversely proportional
to the distance between the target and the i-th receiver r2i .
Therefore, the i-th receiver error can be written as [20]:

σ 2
i (r) =


a

SNR0
·
r2i
r20

ri > r0
a

SNR0
ri ≤ r0

(2)

where, r0 is the lower bound distance that corresponding to
the minimum of localization error variance, SNR0 is the min-
imum value of SNR and a is a constant path-loss exponent.

Fig. 1 shows AOA localization geometry withM receivers.
The measurement vector from M receivers can be writ-
ten as 8̂ (xt) = 8 (xt) + e, where 8 (xt) =

[φ1 (xt) , · · · , φN (xt)]T , e = [e1, · · · , eN ]T , with the covari-
ance Rr = diag

[
σ 2
1 , σ

2
2 , · · · , σ

2
M

]
.

The purpose of this paper is to improve the performance
of AOA localization using UAV swarms, we firstly focus
on the performance analysis of optimal AOA receiver-target
deployments. These explicit solutions can provide the tactical
guidance for the UAV swarms placement problem.

III. PERFORMANCE ANALYSIS BASED ON CRLB
As for an unbiased estimate x̂ of x, the CRLB can be
expressed as:

E
[
(x− x̂)(x− x̂)T

]
≥ J−1 , CRLB (x) (3)

where, J is the corresponding FIM.
For the measurement vector 8̂ = 8(x) + e, the FIM is

given by

Ji,j = E
[
∂

∂xi
ln(f8̂(8̂; x))

∂

∂xj
ln(f8̂(8̂; x))

]
(4)
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where the f8̂(8̂; x) is the probability density function (PDF)
of the AOA measurement vector 8̂

f8̂(8̂; x)=
1

(2π )M/2|R|1/2

exp
[
−
1
2
(8̂−8(x))TR−1(8̂−8(x))

]
(5)

Inspired by paper [20], the FIM for AOA localization with
distance-dependent noise is given by

J(i,j) =
1

σ 2(xt )
∂8(xt )
∂xi

∂8(xt )
∂xj︸ ︷︷ ︸

J1,(i,j)

+
1
2

1
σ 2(xt )

∂σ (xt )
∂xi

∂σ (xt )
∂xj︸ ︷︷ ︸

J2,(i,j)
(6)

Therefore, this FIM consists of two terms. The first term,
J1 denotes the FIM of the measurement estimation and can
be rewritten as

J1,(i,j) = ∇P8(xt )TR−1r ∇P8(xt ) (7)

with 

J1,(1,1) =
M∑
i=1

sin2 φi
βr4i

J1,(1,2) = J1,(2,1) = −
M∑
i=1

sinφi cosφi
βr4i

J1,(2,2) =
M∑
i=1

cos2 φi
βr4i

(8)

where β = a
SNR0r20

. As for the second term, when ri > r0, J2 is
the FIM of localization error variance, which can be expanded
as

J2,(i,j) =
1
2
Tr
(
R−1r (x)

∂Rr (x)
∂xi

R−1r (x)
∂Rr (x)
∂xj

)
(9)

where,
∂Rr (x)
∂x1

= 2βdiag [r1 cosφ1, r2 cosφ2, · · · , rM cosφM ]

∂Rr (x)
∂x2

= 2βdiag [r1 sinφ1, r2 sinφ2, · · · , rM sinφM ]

(10)

Thus, the entire FIM with distance-dependent noise of
AOA localization can be shown as (11), as shown at the top
of the next page.

Denote that ci = 2/r2i + 1/βr4i and di = 2/r2i − 1/βr4i ,
J can be simplified as (12), as shown at the top of the next
page.

Therefore, the determinant of FIM and the CRLB can be
expressed as

det (J) = 4
M∑
i=1

M∑
j=i+1

didj sin2
(
φj − φi

)

+

(
M∑
i=1

ci

)2

−

(
M∑
i=1

di

)2

(13)

CRLB = J−1 =
1

det(J)

[
J22 −J12
−J21 J11

]
(14)

According to the A-optimality [21], the trace of the
CRLB is applied as the objective function to evaluate per-
formance of AOA localization:

tr(J−1)=

M∑
i=1

ci

det (J)

=

4
M∑
i=1

ci(
M∑
i=1

ci

)2

−

(
M∑
i=1

di cos 2φi

)2

−

(
M∑
i=1

di sin 2φi

)2

(15)

According to the A-optimality, the optimal deployment can
be acquired, when the minimum value of trace of CRLB is
obtained. From (15), it obvious that tr

(
J−1

)
is a function of8

and r. Hence, the optimal deployments are explored through
changing angular separations 8 and distances r changing
cases.

A. ANGLE CHANGING CASE
When ri, i ∈ {1, · · · ,M} are given arbitrarily but fixed,
from (15), the maximization of det (J) is equivalent to the
minimization of tr(J−1). For convenience, the optimization
objective function is

argmax
φ1,··· ,φM

f (8) = 4
M∑
i=1

M∑
j=i+1

didj sin2
(
φj − φi

)

+

(
M∑
i=1

ci

)2

−

(
M∑
i=1

di

)2

(16)

When M = 2, (16) is solved when φ2 − φ1 = k π2 ,
(k = 1, 3). Let ϕij = [0, π) be the subtended angle
between the i-th and j-th receivers. Thus we can obtain that
ϕ12 =

π
2 , which means orthogonal receiver-target geometry

is the optimal deployment in this situation.
WhenM = 3, (16) takes the form

f (8=4
(
d1d2 sin2 ϕ12+d1d3 sin2 ϕ13+d2d3 sin2

(ϕ13−ϕ12)
)
+

(
3∑
i=1

ci

)2

−

(
3∑
i=1

di

)2

(17)

By taking the partial derivative of (17) with respect to the
variables ϕ12 and ϕ13 respectively, we can get{

d1d2 sin(2ϕ12)− d2d3 sin(2ϕ13 − 2ϕ12) = 0
d1d3 sin(2ϕ13)+ d2d3 sin(2ϕ13 − 2ϕ12) = 0

(18)

Then by solving the above two equations, the optimal
angular separation ϕ12, ϕ13 can be solved [8]

ϕ12 =

∣∣∣∣∣12 arccos(
d23 − d

2
2 − d

2
1

2d1d2
)

∣∣∣∣∣
ϕ13 =

∣∣∣∣∣12 arccos(
d22 − d

2
1 − d

2
3

2d1d3
)

∣∣∣∣∣
(19)
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J =


M∑
i=1

sin2(φi)

βr4i
+ 2

M∑
i=1

cos2 φi
r2i

−

M∑
i=1

sin(φi) cos(φi)

βr4i
+ 2

M∑
i=1

cosφi sinφi
r2i

−

M∑
i=1

sin(φi) cos(φi)

βr4i
+ 2

M∑
i=1

cosφi sinφi
r2i

M∑
i=1

cos2(φi)

βr4i
+ 2

M∑
i=1

sin2 φi
r2i

 (11)

J =


1
2

(
M∑
i=1

ci +
M∑
i=1

di cos 2φi

)
1
2

M∑
i=1

di sin 2φi

1
2

M∑
i=1

di sin 2φi
1
2

(
M∑
i=1

ci −
M∑
i=1

di cos 2φi

)
 (12)

Consider that the value of arccos(·) should be real, the real

value holds when d2m ≤
3∑

i=1,i6=m
d2i ,m ∈ {1, · · · , 3}.

As for d2m >
3∑

i=1,i6=m
d2i , the maximizing value of f (8) is

acquired when

ϕkm =
π

2
, k = {1, 2, 3} \m (20)

where \ is the set subtraction. The maximum value can be
acquired by placing the m-th receiver in the vertical direction
to the other receivers.

As for an arbitrary number M ≥ 4 and arbitrary but fixed
ranges, the following solutions can be acquired.
Corollary 1:When M ≥ 4, let ri be arbitrary but fixed for

all i ∈ {1, · · · ,M > 4}, then we have

f (8) ≤
1
4

(
M∑
i=1

ci

)2

(21)

The equality holds if and only if

(
M∑
i=1

di cos 2φi

)2

= 0,

(
M∑
i=1

di sin 2φi

)2

= 0 (22)

Proof: By taking the derivative of (16) with respect to φs,
∀s ∈ {1, · · · ,M}, we can obtain

∂

∂φs

 M∑
i=1

M∑
j=i+1

didj sin2
(
φj − φi

)
=

M∑
i = 1
i 6= s

dsdi sin (2 (φs − φi))

= ds sin(2φs)
M∑
i=1

di cos(2φi)−ds cos(2φs)
M∑
i=1

di sin(2φi)

=
[
ds sin(2φs) −ds cos(2φs)

]


M∑
i=1

di cos(2φi)

M∑
i=1

di sin(2φi)


= 0(s = 1, · · · ,M ) (23)

Therefore, all theM equations hold if and only if

M∑
i=1

di cos(2φi)

M∑
i=1

di sin(2φi)

(24)

In this situation, the optimality configuration is heavily
relies on frame theory [22], [23]. Then, the tight frame is
solved for all i ∈ {1, · · · ,M} if and only if

d2m ≤
M∑

i=1,i6=m

d2i ,m ∈ {1, · · · ,M} (25)

In this situation, f (8) is upper-bounded by

f (8) =
1
4

( M∑
i=1

ci

)2

−

(
M∑
i=1

di cos 2φi

)2

−

(
M∑
i=1

di sin 2φi

)2 ≤ 1
4

(
M∑
i=1

ci

)2

(26)

Based on the tight frame, the optimal deployment is acquired
when the frame is tight [24].

If d2m >
M∑

i=1,i6=m
d2i ,m ∈ {1, · · · ,M}, m ∈ {1, · · · ,M},

no tight frames can be found. However, the tightest (but
not tight) frame can be obtained. According to lemmas
in [24], [25], the optimal deployment is acquire, if and only
if

ϕkm =
π

2
, k = {1, · · · ,M} \m (27)
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Insert them into (16), f (8) is upper-bounded by

1
4

( M∑
i=1

ci

)2

−

dm − M∑
i=1,i6=m

di

2
 .

Here, we also consider the special case where all the
receivers are placed on a circle centered at the target, i.e., the
distances from the receivers to the target are all equal. In this
situation, r1 = r2 = · · · = rM = r , where r is radius of the
circle. Then the FIM can be written as:

J=


1
2

(
Mc0 + d0

M∑
i=1

cos 2φi

)
1
2
d0

M∑
i=1

sin 2φi

1
2
d0

M∑
i=1

sin 2φi
1
2

(
Mc0 − d0

M∑
i=1

cos 2φi

)


(28)

where c0 = 2/r + 1/βr4, d0 = 2/r2 − 1/βr4.
From (28), we can derive the following optimization
problem

argmax
φ1,··· ,φM

f (8) =
1
4

(Mc0)2 − d20
(

M∑
i=1

cos 2φi

)2

−d20

(
M∑
i=1

sin 2φi

)2 (29)

When M = 2, It is obvious that the optimal configuration
is ϕ12 = π

2 .
Corollary 2: For equal receiver ranges r1 = r2 = · · · rN =

r, (N ≥ 3), f (8) is bounded by

f (8) ≤
1
4
(Mc0)2 (30)

the equality holds if and only if

M∑
i=1

cos(2φi) = 0,
M∑
i=1

sin(2φi) = 0 (31)

Then two special optimal configurations of the
M receivers can be shown as below, which is the same as in
paper [8]:

(1) Uniform angular arrays (UAAs):

ϕij = ϕji =
2π
M
, ∀i, j ∈ {1, · · · ,M} , j− i= 1 (32)

(2) Non-uniform angular arrays (Non-UAAs):

ϕij = ϕji =
π

M
, ∀i, j ∈ {1, · · · ,M} , j− i= 1 (33)

Proof: The proof consists of two parts. The first part
is to find a lower bound for f (8), which is similar to
Corollary 1, and the second part is to analyze the optimal
configuration.

FIGURE 2. The variation of the determinant of FIM with equal receive
ranges for M = 2. (a) The value of det

(
J
)

as a function of φ1 and φ2.
(b) The contour plot of the value of det

(
J
)
.

From (29), it is obvious that f (8) is upper bounded by

f (8) =
1
4

(Mc0)2 − d20
(

M∑
i=1

cos 2φi

)2

−d20

(
M∑
i=1

sin 2φi

)2 ≤ 1
4
(Mc0)2 (34)

where, f (8) is maximized if and only if (31) is simultane-
ously satisfied.
Example: Without loss of generality, let c0 = 2, d0 = 1.

f (8) are calculated and the results are shown in Figs. 2 and 3,
when M = 2, 3, respectively. When M = 2, the maximum
value of f (8) is 4, which is obtained when φ1 − φ2 = π

2 .
Figs. 3 shows the value of det (J) and contour plot as a

function of φ2, φ3 for M = 3. The maximum value of f (8)
is 9, which is attained if {θ2, θ3} ∈ {{60◦, 120◦}, {60◦, 300◦},
{120◦, 60◦}, {120◦, 240◦}, {240◦, 120◦}, {240◦, 300◦}, {300◦,
60◦}, {300◦, 240◦}}.

VOLUME 7, 2019 70121



W. Wang et al.: Optimal Configuration Analysis of AOA Localization and Optimal Heading Angles’ Generation Method

FIGURE 3. The variation of the determinant of FIM with equal receive
ranges for M = 3. (a) The value of det

(
J
)

as a function of φ2 and φ3.
(b) The contour plot of det

(
J
)

with maxima indicated with ‘+’.

In the angle changing case, the optimal angular receiver
separation is not unique, there exist the optimal configuration
with non-UAA angular receiver separation and also effected
by the distance between receiver and target. The optimal
angular separation provides the angle criterion for the optimal
configuration.

B. DISTANCES CHANGING CASE
Consider the AOA localization problem, let the angle 8 be
arbitrary but fixed, then the objective function can be written
as

argmin
r1,··· ,rM

f (r)

=

4
M∑
i=1

ci(
M∑
i=1

ci

)2

−

(
M∑
i=1

di cos 2φi

)2

−

(
M∑
i=1

di sin 2φi

)2

(35)

where, φi,∀i ∈ {1, · · · ,M} is arbitrary but fixed.

Corollary 3: When the angles 8 is arbitrary but fixed,
the shorter the distance ri is, the less the value of f (r) is.
The minimum value of f (r) is acquired when ri = rmin
(i = 1, 2, · · · ,M ).

Proof: From the meaning of J−1 and the fact that the
measurement noise is larger when the distance ri increases,
J−1 shall increase. A similar proof can be found in [26] but
is omitted here.

To sum up, the method of deployment optimization is to
get close to the target, according to the distance criterion and
select a good angular separation. The analysis of the optimal
deployment helps to lay a foundation for waypoints optimiza-
tion of UAV swarms and helps to understand optimization
performance.

IV. TRADITIONAL CENTRALIZED REAL-TIME
OPTIMIZATION (CRTO) METHOD
Sec. III gives the analysis of the optimal deployment without
considering the constraints of the sensor platform, but in
practical application, UAV receiving platforms are affected
by their own motion constraints and cannot achieve the opti-
mal deployment of the target location in a short time [27].
Especially in the absence of prior target information,
UAV swarms need to transform the search configuration
of the whole reconnaissance area into the location config-
uration of the key area and the key target. At initial time,
the distance between the target and UAV swarms may be
large, and it will take a certain time to achieve the optimal
location and tracking configuration because of the influence
of platform speed and turning angular rate. Therefore, how
to improve the localization and tracking accuracy of the
target through waypoint optimization is the problem to be
solved.

Under the certain condition of signal processing and local-
ization algorithm, it is necessary to optimize the real-time
heading angles of UAV swarms by on-line combination, so as
to directly determine waypoints in the next time step. From
the analysis of CRLB, different values of CRLB can reflect
the different deployments of UAV swarms. When the mini-
mum value of CRLB is found, that means the optimal heading
combination for the highest positioning accuracy.

Consider the target is located by M sensors, the ranges of
UAV heading angles are between [8min,8max]. Denote ϑ as
the number of alternative heading angles for UAV swarms at
each moment, the decision-making spaces can be expressed
as:

� =

(
(ϕ1 − ϕ2)

ϑ

)M
(36)

According to the above analysis, the optimal heading
angles model is established with the optimal heading of
each UAV at the next moment. The decision variable and
the minimum CRLB is the objective function, which is
a NP-Hard problem.
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FIGURE 4. Illustration of the optimal waypoints of UAVs.

FIGURE 5. The flow chart of CRTO method.

Fig. 4 shows the target located by two UAVs, the objective
function can be written as

argmin f (χi(k + 1),u(k + 1)) = Tr
(
J−1k+1 (ri, θi)

)
(37)

with,

χi(k + 1) =
[
xi(k)
yi(k)

]
+ v0T

[
cos ui(k)
sin ui(k)

]
(38)

s.t. ‖ui(k + 1)− ui(k)‖ ≤ umax (39)∥∥χi(k + 1)− x̂t (k)
∥∥ ≤ Rh (40)∥∥χi(k + 1)− x̂t (k)
∥∥ ≥ Rl (41)∥∥xi(k + 1)− χj(k + 1)
∥∥ ≤ ch (42)∥∥χi(k + 1)− χj(k + 1)
∥∥ ≥ cl (43)

Eq. (38) represents the state updating equation of the
i-th UAV and Eq. (39) is the maximum optional heading
angles boundary constraint. Eq. (40-41) indicates that there
is a minimum and maximum distance constraints between
UAV and target. Eq. (42) indicates the anti-collision con-
straint between any two UAVs. Eq. (43) is the maximum
communication between UAVs.

To solve the above optimization, CRTO method needs to
combine both real-time AOA measurements and state infor-
mation of each UAV to the central processer. Fig. 5 shows the

flow chart of CRTOmethod. The location of the target is esti-
mated according to localization algorithms, i.e., maximum
likelihood (ML) estimator [4], pseudo-linear estimator [2],
etc. The target function shown in Eq. (36) is used for large-
scale combined optimization. Variable space is solved by
intelligent optimization algorithms such as heuristic or hyper-
heuristic algorithm, and then the optimal heading of UAV
swarms combination is obtained by searching for the optimal
heading. Finally, the optimal heading instructions of each
moment are continuously distributed to other UAVs through
robust airborne data link [28]. According to the engineering
experience, the time delay of more than 2 seconds caused
by the real-time optimization calculation of the combined
heading angles and the distribution of heading instructions
for each UAV is easy to reduce the accuracy and tracking
stability.

V. DISTRIBUTED COLLABORATIVE AUTONOMOUS
GENERATION (DCAG) METHOD
A. THE FRAMEWORK OF DCAG
Aiming at the problem of long time delay caused by
CRTO method, the DCAG method proposed in this paper
applied the value of CRLB, which directly reflects the influ-
ence of configuration on localization accuracy. The config-
uration data of large samples of UAV swarms and target are
generated by off-line simulation on the ground, and the opti-
mal heading combination of UAV under each configuration
is obtained off-line by theoretical analysis in Sec. III. Then,
the labeled data set for each UAV is constructed for deep
neural network. After the realization of off-line training and
testing phases, this neural network loaded in each UAV can
be applied online, as shown in Fig. 6.

The flow chart of DCAG method in online phase is shown
in Fig. 7, compared with CRTO method, all UAVs only need
to share their location information and measurement at each
time step. When the target state is estimated, the optimal
heading angles can be generated quickly and autonomously
based on deep neural network, thus avoiding the long time
delay caused by on-line real-time optimization of NP-hard
problem.

At the same time, because of the implicit law of optimal
heading angles combination are learned by off-line neural
networks, on-line generations are naturally the optimal solu-
tions, thus avoiding the communication delay caused by the
central processer in CRTO method.

B. DEEP NEURAL NETWORK CONSTRUCTION
In order to realize on-line optimal heading angles generation
of UAV swarms to reduce the localization error, it is necessary
to take the current distance and angle of all UAVs to the
target as the input of each UAV neural network. Under the
unknown target location, the target passive location estima-
tion is approximated to the true target position. The output of
neural network is designed to optimize the heading angles of
the UAV at the next moment. The neural network structure

VOLUME 7, 2019 70123



W. Wang et al.: Optimal Configuration Analysis of AOA Localization and Optimal Heading Angles’ Generation Method

FIGURE 6. The framework of DCAG method.

FIGURE 7. The flow chart of DCAG method in online phase.

adopts multiple hidden layers and full connection structure.
When givenM UAVs, an alternative choice for hidden layers
can be set toM and the number of nodes per hidden layer can
be set to 2M .

Fig. 8 shows the input-output and structure of neural net-
work forM UAVs. Here, we notice that when the intersection
angle between optimal heading and target is close to π rad,
the prediction heading is close to −π rad in the process
of neural network training. Although the prediction heading
and optimal heading are in the same directions, the neural
network will be mistaken for a large deviation when the
single coordinate axis of [π,−π] is used, which will affect
the learning efficiency of neural network. Therefore, in this
paper, two coordinate representations of [−π, π] and [0, 2π ]
are applied for both input and output angles of the neural
network.

C. OFF-LINE NETWORK TRAINING TEST
After the data set and label set are constructed according to
the input and output of the neural network for UAV heading
decision-making, the off-line training and learning of the
network is carried out by using Tensorflow platform [29].

FIGURE 8. The neural network structure.

FIGURE 9. Off-line training and testing flow chart based on Tensorflow
network.

Fig. 9 shows the offline training and testing flow chart based
on Tensorflow platform. Three aspects should be noticed in
the training process: Firstly, the predicted heading angles are
calculated in two coordinate axes. By subtracting from the
optimal heading angles, the minimum deviation is chosen as
the loss function value; Secondly, evolutionary algorithm [30]
are applied to optimize the weights and thresholds of the net-
work; Thirdly, in order to prevent over-fitting of the network,
the network is tested by the training data set to judge whether
the loss function value is continuously reduced and this can
be one of the termination conditions in the training phase.

VI. SIMULATION ANALYSIS
A. SIMULATION EXAMPLE DESCRIPTION
The validity of the proposed DCAG method is verified by a
simulation example of two UAVs conducting AOA localiza-
tion, and the parameter settings are as follows: 1) the path-loss
exponent of AOA localization is a = 0.01; 2) UAV completes
50 direction finding signal sampling times per second; 3) the
maximum and minimum distances between the target and
UAV are Rh = 20km,R1 = 1km, respectively; 4) The mini-
mum distance between the two aircraft is cl = 200m; 5) The
data set of the optimal decision-making neural network for
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TABLE 1. Example of dual machine cooperative passive location data set.

off-line training of AOA localization of each UAV is shown
in Tab. 1. φ[−π,π] and φ[0,2π ] are the AOA measurements,
which are defined such that [−π, π] and [0, 2π ], respectively.
8[−π,π] and 8[0,2π] are the optimal heading angles in two
coordinates.

B. VALIDATION OF DCAG METHOD
According to the optimal navigation data set given in Table 1,
the depth neural network of UAV 1 and UAV 2 is trained off-
line, and the hidden layer of the network is set to be 4 layers
with 12 nodes per layer. In the off-line training phase of the
network, the prediction mean deviation of each generation
on the training data set and the test data set is observed and
recorded simultaneously. As shown in Fig. 10, it can be seen
that the depth neural network of UAV1 and UAV2 descends
from the initial average 90 degree prediction deviation to
average 5 degree deviation after 100 generations of training,
and the prediction deviation on the test data sets also contin-
ues to decline, which indicate that the trained neural network
has not been fitted and has generalization ability.

The initial neural network, training 100 generation, train-
ing 1000 generation and training 10000 generation neural
network are loaded into the corresponding UAV, and put into
the simulation environment of passive location of mobile
target by two UAVs to carry out the actual operation. The
effect of on-line operation under different algebras of neural
network training is observed.

As shown in Fig. 11, the neural network generated by the
initial randomization does not have any ability to optimize
the heading angles without learning; After 100 iterations of
training, each UAV equipped with neural network begins
to learn to adjust and optimize the heading angles in real
time according to the estimated position of the target and the
position of the other UAV; After 1000 iterations of training,
the UAVs follows with the target. After 10000 iterations of
training, the average deviation between the predicted and the
optimal heading angles have also reached below 1 degree.
The accuracy of target positioning is continuously improved

FIGURE 10. The evolution of the deviation in training and testing phases
of different UAVs. (a) Evolution of deviation in training and test phases
of UAV1. (b) Evolution of deviation in training and test phases of UAV2.

and the stable tracking is achieved. Thus, the neural network
construction is accomplished.

C. THE PERFORMANCE OF DCAG METHOD
In this section we verify the analysis of the optimal AOA
localization deployments shown in Sec. III. Two and three
UAVs are applied to localize the target, respectively. When
the target is stationary, the target motion model is given by
Fk = [1, 0; 0, 1]. The true target location is xt = [0, 0]T ,
the initial states of UAVs are x1(1) = [−9600,−5000]T ,
x2(1) = [−10000,−5000]T , x3(1) = [−10000,−5400]T .
The initial heading angles for UAVs are all equal to π/2
(y axis) with constant velocity v0 = 100m/sand the heading
angle constraint is umax = 15◦.
From Figs. 12(a) and (b), it is obvious that each UAV

tries to fly away from each other and tries to obtain a bigger
angular separation ϕ12 tomeet the angle criterion. At the same
time, each UAV does not obtain sufficient target informa-
tion because of the poor initial deployment. After about the
15th time step, the localization error decreases sharply
with the changes of ϕ12. After the 80 time steps, ϕ12 is
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FIGURE 11. The performance of deep neural network online using with
different iterations. (a) Initial randomization. (b) 100 iterations.
(c) 1000 iterations. (d) 10000 iterations.

approximately equal to π/2. Then the UAVs begin to fly
toward to target to get lower CRLB, and localization error
almost converges to zero.

FIGURE 12. The performance of DCAG method with two UAVs.
(a) Generated paths based on DCAG method for two UAVs.
(b) Evolution of angles. (c) Straight-line paths. (d) Evolution of RMSE of
paths based on CRLB and straight-line paths.

In addition, AOA localization without the trajectory opti-
mization is also considered. Fig. 12(c) shows the straight-
line paths of UAV swarms, whereby each UAV flies directly
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FIGURE 13. The performance of DCAG method. (a) The first classical
generated paths for three UAVs based on DCAG method. (b) The second
classical generated paths for three UAVs based on the CRLB.
(c) Performance comparison of generated paths based on DCAG method,
CRTO method and straight-line paths. (d) Performance comparison of
average computing time based on DCAG and CRTO method.

towards the estimated target position. Fig. 12(d) shows
the root mean squared error (RMSE) of paths based on
CRLB compared with straight-line paths after 1000 times of

FIGURE 14. The performance of DCAG method in turbulence.
(a) Generated paths based on DCAG for three UAVs with disturbance.
(b) Evolution of RMSE of paths with disturbance and without disturbance
based on DCAG.

Monte-Carlo simulation. Clearly it can be seen that angle
criterion is able to reduce the location error stably. Mean-
while, the location error without path optimization is large
and obviously uncertain.

The localization performances with three UAVs are
included in the optimization problem. Two classical simula-
tion results are shown in Figs. 13.

From Fig. 13(a) and Fig. 13(b), UAV swarms tend to
expand the angular separations to have a better observa-
tion of the target. For the first classical generated paths,
after about the 75th time step, the distances between each
UAV and the target are almost equal, UAV3 begins to fly
away from the UAV1, according to the angle criterion in the
Corollary2. The optimal deployments can be acquired when
ϕ12 = π/3 or ϕ12 = 2π/3. For the second classical generated
paths, when one of the UAV (UAV3) flies much closer to
the target compared with the other UAVs, i.e., the optimal
deployment is ϕ13 = ϕ23 = π/2. Therefore, the analysis of
optimal deployments and simulations help us to understand
and improve the resultant UAV paths performance in the
realistic case.

Fig. 13(c) shows the performance comparison of gen-
erated paths based on DCAG method, CRTO method and
straight-line paths. The RMSE of UAV swarms in straight-
line paths generally tends to decrease, which is mainly in

VOLUME 7, 2019 70127



W. Wang et al.: Optimal Configuration Analysis of AOA Localization and Optimal Heading Angles’ Generation Method

terms of the distance criterion. However, the localization
accuracy is still unstable with poor deployments. DCAG
method has lower RMSE than CRTO method and we can
easily find that our proposed method has a much better
source localization performance with the lower computation
complexity.

In order to further illustrate the advantages of DCAG
method, Fig. 13(d) shows the average computing time within
each time step (Processor: Intel i7-6500U, 2.50GHz) of
different numbers of UAV swarms compared with CRTO
method. The average computing time of DCAG method
ranges from 2.64 × 10−3 to 1.65 × 10−2 seconds when the
number of receivers ranges from 2 to 8. Whereas, the aver-
age computing time of CRTO method ranges from 1.28 to
29.12 seconds in the same condition. This is mainly because
of time consuming of optimization algorithm in each time
step. With the increasing number of UAV swarms, the advan-
tages of DCAG method will be more prominent.

D. TURBULENCE EFFECTS IN DCAG METHOD
In the real application, UAV swarm may be disturbed by
randomwind gusts. The effect of wind can be modeled by the
Dryden model [31]. Dryden model is one of the most useful
models for atmospheric turbulence. To define it, the turbu-
lence is modeled as a random velocity process added by
the UAV swarms velocity vector in body-fixed coordinate
system.

Let ψi(k) be the wind direction, K be a scale factor repre-
senting the wind gust strength, the disturbed UAV locations
is given by

qi(k) = (v+ κvi(k))
[
cosψi(k)
sinψi(k)

]
(44)

where v is the mean wind noise, vi(k), i=1, · · · ,M is a cor-
related Gaussian noise sequence. The actual location of dis-
turbed UAV at time step k is xi(k+1)+qi(k), where xi(k+1)
is the calculated optimal waypoint.

The trajectories of UAV swarms with disturbance are pre-
sented in Fig. 14(a). The wind parameters are ψi(k) =
π/4, v = 20m/s and κ = 10. It can be seen that the
UAV swarms cannot reach the theoretical waypoints (shown
in Figs. 13(a) and (b)).

Fig. 14 (b) shows the RMSE performance of the UAV
with disturbance. It is clear that the error with disturbance
is slightly higher than that of receiver without disturbance.
However, the planning algorithm is still efficient to achieve
a better performance. No accumulation of errors in DCAG
method is added in each time step, since the path planning
optimization is done with a set of control vectors.

VII. CONCLUSION
In this paper, the analytic solutions of optimal receiver-
target deployment in AOA localization were investigated
when the noise variance was distance-dependent. The both
angle and distance criterions were acquired, which can pro-
vide the understanding of the paths of in AOA localization.

UAV path planning algorithm was extended under motion
and communication constraints. The DCAG method base
on deep neural network was proposed. Compared with the
traditional CRTO method, the DCAG method has three
advantages: Firstly, it transforms the online real-time opti-
mization NP-Hard problem into the off-line machine learning
problem, thus reducing the computation delay; Secondly,
it transforms the central UAV control mechanism into the
continuously distributed heading angles for each UAV. The
self-synchronization mechanism of distributed autonomous
cooperative optimal control vector reduces the delay caused
by communication distribution. Thirdly, the distributed UAV
passive location network formed by DCAG is a decentralized
structure, which increases the survivability and robustness
of the UAV network under actual combat conditions. The
simulation analysis showed that UAV swarms complied with
angle and distance criteria when searching for optimized path
and it was also affected by its own constraints. Analysis of
optimal deployments was verified by simulation examples
and a good agreement between the theory and simulations
was achieved.

Future extensions for this paper are to consider the instanta-
neous motion constraints, three-dimensional terrain environ-
ment, complex electromagnetic environment and multi-target
scenario in real UAV swarms application.
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