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ABSTRACT Incipient damages of wind turbine rolling bearing are very difficult to be detected because of
the interference of multi-frequency components and strong ambient noise. To solve this problem, this paper
proposes a new detected method named VMD-AMCKD, combining complementary advantages of varia-
tional mode decomposition (VMD) and adaptive maximum correlated kurtosis deconvolution (AMCKD).
A novel index is proposed to screen out the most sensitive mode containing fault information after VMD
decomposition. The mode also can determine a suspectable range for the fault frequency, based on which
the optimized range of devolution period T in MCKD can be pre-determined. The Grasshopper optimization
algorithm (GOA) is adapted to adaptively select the key parameters in MCKD. The proposed method can
successfully diagnose the simulated signal mixed with strong white Gaussian noise. Its robustness is further
proven by the diagnosis for three different types of experimental signal from CWRU bearing data center.
Finally, the VMD-AMCKD is applied to detect incipient damages of rolling bearings in a laboratory wind
turbine.

INDEX TERMS Incipient damage detection, rolling bearing, wind turbine, variational mode decomposition,
adaptive maximum correlated kurtosis deconvolution, grasshopper optimization algorithm.

I. INTRODUCTION
Due to the features of abundance, cleanness and renewability,
wind power resource has received increasing attentions from
the academic and industrial fields in recent years [1], [2].
To harvest the wind energy, plenty of wind turbines have
been built and applied every year. However, wind turbines
are vulnerable to maintain normal operations because of
their extremely severe working conditions. Among all the
factors leading to functional failure of wind turbines, the most
frequent and influential one is bearing failure [3]. Incipient
damages of rolling bearing may result in significant bearing
fault, causing damages to other components. Therefore, it is
of great importance to detect incipient damages of rolling
bearing before they arouse catastrophic results. However,
incipient damages of rolling bearings are very difficult to be
detected [4]. The reason may lie in that the fault features of
rolling bearing arousing from incipient damages are usually
very weak, which are very likely submerged either by multi-
frequency information or by strong background noise.

The associate editor coordinating the review of this manuscript and
approving it for publication was Francesco Tedesco.

In general, the collected vibration signal of mechanical
systems is a superposition of vibration information of each
component and background noise [5]. Thus, signal decom-
position is often used to filter out noise and get a sensitive
mode containing fault information for fault identification [6].
For this purpose, many signal processing methods, including
classic wavelet decomposition [7], empirical mode decompo-
sition (EMD) [8] and local mean decomposition (LMD) [9]
have been developed in recent decades. These methods have
achieved commendable results in the field of fault identifi-
cation, however, they still have the following problems. For
the classic wavelet decomposition, it is difficult to choose
suitable wavelet base functions and decomposition layers
regarding to different actual signals. The recursive mode
decompositionmethods such as EMDandLMDhave no strict
mathematical derivation and still suffer from the end effect.

To eliminate the modal aliasing and the end effect,
Dragomiretskiy and Zossot [10] proposed variational mode
decomposition (VMD) in 2014. Since its proposition,
the analysis methods based on VMD have been developed
rapidly and applied widely. For instance, Satish et al. [11]
proved that VMD outperforms EMD in diagnosing fault
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signal of rolling bearings. Zhang et al. [12] applied VMD
to identify the damage type in multistage centrifugal pump.
For the studies of [11] and [12], the parameters of K and α
in VMD were determined with the authors’ prior knowl-
edge. However, the fact is that an inappropriate choice for
the parameters of K and α in VMD will lead to incorrect
decomposition results. So as to implement adaptive determi-
nation of VMD parameters, Yan et al. [13] used the genetic
algorithm (GA) to optimize α and K . In order to avoid mode
mixing in VMD, Li et al. [14] determined the mode number
K with the peak searching method.

Though VMD can extract fault features through signal
decomposition, Reference [15] proved that it fails to fully
extract all fault information under strong background noise.
To suppress the heavy noise, maximum correlated kurto-
sis deconvolution (MCKD) was proposed and has been
widely applied in fault detection [16]–[19]. For example,
Zhao and Li [17] used MCKD to successfully suppress the
noise when diagnosed the weak fault of wind turbine bear-
ings. By adopting MCKD with improved spectral kurtosis,
Wan et al. [18] and Jia et al. [19] achieved satisfactory
diagnosis effects of early bearing faults. However, in these
investigations, the period of deconvolution T and the length
of filter L in MCKD were determined either by authors’
experience or by prior knowledge. To solve this problem,
Tang and Wang [20] adopted the particle swarm optimiza-
tion (PSO) to select L and T when conducted MCKD. Piti-
fully, they did not explain how to determine an optimized
range for the parameter of T . Because the parameter of T
is closely related to the bandwidth that may contain the
fault characteristic frequency, pre-process the signal to make
sure it contains fault features before carrying out MCKD is
necessary. To improve the diagnosis efficiency, one may need
an intelligent optimization algorithm to shorten the search-
ing time for the MCKD parameters. Among all the intelli-
gent optimization algorithms, the grasshopper optimization
algorithm (GOA) has been proved being superior over other
optimization algorithms such as PSO, GA and etc. [21].

In view of the above studies, it can be found that adopting
VMD under strong background noise can hardly achieve
desirable diagnostic results while using MCKD without sig-
nal pre-processing may miss suspectable fault frequency.
Since the vibration signals of wind turbine rolling bearings
often subjects to heavy noise and multi-frequency interfer-
ence, it naturally comes to the author that we can combine
the two algorithms of VMD and MCKD to utilize their
complementary advantages for incipient damage detection.
To be specific, we can use VMD for signal pro-processing,
i.e., to obtain the most sensitive mode of original signal con-
taining fault information. Meanwhile, through VMD we can
determine a suspectable range for the fault frequency, based
on which the optimized range of devolution period T can be
pre-determined. Then we adopt the intelligent optimization
algorithm GOA to fulfil an adaptive selection of the period
of deconvolution T and the length of filter L in MCKD.
We named the optimized MCKD algorithm as AMCKD.

Finally, the most sensitive component of the original signal
is further used to carry out AMCKD to obtain the weak fault
features. This is the basic idea of VMD-AMCKD method.

Bearing with the above idea, the subsequent sections of this
article are arrayed as follows. In Section II, the theoretical
foundations of VMD-AMCKD are briefly introduced. The
detailed steps of VMD-AMCKD are described in Section III
followed by its application to a widely used simulation signal
in Section IV. In section V, three cases of CWRU bear-
ing data center are used to demonstrate the robustness of
VMD-AMCKDmethod. In Section VI, two kinds of incipient
damage of rolling bearings in a laboratory wind turbine are
detected by the proposed method. End of this paper, some
conclusions are summarized in Section VII.

II. THEORETICAL FOUNDATIONS OF VMD-AMCKD
The theoretical foundations of three algorithms of VMD,
MCKD andGOA involved in the proposedmethod are briefly
introduced for better understanding of VMD-AMCKD
method in this section.

A. BRIEF INTRODUCTION OF VMD
VMD aims to decompose a real-valued input signal x into
a series of discrete modes uk with certain sparsity proper-
ties [10]. All frequency components of each mode are con-
centrated near a center frequency ωk . The bandwidth of each
mode is reckoned by the squared L2 norm of the gradient.
The sum of all uk equivalents to x as a constraint. Therefore,
the construction and solution of variational mode decompo-
sition is considered as the constrained variational problem
described by the following equation.

min
{uk },{ωk }

{
K∑
k=1

∥∥∥∥∂t [(δ (t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥ 2

2

}

s.t.
K∑
k=1

uk = x

(1)

where {uk}: = {u1, . . . , uK}, {ωk}: = {ω1, . . . , ωK}; K is
the decomposition mode number; δ(t) represents the Diarc
distribution; t indicates the time; j is an imaginary unit;
‘‘∗’’ represents a convolution operation; ∂t(·) is a function
seeking partial derivative of t .

To solve the problem of (1), the Lagrangian multiplier λ
and the quadratic penalty term α are used to make the prob-
lem unconstrained. Herein, λ can enhance the constrained
stringency while α can effectively guarantee reconstructed
accuracy. The augmented Lagrangian is described as follow.

L({uk} , {ωk} , λ)

= α

K∑
k=1

∥∥∥∥∂t [(δ (t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
2

+

∥∥∥∥∥x (t)−
K∑
k

uk(t)

∥∥∥∥∥
2

2

+

〈
λ (t) , x (t)−

K∑
k=1

uk (t)

〉
(2)
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Thus, the solution of (1) is transformed into finding the
saddle point of (2). Firstly, K , the frequency domain expres-
sion of mode û1k , the corresponding center frequency ω1

k and
a Lagrangian multiplier λ̂1 are initialized. Therefore, uk , ωk
can update according to (3) and (4), respectively.

ûn+1k (ω) =

x̂ (ω)−
∑
g>k

ûn+1g (ω)−
∑
g>k

ûn+1g (ω)+
λ̂n(ω)
2

1+ 2α
(
ω − ωnk

)2
(3)

ωn+1k =

∞∫
0
ω

∣∣∣ûn+1k (ω)

∣∣∣2 dω
∞∫
0

∣∣∣ûn+1k (ω)

∣∣∣2 dω (4)

where g ∈[1, K ], n is the number of iterations.
With modes and the center frequencies acquired by (3)

and (4), the Lagrangian multipliers is renewed through the
following equation.

λ̂n+1 (ω)← λ̂n (ω)+ Γ

(
x̂ (ω)−

∑
k

ûn+1k (ω)

)
(5)

where 0 is an updated factor and represents the noise-
tolerance.

The above iteration of (3), (4) and (5) is continued until
convergence, namely

K∑
k=1

∥∥∥un+1k − unk
∥∥∥2
2
/
∥∥unk∥∥22 < ε (6)

where ε is a positive value for precision.

FIGURE 1. Principle of MCKD algorithm.

B. BRIEF INTRODUCTION OF MCKD
MCKD is a method to extract weak impact components from
low SNR (signal-to-noise ratio) signal by raising the kurtosis
of signals [16]. When neglecting the influence of noise, one
can define the discrete signal xi as the response excited by a
fault impulse signal yi. maximum correlated kurtosis decon-
volution is used to find a series of FIR filter fl to maximize the
correlated kurtosis of yi recovered from the responsive signal
xi as described in (7) and in Fig.1.

y = f ∗x =
L∑
l=1

flxi−l+1 (7)

where y, x are the vectors of yi, xi; f = [f1 f2 . . . fL]T; l =
1, 2, . . . ,L with L being the filter length.

The definition of correlated kurtosis can be expressed as.

CKM (T ) =

N∑
i=1

(
M∏
m=0

yi−mT

)2

(
N∑
i=1

y2i

)M+1 (8)

where T is the period of deconvolution; N is the length of
collected signal andM is the number of conversion. Increas-
ing M will increase the number of pulses. But for a large M ,
the iterative method will result in a loss of numerical preci-
sion [17]. In the present study,M is set as 7.

The optimized function of maximum correlated kurtosis
deconvolution can be defined as.

max
f
CKM (T ) = max

f

N∑
i=1

(
M∏
m=0

yi−mT

)2

(
N∑
i=1

y2i

)M+1 (9)

Equation (9) is used to get themost suitable filter which can
maximize the correlated kurtosis. The calculated equation is
expressed as,

d
dfl
CKM (T ) = 0 (l = 1, 2, · · · ,L) (10)

Further, the final solution of f is expressed as

f =
‖y‖2

2 ‖β‖2

(
X0XT

0

)−1 M∑
m=0

XmTψm (11)

where

β =


y1y1−T · · · y1−MT
y2y2−T · · · y2−MT

...

yN yN−T · · · yN−mT


N×1

;

X r =


x1−r x2−r x3−r · · · xN−r
0 x1−r x2−r · · · xN−1−r
0 0 x1−r · · · xN−2−r
...

...
...

. . .
...

0 0 0 · · · xN−L−r+1


L×N

,

r = [0 T 2T · · · mT ];

ψm =


y−11−mT

(
y21y

2
1−T · · · y

2
1−MT

)
y−12−mT

(
y22y

2
2−T · · · y

2
1−MT

)
...

y−1N−mT
(
y2N y

2
N−T · · · y

2
N−MT

)

N×1

.

C. BRIEF INTRODUCTION OF GOA
GOA is one of nature-inspired algorithm that simulates the
process of grasshoppers prey in nature [21]. Their behavior
can be expressed as a mathematic model as the follow.

Pi = Si + Gi +Wi (12)
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where Pi represents the position of the i-th grasshopper;
Si and Gi represents the social interaction and the gravity
force on the i-th grasshopper, respectively; Wi represents the
wind advection.

Usually, a modified equation as expressed in (12) is
adopted to simplify the above equation when applying the
GOA algorithm. Herein, the gravity (Gi) is omitted; the social
interaction(Si) is optimized; the wind direction (Wi) is sup-
posed to be always towards the optimal target. The position
of the i-th grasshopper in the d-th dimension can be calculated
by following equation.

Pdi = c

 N ′∑
j=1,j6=i

c
ubd − lbd

2
s
(∣∣∣pdj − pdi ∣∣∣)pj − pidij

+ T̂d
(13)

where c is a decreasing coefficient; j ∈ [1,N ′], N ′ is the size
of grasshopper swarms; ubd and lbd are the upper and the
lower bounds in the d-th dimension; s (r̄) = f0e−r̄/l0 − e−r̄ ,
generally, f0 = 1.5 and l0 = 0.5 are chosen [21]; dij =
|pi-pj| is the distance between the i-th and the j-th grasshop-
per; T̂d is the optimization target. As can be seen from (13),
the next position of the grasshopper is determined by its
current position, optimal target, and the positions of other
grasshoppers.

To achieve a better optimized effect, the decreasing coeffi-
cient c adopts a linearly-varying dynamic value:

c = cmax − h
cmax − cmin

H
(14)

where h is the number of current iteration;H is the maximum
number of total iterations; cmax and cmin are themaximum and
minimum decreasing coefficients. The parameter c ensures
that the GOA algorithm can’t converge to the target too
quick, thereby avoiding local optima and accelerating the
convergence speed in the last few iterations.

When using the GOA to optimize the MCKD parameters,
a fitness function needs to be determined. In this paper, the fit-
ness function adopts the value of crest factor of envelope
spectrum (Ec) which was proposed in [22]. Assuming that
envelope spectrum amplitude sequence of the signal is X (z)
(z = 1, 2, . . . ,Z ), Ec can be expressed as

Ec =
max (X (z))√∑
z
X (z)2/Z

(15)

where X (z) is the amplitude of envelope spectrum within
the frequency range of [f ′r , γ f ′i ]. Herein, f

′
r is larger than

the maximum rotational frequency of the shaft in the drive
system. f ′i is the maximum rolling bearing fault characteristic
frequency of the system; and γ ∈ [4, 8].

A high value of Ec means a strong periodic impact, thus
representing a more distinct fault feature. Since the objec-
tive of GOA optimization is to find the minimum value,
the value of ‘−Ec’ is served as the objective function in
VMD-AMCKD.

FIGURE 2. Pseudo code of the GOA algorithm.

Fig.2 is a pseudo code of the GOA algorithm that can
express the main steps of optimization process.

III. PRINCIPLE AND DESCRIPTION
OF VMD-AMCKD METHOD
The flowchart of VMD-AMCKD method is illustrated in
Fig.3. As can be seen from the above figure, there are several
key points for this newly proposed method: (1) How to deter-
mine K . (2) How to select the most sensitive mode. (3) How
to determine the optimal range of parameter T . The detailed
steps of VMD-AMCKD as listed below:
Step 1: Determine the key parameters of α and K in VMD

and then apply VMD to analyze the input signal. Herein,
α = 2000 is set, which is its default value of [10]. The
decomposition mode number K is determined by center fre-
quency observation to avoidmodemixing. The detailed deter-
mination process of K is addressed as follows. 1) Initialize
K = 2.2) Update K with K = K + 1.3) Carry out VMD and
compare the maximum value of center frequency ωKmax and
ωK−1max produced in the K -th iteration and (K -1)-th iteration.
The calculation of the central frequency is determined by (4),
that is, the center frequency is calculated by power spectrum.
4) Stop the iteration when ωKmax-ω

K−1
max ≤ 0.01 fs. 5) Selected

K = K − 1 as the decomposition mode number.
Step 2: Select the most sensitive mode and determine the

optimized range of deconvolution period T . When selecting
the most sensitive mode, the distribution density of impact
impulses and the correlation between the component and the
whole should be considered [6]. An index CEc is proposed to
combine the correlated coefficient C and crest factor of enve-
lope spectrum Ec as defined in (20), which can be expressed
as follows.

CEc = |C| · Ec (16)

C =
E [(uk − ūk) (x − x̄)]

E
[
(uk − ūk)2

]
E
[
(x − x̄)2

] (17)

where |C| is an absolute value of the correlated coefficient
between a component signal uk and the original signal x;
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FIGURE 3. Flowchart of VMD-AMCKD.

E(·) represents the mathematical expectation; ūk and x̄ rep-
resent the average value of the signal sequence.

On the basis of above definitions, the most sensitive mode
can be selected through the maximum value of CEc index
according to the VMD decomposing results of fault sig-
nals. The selected most sensitive mode is then analyzed
by envelope demodulation. From the envelope spectrum,
the frequency fd corresponding to the largest amplitude is
selected as the central value of suspectable fault frequency
interval. It should be noted that fd cannot be the frequency
of the known motor input speed. With the determined central
value fd, the suspectable fault frequency interval can be set.
Note that this interval of suspectable fault frequency should
be appropriate: a small interval may not contain the fault
frequency while a large interval will increase the computation
cost. Based on our tremendous practices, we recommend
the interval as fa = [0.8fd, 1.2fd]. After determining the
suspectable fault frequency interval, the optimized range of
the deconvolution period T can be calculated as

T = fs/fa (18)

where fs is the sampling frequency.

Step 3: Optimize the key parameters of L and T in MCKD
algorithm with GOA and use MCKD to pick up the charac-
teristic information from the most sensitive mode signal. Set
the parameters of N ′ = 30 and H = 15. Set the optimized
range of parameter L as [100, 1000].
Step 4: Extract incipient fault features of damaged bearing

through the Hilbert envelope demodulation. The frequency
corresponding to the spectral line with obvious peak in the
envelope spectrum is often selected as the suspectable fault
frequency.
Step 5: Compare the extracted suspectable fault frequency

with the theoretical fault characteristic frequency and identify
the damage type and location.

IV. APPLICATION TO A SIMULATED SIGNAL
In this section, a pulsed signal proposed by [20], [23], [24] is
used to inspect the validity of the VMD-AMCKD method in
detecting incipient damage of rolling bearing inner race. The
simulated signal can be formulated as

x (t) =
∑
κ

Aκh (t − κT1 − τκ)+ n (t)

Aκ = A0 sin (2π fr t)+ CA
h (t) = exp (−C0t) sin (2π fnt)

(19)
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FIGURE 4. Waveform and spectrum of the simulated signal: (a) time
waveform; (b) frequency spectrum and (c) envelope spectrum.

where Aκ is amplitude modulation with a period of 1/fr and
fr is the rotation frequency of the axis; h(t) is the oscillating
impulse with an average inter-arrival time T1; τκ is the small
fluctuation of κ-th impact around T1; n(t) represents a white
Gaussian noise with SNR of -17dB. In the present study,
fr = 20 Hz; T1 = 0.01 s and it means that fault characteristic
frequency fi is 100 Hz; A0 = 0.5; CA is an arbitrary constant;
C0 = 800; fn = 2000 Hz. 8192 points are analyzed for this
case while the sampling frequency fs is 12800 Hz.
The time waveform, the spectrum and the envelope spec-

trum of the simulated signal as illustrated in Fig. 4.
From Fig. 4(a), there are no significant periodic impulses

in the time waveform. All periodic features of original
impulse signal are completely submerged by the white

Gaussian noise. Consequently, it can hardly identify fault
information from Fig. 4(b), Fig. 4(c). This manifests that
traditional time–domain analysis and the traditional spectrum
analysis fail to detect the incipient damage of rolling bearing
under strong background noise. The following will demon-
strate how to use the proposed VMD-AMCKD method to
detect the impact pulse in the simulated signal.

Firstly, determining K according to Step 1 as described in
Section 3. As shown in Table 1, The center frequency ωk of
each mode according to different updating K is calculated.

From Table 1, one can find that. ω6
max-ω

5
max = 5835.8 −

5805.4 = 30.4 ≤ 0.01 fs = 128. Therefore, the decomposi-
tion mode number is determined as K = 5.
After determining K , the original signal is decomposed

through variational mode decomposition with α = 2000
and K = 5. The results after VMD analysis are illustrated
in Fig. 5.

There are five modes is clearly observed from Fig. 5.
Meanwhile, the bandwidth of each individual decomposition
mode doesn’t overlap. This proves that the selection ofK = 5
is proper in that it doesn’t arouse mode mixing.

Secondly, calculating the value of CEc for each decompo-
sition mode according to (16) and selecting the most sensi-
tive mode according the calculation results. The calculation
results are illustrated in Fig. 6.

As can be observed from the figure that the second mode
u2 claims the largest value ofCEc. Therefore, u2 is selected as
the most sensitive mode to perform envelope demodulation.
The result is illustrated in Fig. 7.

As can be seen in Fig. 7, the characteristic frequency
corresponding to the large amplitude is fd = 120.3 Hz.
Therefore, the suspectable fault frequency interval of fa is set
as [96, 144]. Hence, the optimized range of period decon-
volution T can be defined as [89, 133] according to (18)
as described by Step 2 in Section 3. In addition, it is wor-
thy to point out that it is difficult to extract the fault fea-
tures through envelope demodulation of the most sensitive
mode obtained from VMD. Besides, there exists three promi-
nent spectral lines whose amplitude is very approximate.
This implies that using VMD independently under strong
background noise fails to achieve desirable fault diagnosis
results.

Thirdly, optimizing the parameters of L and T in MCKD
with GOA. To be more specific, the fitness function curve

TABLE 1. ωk of each mode according to different updating K .
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FIGURE 5. Decomposition results of the simulated signal through VMD: (a) time waveforms of component signals; (b) spectrum of
component signals.

FIGURE 6. CEc values of the decomposition modes.

FIGURE 7. The Hilbert envelope spectrum of the most sensitive mode.

and the historical locations of grasshoppers are illustrated
in Fig. 8.

From Fig. 8(a) that GOA converges at the fifth generation
can be observed. From Fig. 8(b), it can be found that the
optimal parameters are L = 791 and T = 128.
Fourthly, based on the optimized parameters of L and T ,

an AMCKD analysis for the most sensitive mode is carried
out to obtain its time waveform and envelope spectrum. The
results after VMD-AMCKD analysis are shown in Fig. 9.

In the time waveform from Fig. 9(a), the pulsed infor-
mation can obviously be observed. The duration of seven

FIGURE 8. GOA results: (a) fitness function curve; (b) historical locations
of grasshoppers.

impacts marked in the figure is 0.07s, which is consistent
with the single shocked period T1 = 0.01s. In other words,
the pulsed frequency fi is 100 Hz as aforementioned in (19).
From Fig. 9(b), the fault frequency fi as well as its harmonics
(2fi, 3fi, . . . , 9fi) can be seen clearly. It indicates that the
validity of the VMD-AMCKD method.

To illustrate the necessity of optimizing parameters of
L and T through GOA, we set T = 120, which varies
within 10% from the original parameter of T = 128.
Fig.10 (a) shows the envelope spectrum obtained by the non-
optimized parameters [791, 120] of MCKD for the most
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FIGURE 9. The results after VMD-AMCKD analysis: (a) time waveform;
(b) envelope spectrum.

FIGURE 10. Envelope spectra: (a) with non-optimized T ; (b) the original
signal after AMCKD analysis.

sensitive mode. Similarly, to illustrate the necessity of pre-
processing the original signal with VMD, Fig. 10(b) illus-
trates envelop spectrum of the original signal by applying
AMCKD directly with the same optimized range of T =
[89, 133].
Although some prominent spectral lines can be observed

from Fig. 10(a), none of them corresponds to the fault fre-
quency. It proves that the key parameters must be optimized
by GOA before carrying out an AMCKD. Similarly, the pro-
truding frequencies appeared in Fig. 10(b) don’t correspond
to the fault frequency fi and the harmonics as well. It implies
that using AMCKD alone for the original signal analysis
cannot achieve correct diagnosis results. The results shown
in Fig. 10 also reversely prove the necessity of combining

VMD and AMCKD algorithms simultaneously. In summary,
the proposed method of VMD-AMCKD can suppress back-
ground noise and can enhance transient continuous impact
in weak fault signals, thus, is capable of detecting incipient
damages of rolling bearings.

V. ROBUSTNESS VERIFICATION OF VMD-AMCKD
In this section, three sets of bearing fault data originated
from the Case Western Reserve University(CWRU) bearing
data center [25] are used to demonstrate the robustness of
VMD-AMCKD. The fault data sets were collected from
an experimental bearing test rig with an incipient localized
damage on the inner race, the rolling element and the outer
race, respectively. More details of these data sets can refer
to [26] and [27], in which a detailed benchmark study was
conducted in [26]. More recently, these data sets were further
used to proof the effectiveness of Autogrammethod of select-
ing the optimal band for bearing fault diagnosis proposed by
Ali Moshrefzadeh in [27].

A. CASE 1: INCIPIENT DAMAGE ON THE INNER RACE
Record 275 DE with an incipient damage on the inner race of
rolling bearing is examined in this case. The damage is diffi-
cult to be detected because of the impulsive noise [27]. Dam-
aged diameter of the electric spark machining is 0.3356 mm.
On the basis of input speed of the system and the damaged
bearing parameters, the fault frequency fi of this signal is
calculated as 148.2 Hz. The sampling frequency fs in this
examination is 12 kHz and 8192 points are analyzed for this
case.

The time waveform of the raw signal, the envelope
spectrum of the most sensitive mode after VMD decom-
position, the time waveform and its envelope spectrum
after VMD-AMCKD analysis are shown in Fig. 11(a)-(d),
respectively.

It can be found that the total time of 18 impact cycles in the
figure is 0.61s from Fig. 11(a). Obviously, single impact cycle
that is easy to be calculated is 0.034s, corresponding the shaft
speed 29.33 Hz. By applying VMD-AMCKD according to
the aforementioned steps, the following results are obtained.
Herein, VMD decomposition numberK is determined as 2 by
the method of center frequency observation. The values of
CEc of the two decomposition components are calculated as
2.973 and 5.489, respectively. Hence, u2 is determined as the
most sensitive mode. From Fig. 11(b), the most prominent
spectra line locates at 29.33 Hz can be found, which equals
to the rotating frequency of the motor fr. Therefore, fd is
determined as 146.5 Hz by the spectra line with the second
largest amplitude. The suspectable fault frequency interval is
obtained as [117.2, 175.8] Hz, leading to an optimal range
of T = [68, 103] according (18). With the determined range
of T , the key parameters are optimized by GOA, yielding the
results of L = 342 and T = 84.
As illustrated in Fig. 11(d), the fault frequency fi, and

2fi, 3fi, 4fi can be clearly seen from the envelope spectrum,
the validity of this method is proved. The proposed method
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FIGURE 11. Analysis of Case 1 with impulsive noise: (a) time waveform of the raw signal; (b) envelope spectrum of the most sensitive
mode; (c) time waveform after VMD-AMCKD analysis; (d) envelope spectrum after VMD-AMCKD analysis.

FIGURE 12. Analysis of Case 2 with several non-periodic impulses: (a) time waveform of the original signal; (b) envelope spectrum of the
most sensitive mode; (c) time waveform after VMD-AMCKD analysis; (d) envelope spectrum of (c).

in [27] can detect the fault signal as well. However, there
are many interference frequencies around the fault fre-
quency. For the fault signal detection of record 275 DE, the
VMD-AMCKDmethod has better diagnostic results than the
method proposed in [27].

The above analysis proves that VMD-AMCKD method
is capable of diagnosing signals containing impulsive noise
with high accuracy.

B. CASE 2: INCIPIENT DAMAGE ON
THE ROLLING ELEMENT
In this case, record 291 BA with an incipient damage
on the rolling element of the rolling bearing is examined.

The damage is difficult to be detected due to several
non-periodic impulses [27]. Damaged diameter of the
electric spark machining is 0.5334 mm. By calculation,
the rolling element fault characteristic frequency fb of this
case is 117.8 Hz. The sampling frequency fs of this exami-
nation is 12 kHz and 8192 points are analyzed for this case.

Its time waveform is illustrated in Fig. 12 (a), from which
the impact time interval related to the rolling element fault
frequency can’t be observed distinctly. Following steps of
VMD-AMCKD method, one may obtain the envelope spec-
trum of the most sensitive mode after VMD analysis, the time
waveform and its envelope spectrum after VMD-AMCKD
analysis as shown in Fig. 12(b)-(d), respectively.
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FIGURE 13. Analysis of Case 3 with low signal to noise ratio: (a) time waveform of the original signal; (b) envelope spectrum of the most
sensitive mode; (c) time waveform after VMD-AMCKD analysis; (d) envelope spectrum of (c).

Herein, the VMD decomposition number is determined as
K = 2; the values of CEc of the two modes are calculated as
2.167 and 16.114, respectively. From envelope spectrum of
the u2 as shown in Fig. 12(b), fd is determined as 118.7 Hz.
And an interval of [94.96, 142.44] is used to calculate the
optimized range of the deconvolution period T = [84, 127].
The optimal parameters obtained from the GOA algorithm
are L = 264 and T = 99.

From the time waveform of the filtered signal, one can find
that the total time of 14 impact cycles in the figure is 0.118s.
Obviously, single impact cycle that is easy to be calculated
is 0.00843s, corresponding the frequency speed 118.7 Hz.
From Fig. 12(d), the rolling element fault characteristic fre-
quency fb and its multiple frequencies can be seen expressly.
The analysis results of this case indicate the capability of

VMD-AMCKD method suppressing non-periodic impulses.

C. CASE 3: INCIPIENT DAMAGE ON THE OUTER RACE
In this case, record 203 DE with an incipient damage on the
rolling bearing outer race is examined. The damage is difficult
to be detected because of low SNR [27]. Damaged diameter
of electric spark machining is 0.3356 mm. By calculation,
the outer race fault frequency fo for this case is 104.6 Hz.
The sampling frequency fs is 48 kHz and 32768 points are
analyzed for this case.

Its time waveform is illustrated in Fig. 13(a), from
which the impact time interval associated with the fault
frequency can’t be observed directly. Following steps of
VMD-AMCKD method, one may obtain the envelope spec-
trum of the most sensitive mode after VMD analysis, the time
waveform and its envelope spectrum after VMD-AMCKD
analysis as illustrated in Fig. 13(b)-(d), respectively.

Herein, VMD decomposition number K is set as 4. The
CEc values of ui (i = 1, 2, 3, 4) are 1.0153, 4.2348,

3.5870 and 0.9546, respectively. Therefore, u2 is selected as
the most sensitive mode. From the envelope spectrum of u2,
fd can be determined as 105.5 Hz, leading to an suspectable
fault frequency interval of [84.4, 126.6] Hz and an optimized
range of the T = [379, 569]. In the AMCKD algorithm,
the optimal parameters are L = 1000, T = 456. From the
Fig. 13(d), fo and its multiple frequencies could be clearly
seen.

Above analysis results verify the capability of
VMD-AMCKD in dealing with low SNR signals.

D. DISCUSSIONS
To further highlight the effectiveness and robustness of the
proposed method, one may compare the results of the above
three examples with the results obtained from the benchmark
study. Table 2 shows the results of analysis of VMD-AMCKD
method with those from appendix tables in [26].

Through the comparative analysis of the above table,
the robustness of VMD-AMCKD is well proved.

From all the cases in this section, it can be concluded that
VMD-AMCKD method is effective and robust in detecting
incipient damages of rolling bearing, including the inner race
damage, rolling element damage and outer race damage as
well.

VI. DETECTION FOR INCIPIENT DAMAGES OF
WIND TURBINE ROLLING BEARINGS
In this section, two sets of faulty bearing signals are col-
lected from a SQ wind turbine simulator (WTS) in our
laboratory are analyzed with VMD-AMCKD method. The
analysis results are further compared with that obtained
from MED-SK. Herein, the effectiveness of VMD-AMCKD
method in detecting incipient damages of wind turbine rolling
bearings is verified.
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TABLE 2. Comparison of VMD-AMCKD with benchmark study.

FIGURE 14. (a) WTS test-rig; (b) bearing with inner race damage; (c) bearing with rolling ball damage.

A. DATA ACQUISITION
A laboratoryWTS is applied to generate the experimental sig-
nals of wind turbine rolling bearing with incipient damages.
As illustrated in Fig. 14(a), the WTS mainly consists of an
auxiliary motor, three blades, a planetary gearbox, a parallel
shaft gearbox, and a generator. In the wind turbine driven sys-
tem, the transmission ratio of the planetary gearbox is 4.571;
the transmission ratio of the first stage and the second stage
of the parallel shaft gearbox is 2.683 and 1.210, respectively.
The damaged bearing is located at the end of the driven shaft
in the first stage transmission of the parallel shaft gearbox.
The type of damaged rolling bearing is ER-12K. Damages
on inner race and rolling element of rolling bearings are set
as illustrated in Fig. 14.

The structural parameters of the damaged bearings are
illustrated in Table 3, according to which the shaft rotating

TABLE 3. Structural parameters of the damaged bearing.

frequency, the theoretical fault frequencies are calculated are
illustrated in Table 4.

In the present study, the sampling frequency fs for fault
signal with inner race damage and rolling ball damage is set
as 12800 Hz and 6400 Hz, respectively. The sampling points
of the two cases are set as 8192. The input speed provided
by the motor is 0.991 Hz. A Gaussian noise with SNR of
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TABLE 4. Fault characteristic frequencies of the damaged bearing.

FIGURE 15. Case 1: (a) time waveform of signal with inner race damage;
(b) envelope spectrum of (a).

−4dB is added to the raw signal collected at the measuring
point 1 to compound an experimental signal. In such a way,
the compounded experimental signal will be closer to the
real-world signal when the wind turbine works under actual
conditions.

B. CASE 1: INCIPIENT DAMAGE ON THE INNER RACE
Fig. 15(a) and 15(b) show the time waveform and envelope
spectrum of the fault signal of rolling bearing with inner race
damage, respectively. In the time waveform, no impulse com-
ponents can be observed. The spectra lines are very messy in
the Fig. 15(b). It’s difficult to find damage information from
the raw signal.

VMD-AMCKD is used to processing the fault signal for
this case. Firstly, according to the steps of selecting K ,
the parameter of K is set as 5. Secondly, calculating the value
ofCEcwith the range ofEc setting as [20, 500]. Fig. 16 shows
the CEc value of each mode.
As can be seen from Fig. 16, u1 is selected as the most

sensitive mode to perform envelope demodulation. The result
is shown in Fig. 17.

A protruding frequency of fd = 60.94 Hz can be
observed in Fig. 17 and a suspectable fault frequency interval
[48.75, 73.13] is selected to yield an optimized range of
period deconvolution T as [175, 263]. After then, the MCKD

FIGURE 16. Case 1: CEc values of the decomposition modes.

FIGURE 17. Case 1: The envelope spectrum of u1.

FIGURE 18. Case1: The results of VMD-AMCKD analysis: (a) time
waveform; (b) envelope spectrum.

parameter combination [L, T ] can be optimized by the GOA.
The optimal parameters are set as L = 678 and T = 214.

Based on the optimized parameters of L and T ,
an AMCKD analysis for the most sensitive mode is car-
ried out. The results of VMD-AMCKD analysis are shown
in Fig. 18.

From Fig. 18(a), the fault information can be observed
obviously. The time duration of eight shocked cycles adds
up to 0.133s, which means that the fault frequency extracted
by VMD-AMCKD is 60.15 Hz. In the processed envelope
spectrum, the fault frequency fi as well as the harmonics
(2-5fi) can be distinctly visible. It indicates that the fault
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FIGURE 19. Case2: (a) time waveform; (b) envelope spectrum of (a).

FIGURE 20. Case2: Envelope spectrum of the most sensitive mode.

features coming from the inner race damage are accurately
extracted.

C. CASE 2: INCIPIENT DAMAGE ON
THE ROLLING ELEMENT
The time waveform and its envelope spectrum of the fault
signal of wind turbine rolling bearing with rolling element
damage are illustrated in Fig. 19(a) and (b), respectively.

In the time waveform, some impulse components are capa-
ble of being observed. In the envelope spectrum, the spectra
lines are very messy. It’s difficult to observe useful fault
features from these bearing signals.

In order to obtain fault information from the fault signal,
VMD-AMCKD method is applied. Firstly, according to the
steps of selecting K , the decomposition mode number K is
set as 5.

After VMD decomposition, u3 can be selected as for fur-
ther analysis due to the maximum CEc of u3. Note that the
calculation range of the Ec index is set as [20, 300]. The
envelope spectrum of u3 is shown in Fig. 20.
As can be seen from Fig. 20, the suspectable fault char-

acteristic frequency fd is 25 Hz. Therefore, an interval of
[20, 30] is used to calculate the range of AMCKD optimized
parameter T . After optimization, the optimal parameters are

FIGURE 21. Case 2: The results of VMD-AMCKD analysis: (a) time
waveform; (b) envelope spectrum.

set as L = 656 and T = 254. Based on the optimal
parameters, the AMCKDanalysis for themost sensitivemode
is carried out. The results after VMD-AMCKD analysis are
illustrated in Fig. 21.

In the time waveform as illustrated in Fig. 21(a), some
shock impulses can be observed obviously. The time dura-
tion of seven shocked cycles adds up to 0.279s, which
means that the fault characteristic frequency extracted by
VMD-AMCKD is 25.09 Hz. It differs from the theoretical
fault frequency 24.21 Hz, which is most likely due to the
sliding effect of bearing [28]. In the envelope spectrum as
illustrated in Fig. 24(b), the fault frequency fb as well as
its harmonics is clearly illustrated. This manifests that the
fault features coming from the rolling element damage are
accurately extracted.

D. COMPARISON WITH MED-SK
It has been proven by [28] and [29] that minimum entropy
deconvolution (MED) combined with spectral kurtosis(SK)
can extract incipient fault features of damaged bearings.
In this subsection, the above experimental signals are ana-
lyzed by MED-SK method and above results are compared
with those obtained from VMD-AMCKD method proposed
in this paper. Reference [17] shows that in the MCKD algo-
rithm, when T = 0, M = 1, the MCKD algorithm degen-
erates into the MED algorithm. In such a way, the MED
algorithm is mainly affected by the filter length L.

1) MED-SK BASED DETECTION FOR INNER RACE
DAMAGE OF ROLLING BEARING
For comparison convenience, the filter length inMED is set to
be the same as that of VMD-AMCKD as shown in Fig. 18(b),
i.e., 678. Based on this parameter setting, the MED-SK based
analysis results of case 1 are shown in Fig.22.
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FIGURE 22. Case 1: The results obtained from MED-SK approach: (a) the
envelope spectrum after MED analysis; (b) kurtogram of the signal after
MED analysis; (c) envelope spectrum of the final filtered signal.

After MED analysis, the fault frequency fi and its multiple
frequencies can be seen in Fig. 22(a). This also proves that
the selection of parameter L is correct. Fig. 22(b) is the
kurtogram of the filtered signal analyzed through SKmethod.
The darkest color block (marked with the dotted ellipse) is on
the sixth floor. It means the bandwidth of filtering is set to be
800-1000 Hz. In the final filtered signal envelope spectrum as
illustrated in Fig. 22(c), the most protruding line is 78.13 Hz
which, however, does not correspond to the fault frequency.
Therefore, the MED-SK approach maybe fail in extracting
the fault information from raw signals with heavy background
noise.

2) MED-SK BASED DETECTING FOR ROLLING ELEMENT
DAMAGE OF ROLLING BEARING
For rolling element damage of rolling bearing, theMED filter
length L is set to be the same as that of VMD-AMCKD as
illustrated in Fig. 21(b), i.e., 656. Fig. 23 shows the MED-SK
based results of case 2.

Fig. 23(a) shows the envelope spectrum obtained from
MED algorithm. From this figure, one may find that the

FIGURE 23. Case 2: The results obtained from MED-SK approach: (a) the
envelope spectrum after MED analysis; (b) kurtogram of the signal after
MED analysis; (c) the envelope spectrum of the final filtered signal.

spectra line with the largest amplitude is located at 25 Hz.
As can be found from Fig. 23(b), the darkest color block
(marked with dotted ellipse) in kurtogram is located at the
sixth level. This means that the bandwidth of filtering is set as
1900-2000 Hz. From envelope spectrum of the final filtered
signal as illustrated in Fig. 23(c) that there are two protruding
frequencies of 22.66 Hz and 26.56 Hz. Unfortunately, these
two frequencies are not corresponding to the fault frequency
of 24.12 Hz. This implies that the MED-SK approach fails to
detect incipient damage of bearing rolling element.

From the above analysis and comparison, the effectiveness
of VMD-AMCKD to obtain fault characteristic information
of wind turbine rolling bearing with incipient damages is
verified and highlighted.

VII. CONCLUSIONS
This paper proposes VMD-AMCKD method for detect-
ing incipient damages of rolling bearing in wind turbines.
The VMD-AMCKD method can effectively suppress white
Gaussian noise, non-Gaussian noise, several non-periodic
impulses and can detect weak bearing faults under low SNR.
The effectiveness and robustness of the VMD-AMCKD is
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proved by six cases including one inner race fault model,
three cases from CWRU and two cases from our laboratory
wind turbine simulator. The diagnostic results of these cases
obtained from VMD-AMCKD are better than those obtained
from the methods proposed in [26]–[29]. The advantages
and innovations of the method proposed in this paper are
summarized and listed in the following.
(1) The method of center frequency observation is used

to determine the mode number K in VMD, which can
avoid mode aliasing.

(2) A new composite index CEc is constructed for select-
ing the most sensitive mode, which takes into account
the impact information in the optimal component and
considers the correlation between the component signal
and the original signal.

(3) The bandwidth for solving the CEc indicator is limited,
which can suppress the influence of random interfering
frequencies.

(4) Adaptive selection ofMCKDparameters is achieved by
usingGOA,which can avoid faulty diagnosis caused by
artificial parameters.
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