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ABSTRACT The V2C controlled buck converter by constant-frequency pulse-width modulation in continu-
ous conduction mode gives rise to a great variety of instability behaviors, depending on the circuit parameter
values. In this paper, the discrete-time model of the regulator is built by taking a current sampling resistor
into consideration. The resulting Monodromy matrix is used to investigate the bifurcation phenomenon and
stabilization property. The converter shows a series of period-doubling bifurcation phenomena accordingly
as the feedback amplification coefficient increases. At the same time, a couple of Floquet multipliers pass
through the unit circle along the negative real axis. Therefore, it reveals the mechanism of a series of period-
doubling bifurcations happened in the system from the perspective of stability. Based on Floquet theory,
a sine voltage compensation method is proposed to stabilize the bifurcation and chaotic behaviors. The
simulations and experimental results proved the theoretical analysis.

INDEX TERMS V2C control, buck converter, period-doubling bifurcation, chaos.

I. INTRODUCTION
Switching power converters are widely employed in various
applications, including emergency power supplies, photo-
voltaic power generation, and electric sources for personal or
laptop computers, as well as vehicle drivers [1].

As a typical PWM control system, V2C controlled con-
verter takes the ripples of output voltage and inductor current
as the control signals. By comparison the ripples with error
comparator, the duty cycle will be adjusted to achieve the
desired output voltage [2]. The control law derived from
adding a feedback current to the original V2 strategy [3], [4],
which means that the manipulating method adopts summa-
tion of the peak voltage inner loop and peak current outer
loop as the feedback signal. The V2 controlled converter has
the advantages of rapid responses to the load and voltage
changes, fitness to the low voltage circuit and so on. Due
to the small ESR of the output capacitor, slope of the inner
loop signal was too small to be detected, which could result
in poor disturbance rejection capabilities. Methods such
as [5]–[7] are proposed to handle the issue. As a solution to
the mentioned problem, the V2C control strategy is proposed.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yijie Wang.

With synthesize the advantages of V2 implementation and
current control strategy, the V2C method offers abilities of
rapid response to the step change with the load and input as
well as the well anti-interference, see [2] and the references
there in.

Switching power converters are strong nonlinear circuits
with rich dynamical behaviors. So far, in such systems, plenty
of complicated nonlinear phenomena have been observed,
such as multi-equilibria [8], period-doubling bifurcation [9],
Hopf bifurcation [10], quasi-periodicity [11], border colli-
sion [12], bi-stability [13] and chaos [14], [15].

The discrete-time model of V2C controlled continuous
conduction mode (CCM) boost converter has been built and
the route to chaos has been analyzed during the variation
of the circuit parameters, see [16]. The sub-harmonic oscil-
lation behavior is illustrated and the slope compensation is
introduced to control it [17]. The sub-harmonic oscillation
of the power regulator affected by the ESR of the output
capacitor has been investigated in [18], however, the influ-
ences of voltage feedback coefficient on stability property
is not considered, nor did control method of stabilizing the
converter system is addressed. The mechanism of bifurcation
and chaos belong to the V2C controlled buck converter are
still open problems.
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Totally speaking, bifurcation and chaos are harmful to
practical applications. With the purpose of suppressing the
instability behaviors in dc-dc converters, the researchers
have proposed some stabilization strategies to control chaos,
such as the OGY method [19], Filter based non-invasive
control [20], parameter perturbation [21], adaptive control
method [22] and so on. Features of these methods lie in
taking advantages of the measures such as state feedback
or parameter disturbance, etc, to change the state variables,
and achieve the stabilization of controlled variables. These
help make control variables return to the steady period state
from the chaos state. Among all the chaos control strategies,
parameter perturbation method has been applied extensively
due to the simplicity and high efficiency, especially a sine
wave voltage perturbation.

In order to explore the nonlinear behaviors of V2C con-
trolled converter in a further step, solve some system unsta-
ble behaviors in projects, and guide some applications in
practical engineering, this paper takes buck converter as the
object, computes the system Monodromy matrix, reveals the
system stable characteristics, and then analyzes the unstable
behaviors when the coefficient of error amplifier changes,
and uses the sine voltage compensation to stabilize the system
and extends the stability boundary.

The outline of the paper is as follows. The mathematical
model of V2C manipulated buck converter is introduced in
Section II. Section III describes the switching points and the
Mondromy matrix of the closed-loop system. Section IV is
devoted to investigations of Mechanism of period-doubling
bifurcation and chaos exhibit in the power stage. In Section V,
the stabilization control strategy is performed. The next
section gives experimental results for verification of the pro-
posed model. Section VII contains the conclusions.

FIGURE 1. V2C controlled buck converter.

II. DISCRETE-TIME MODEL OF
CLOSED-LOOP CONVERTER
Block diagram ofV2Cmanipulated buck converter is as Fig. 1
shows, where G1, Re, Rs and Ur are feedback amplification
factor, ESR of output capacitor, sampled resistor and refer-
ence voltage, respectively.

Supposing the output capacitance is chosen large enough
that the voltage uC can be considered constant. Hence,
the output voltage is given by

uO = 1iLRE + uC . (1)

The detection voltage of the inner loop is

us = uO + RsiL . (2)

Substitution of Eq. (1) into Eq. (2), there will be

us = 1iLRE + uC + RsiL . (3)

When us increases to the error voltage UA, the comparator
G2 will turns over which makes Up changes to low level,
the switch S turns off and the inductor current deceases
linearly. Until the next clock pulse signal comes, it will start
a new switching period.

In the buck converter, iL denotes the inductor current,
uC denotes the capacitor voltage and they are the elements
of the state variable x = [x1, x2]T = [iL , uC ]T . The mathe-
matical model matrices are collected in TABLE 1.

TABLE 1. Mathematical model parameters of buck converter.

In general, the considered closed-loop buck converter
belongs to a class of Filippov systems:

ẋ = f (t, x) , f (t, x) =

{
f+ (t, x) if h (t, x) > 0,
f− (t, x) if h (t, x) < 0.

(4)

where, f−(t, x) and f+(t, x) are two vector fields before and
after the switching manifold 6, separately.
Here the scalar function h (t, x) has a nonvanishing gradi-

ent ∇h on the switching manifold

6 = {(t, x) : h (t, x)=0} .

The switching manifold 6 separates the state space of
system (4) into two different regions in which the dynamic
behavior of (4) is governed by different vector fields f− (t, x)
and f+ (t, x).

Therefore, the state equations of CCM buck converter are
described as follows

f− = A1x+ B1

=


−
1
L

(
Rs +

RRE
(R+ RE )

)
iL−

RuC
L (R+ RE )

RiL − uC
C (R+ RE )

+
[Uin

L

0

]
,

(5)
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f+ = A2x+ B2

=

−
1
L

(
Rs +

RRE
(R+ RE )

)
iL −

RuC
L (R+ RE )

RiL − uC
C (R+ RE )

. (6)

The mathematical expression of V2C control strategy can
be described as

us − UA = 0. (7)

Meanwhile

UA = G1 (Ur − uO) , (8)

Substitute Eq. (3) and Eq. (8) into Eq. (7), we get

uO + RsiL − G1(Ur − uO) = 0, (9)

which equivalent to

uO −
UrG1 − RsiL

1+ G1
= 0. (10)

Supposing the value of RE is very small, if G1 is much
larger than 1, then we can say that uO ≈ Ur . The impacts on
the stability of the converter caused by G1 will be analyzed
in detail in section III.

Eq. (10) can be rewritten as

uO +
RsiL

1+ G1
=

UrG1

1+ G1
, (11)

where RsiL
1+G1

is larger than zero, and we have uO < UrG1
1+G1

.
Meanwhile, G1

1+G1
is definite, and we have uO < Ur . Only

when G1 � 1 and Rs ≈ 0 fulfill, uO ≈ Ur is obtained.
In this case, G1 is very large and Ur − uO is relatively small,
the product of them does not equal zero. As a result, UA is
greater than zero, so does us. Therefore, V2C control strategy
functions.

In this paper,G1 was chosen as 2, 2.5 and 20, which do not
fulfill the conditions mentioned above. As a result, the output
voltage uO are less than Ur .

As iO =
uO
R ≈

uC
R and taking uO as the controlled object,

the switching surface of Eq. (10) could be rewritten as

h2 = uC +
(
iL −

uC
R

)
RE −

URG1 − RsiL
1+ G1

= 0. (12)

SinceA1 = A2 = A andB2 = [0, 0]T , the iterate equations
of switching points belong to CCM buck converter can be
written as [23] shows:

eAdnT x(nT )+ A−1(eAdnT − I)B = x(nT + dnT ) (13)

eAd
′
nT x(nT + dnT ) = x[(n+ 1)T ]. (14)

where, dn is the relative pulse duty cycle for the n-th rump
period, i.e. for the time interval nT < t < (n + 1)T and
d ′n = 1− dn.
Substitution of Eq. (13) into Eq. (14) yields

x[(n+ 1)T ] = eAT [x(nT )+ xs]− eAd
′
nT xs, (15)

where, xs = A−1B.

It is clear that Eq. (15) shows the discrete-time mathe-
matical model of CCM V2C manipulated buck converter.
As thesystem enters stable mode, x[(n+1)T ] equals to x(nT ),
Eq. (15) could be rewritten as

x (nT ) =
eAdnT − eAd

′
nT

I − eAdnT
xs (16)

From the switching surface at the switching off point

x2

(
1−

RE
R

)
+ x1

(
RE +

Rs
Kv + G1

)
=

UrG1

Kv + G1
(17)

According to Eq. (13), one obtain

x2

(
1−

RE
R

)
+ x1

(
RE +

Rs
Kv + G1

)
=

[(
1−

RE
R

)
,

(
RE +

Rs
Kv + G1

)]
× (eAdnT x(nT )

+A−1(eAdnT − I)B), (18)

Therefore,

UrG1

Kv + G1
=

[(
1−

RE
R

)
,

(
RE +

Rs
Kv + G1

)]
× (eAdnT x(nT )+ A−1(eAdnT − I)B). (19)

Substitution of x(nT ) from Eq. (16) into Eq. (19) yielding
duty cycle dn. As a result, the state variables x(nT ) are
obtained. Note that if the duty cycle dn is 0 or 1, then the
modulator will saturate, the OFF or ON state of switching
tube will remains during the current switching period till next
cycle begins.

III. STABILITY ANALYSIS
In a switching period, the trajectory of state variable belongs
to converter forms a limit cycle in the phase space. Accord-
ing to Filippov theorem [24]–[27], as the maximum eigen-
value (also named Floquet multiplier) of Monodromy matrix
belongs to state transition matrix in a switching period is
within the unit circle, the power converter stays stable; when
it is on the unit circle, the period-doubling bifurcation phe-
nomenon will happen in the system; otherwise, the system is
unstable.

The local stability of the periodic solution xp is determined
by the eigenvalues (multipliers) of theMonodromymatrixM .
The Monodromy matrixM is found by solving the variation
equation:

Ṁ (t) = Dxf±
(
xp(t)

)
M (t) ,M (0) = I for 0 < t < dT

(20)

and

Ṁ (t) = Dxf±
(
xp(t)

)
M (t) ,M+ = S ·M−

for dT < t ≤ T , (21)

with

S = I + P−, M±=M (dT ± 0) = lim
t→dT±0

M (t) , (22)
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where,

P− =

(
f+ − f−

)
nT

∂h
∂t + n

T f−

∣∣∣∣∣=xp
=dT

,

f± = lim
t→dT±0

f± (x (t)) .

HereDxf±
(
xp(t)

)
is the Jacobian matrix, S is the saltation

matrix, I is the unit matrix and nT = ∂h(t,x)
∂x , Ṁ (t)= dM(t)

dt .
Hence, the Monodromy matrix M(T ) for the considered

system is determined by

M (T ) = 82 · S ·81 = eA(1−d)T · S · eAdT (23)

where, 81 = eAdT and 82 = eA(1−d)T are the transition
matrices.

From the switching surface of the regulator, normal vector
could be given by

n =

RE +
Rs

1+ G1

1−
RE
R

, (24)

the derivative of switching surface with respect to time t is:

∂h(t, x)
∂t

= 0, (25)

and then the following equations can be obtained:(
f+ − f−

)
nT

=

−(RE + Rs
1+ G1

)
Uin
L −

Uin (1− RE/R)
L

0 0

 , (26)

nT f−

=

[
RE +

Rs
1+ G1

1−
RE
R

]

·


−

iL
L

(
Rs +

RRE
R+ RE

)
−

RuC
L(R+ RE )

RiL − uC
C(R+ RE )

+
UinL

0


 ,
(27)

Substitution of the former four equations into Eq. (22)
yielding the expressions of saltation matrix S. As a result,
theMonodromymatrixM(T ) in the whole period is obtained.
Provided that the entire system will exhibit period-4 bifur-

cation behavior, the trajectory of the state crosses the switch-
ing surfaces four times during two switching periods. The
resulting Monodromy matrix is as follows:

M(2T ) = S4 ·84 · S3 ·83 · S2 ·82 · S1 ·81. (28)

where, Si, i = 1, 2, 3, 4 are the saltation matrices of the
switching surfaces; 8i are the transition matrices.
To calculate the state variables at the switching instant,

we could follow the procedure similar to Eqs. (12) and (13).
Based on the calculations, the values of the state variables

will be obtained, as well as the switching matrices and tran-
sition ones. As a result, the eigenvalues of M(2T ) will be
determined, which leads to the indication of the period-4
bifurcation. However, the method used in the paper could not
predicts the occurrence of chaos.

Apparently, Rs and RE will influence both (f+ − f−)nT

and nT f−. Furthermore, theywould have impacts on saltation
matrix S and Monodromy matrixM . Thus, Both the resistors
have to be contained in the proposed mathematical model of
the converter.

TABLE 2. The circuit parameters of V2C controlled buck convector.

FIGURE 2. Evolution diagram of the maximum Floquet multiplier.

IV. MECHANISM OF THE BIFURCATION AND CHAOS
In order to facilitate analysis, one adopts the parameters
shown in TABLE. 2. From Eq. (15), we can calculate the
Floquet multiplier of Monodromy matrix M , whose evo-
lutions and loci diagram are plotted in Fig. 2 and Fig. 3,
separately. The resulting bifurcation diagram is illustrated
in Fig. 4. The stable borderline between the period-2 bifur-
cation and period-one orbit is found by setting the maximum
Floquet multiplier to 1:

max |λM | = 1. (29)

By combining Eqs. (23) and (29), we can work out that
G1 = 2.240, and at this time instant, the eigenvalues are -
1.000 and 0.5924, respectively. Therefore, a multiplier passes
through the unit circle from the negative real line, the other
stays within the unit circle. At this point, the period-doubling
bifurcation occurs.
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FIGURE 3. Multipliers loci for G1 ∈ [1,8].

FIGURE 4. Bifurcation diagram of the converter.

FIGURE 5. Phase portrait of a stable period one orbit with G1 = 2.

A. PERIOD-ONE
The systemworks in the stable period one state whenG1 = 2.
The phase portrait of iL − uO and simulation spectrums
of iL are depicted in Fig. 5 and Fig. 6, respectively. The
Floquet multipliers are 0.9260 and 0.6052. The equilibrium
points of subsystems S1 and S2 are E1(2.67, 8) and E2(0, 0),
respectively. When the system switches periodically between
two subsystems, the dynamical behaviors of the system are
composed of them. Meanwhile, the periodic switching would
form two interfaces. One of them is the switching condition,
also namely the switching surface h2; the other would be the
periodic clock signal T .

FIGURE 6. Simulation frequency spectrums of the ripples of iL
with G1 = 2.

FIGURE 7. Phase portrait of a period doubling orbit with G1 = 2.5.

FIGURE 8. Simulation frequency spectrums of the ripples of iL
with G1 = 2.5.

B. PERIOD-DOUBLING
SinceG1 = 2.5, the Floquet multipliers are 1.074 and 0.5798.
The maximum Floquet multiplier is greater than 1 and period
doubling bifurcation takes place, as shown in Fig. 7. The
simulation spectrums of iL is illustrated in Fig. 8. Suppose the
system starts when t = 0 with starting point A1. The system
first runs in the mode with switch S is on. In this time interval,
the trajectory of the converter is shown as the curve of A1-B1,
which has the equilibrium point of E1(2.67, 8). After time
interval of t = d1T , the state variables reaches the switching
surface h2 and turns off the switch. Therefore, the curve of
B1−A2 depicts the state trajectory in the second time interval
with equilibrium point E2(0, 0). At the time t = T , the next
switching period starts. The resulting state trajectories are
illustrated as the curves of A2−B2 and B2−A1. At time
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instant of t = 2T , the state variables return to A1. By repeat-
ing these procedures continuously, the period-doubling oscil-
lation is formed.

C. CHAOS
As the feedback coefficient G1 continues to increase, period-
doubling bifurcation correspondingly happens in the system.
When G1 increases to a certain value, the system trajectory
generates the chaos phenomenon. The phase diagram is pre-
sented in Fig. 9 when G1 = 20, and the Floquet multipliers
are 2.454 and 0.3801, separately. The resulting simulation
spectrums of iL is depicted in Fig. 10.

FIGURE 9. Phase portrait of chaotic orbit with G1 = 20.

FIGURE 10. Simulation frequency spectrums of the ripples of iL
with G1 = 20.

From the above analysis, it can be concluded that the V2C
controlled buck converter has significant nonlinear behaviors
with the change of the circuit parameters. This paper just
only analyses how the change of feedback ratio G1 affects
the unstable behaviors of the converter. Likewise, the method
introduced in this paper is available to study the impacts
of other circuit parameters, e.g. Ur and Uin, on the system
dynamic behavior.

V. STABILIZATION CONTROL
In order to stabilize the unstable behaviors of the system,
the stabilization control strategy is proposed. A sinusoidal
signal Ue which has the same frequency of the switching
frequency f is added on Ur , thus ∇h2 and saltation matrix S1
will be changed, which makes the maximum eigenvalue of
Monodromy matrix lies in the unit circle and expands the

TABLE 3. Stable borderline as max
∣∣λMe

∣∣ = 1.

FIGURE 11. Evolution diagram of multipliers with different a.

stability boundary. Resulting from which, the bifurcation and
the chaotic phenomena of the system are controlled success-
fully [21].

Additive sinusoidal signalUe takes the form of a sin(2π ft),
then the resulting reference voltage after being compen-
sated is:

Ure = Ur + Ue = Ur + a sin(2π ft). (30)

The switching surface and its derivative equation can be
expressed as follows

he = uC +
(
iL −

uC
R

)
RE

−
[Ur + a sin(2π ft)]G1 − RsiL

1+ G1
= 0, (31)

∇he =
2aπ fG1 cos(2π fdeT )

1+ G1
. (32)

The saltation matrix can be shown as follows

Se1 = I +
(f+ − f−)n

T
e

nTe f− +∇he
. (33)

where, ne =

[
RE +

Rs
1+G1

1− RE
R

]
.

Hence, the Monodromy matrix is:

Me = Se2 ·8eoff · Se1 ·8eon = 8eoff · Se1 ·8eon. (34)

From Eq. (34), we can figure out the minimum boundary
value amin of the system stabilization. The value is shown
in Table 3. Meanwhile, The evolution diagram of multipliers
with different feedback coefficient a is depicted in Fig. 11.
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FIGURE 12. The phase diagram of the output voltage waveform.
(a) Transient response of the output voltage. (b) Output voltage and the
switching surfaces.

An extra sinusoidal signal Ue = 0.1 sin(2π ft) is imposed
on reference voltage Ur at the time t = 0.12s. From simu-
lation result Fig. 12, the output voltage uO reaches the stable
state of period one within 20 switching periods. The transient
responses of the output voltage and switching surface are
shown in Fig. 13. The values of the switching points and
Floquet multipliers are as collected in Table. 4.

TABLE 4. The Floquet multiplier when a = 0.1.

It is clear that the compensation makes the output voltage
of the converter uO intersects with the point P of the positive
half period of he, rather than intersects with the switching
surface h2 at pointQ, which shortens the distance between the
switching balance point x(deT ) and the switching surface h2,
then the duty cycle of the converter is reduced. Therefore, the
time interval of adding energy in the system decreases slightly
and the system achieves the stable orbit of period one.

VI. EXPERIMENTAL RESULTS
Experimental waveforms are described to verify the theo-
retical analysis. The experimental schematic is illustrated
in Fig. 13.

It is clear that the ESR of the output capacitor influence
the stability property of the entire system greatly. Therefore,
the ESR is illustrated in Fig. 1, independently. However,
in real applications, the ESR belongs to the output capacitor
will not actually implemented.

The experimental waveforms are shown in Fig. 14. The
top of every diagram is the reference voltage Ur , the middle
waveforms are the output voltage uO, inductor current iL
and duty cycle d , the lowest are the pulse signals CLK. The
experiments show that as the feedback factor G1 increases
constantly, the V2C controlled buck converter will enters into
the period-doubling state from the stable period one, and then
it will double continuously until chaos. After the sinusoidal
signal compensation Ue = 0.1 sin (2π ft) is injected to Ur ,

FIGURE 13. The circuit diagram of V2C controlled buck converter.
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FIGURE 14. Experimental waveforms of V2C controlled buck converter. (a) The waveforms of period-one when
G1 = 2. (b) Period-doubling bifurcation when G1 = 2.5. (c) Chaos when G1 = 20. (d) Controlling chaos to stable
period-1 when a = 0.2.

the V2C controlled buck converter is stabilized into stable
state of period-one.

It can be seen that the output voltage and inductor cur-
rent are smaller than the simulation results, owing to the
ignorance of the parasitic components such as equivalent
series resistance. The same reason, the state deviations is
generated, which is within acceptable limits. In summary,
bifurcation behaviors of theoretical analysis and experimental
waveforms were found to correlate well with each other.

VII. CONCLUSION
The V2C controlled buck converter has some outstanding
advantages, such as the fast load transient response, which
can be applied in some industrial environment with low
voltage and heavy load changes. As the feedback factor G1
increases, the output voltage of the system gets close to the
reference voltage gradually, but in the same time, the period-
doubling bifurcation also occurs, which will cause the system
turns to be unstable. That is to say, the system will show
the period-doubling bifurcation and the fourth period bifur-
cation and even comes into chaos from the stable period one.
The theory of Monodromy matrix reveals why the period-
doubling bifurcation takes place in the system. With the
increase of G1, a characteristic multiplier of the Monodromy
matrix passes through the unit circle from the negative half
plane in the coordinate axis, and then the period-doubling
bifurcation occurs. According to this principle, under the
premise of not affecting the system steady-state error, use
the sinusoidal voltage to compensate the reference voltage,
to decrease the duty ratio of the system slightly, to shorten
the length of obtaining energy and to stabilize the converter’s
output signal into the first periodic orbit from bifurcation or
chaos. This method extends the stable region of the system

and improves the stability of the system, which is beneficial
for promotion and application of V2C control strategy in the
industrial field.
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