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ABSTRACT Lithology recognition is an essential part of reservoir parameter prediction. Compared to
conventional algorithms, deep learning that needs a large amount of training data as support can extract
features automatically. In the process of real data acquisition, the labeled data account for only a small
portion due to high drilling cost, and it is difficult to achieve the data size required for deep learning
training, resulting in a significant variance of the recognition model. In this paper, for this shortage, a semi-
supervised algorithm based on generative adversarial network (GAN) with Gini-regularization is proposed,
called SGAN_G, which takes borehole-side data as labeled data and seismic data as unlabeled data. First, the
SGAN_G is trained by Adam (a method for stochastic optimization) algorithm and utilizes a discriminator
to lithology recognition. And, we add the entropy regularization to the initial loss function which enhances
the convergence speed and accuracy of the model. Eventually, we propose a novel sampling approach which
employsmultiple sampling points of seismic data as inputs to use the stratum information implicitly. Through
the experimental comparison with a variety of supervised approaches, we can see that the SGAN_G can
achieve higher prediction accuracy by using unlabeled data effectively.

INDEX TERMS Entropy regularization, generative adversarial network, lithology recognition,
semi-supervised learning.

I. INTRODUCTION
Geophysical exploration is an essential part to the develop-
ment and production of petroleum. It can help people under-
stand the stratigraphic structure, lithology, and oil-bearing
properties, as well as porosity by seismic data analysis
through manual seismic, seismic wave detection and seismic
data processing [1]. Oil and gas reservoir prediction is a
critical component of geophysical exploration and is essential

The associate editor coordinating the review of this manuscript and
approving it for publication was Adam Czajka.

for assessing oil and gas reserves [2]. Its main tasks involve
the use of seismic data for modeling and recognition of
stratigraphy lithology (i.e., seismic inversion). Due to the
anisotropy of the stratum and the complexity of the stratum
caused by stratigraphic structure, lithology, interspace, fluids,
etc., there is a complex nonlinear relationship between seis-
mic waves (i.e., seismic-data) and stratigraphic parameters
(including physical properties, lithology, oil-bearing proper-
ties, etc.). Therefore, it is complicated to establish inversion
models between the seismic data and lithology. In addi-
tion to traditional seismic inversion, artificial intelligence
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FIGURE 1. Semi-supervised learning based on GAN. The discriminator D outputs a K + 1 dimensional
vector L. The first K elements represent the score of the input belonging to each category. The last one
represent the score of the input belonging to G (z).

techniques are used to lithology recognition such as Random
Forest [3]–[5], Deep Neural Network(DNN) [6]–[10] and
Convolutional Neural Network(CNN) [11]–[14] etc. With
the rapid development of technology, deep learning utilizes
in seismic lithology inversion, such as lithology recogni-
tion based on deep belief network (DBN) [15]–[17]. Lithol-
ogy recognition is a common task found in the petroleum
exploration filed, which is actually a problem of classify-
ing rock types, based on labeled data obtained from well
drilling programs [18]. It has gained enormous benefits from
the significant progress of intelligent modeling methods.
Unfortunately, there are still three problems: (1) the model
is prone to over-fitting when facing classification problem
of strong noise data, such as RandomForest; (2)the model
is not robust, such as neural network with random initial
values will fall into local optimum easily during training;
(3) there are only a few labeled data due to the expensive
cost of drilling, and the number of different classes is incred-
ibly imbalanced. Although it can be alleviated by training
the network layer-by-layer with contrast divergence algo-
rithm [19], [20] or adopting regularization methods, such as
L1 or L2-regularization, Dropout [21] and Batchnormaliza-
tion [22], it is still hard to improve the generalization ability of
the model further under the limitation of supervised learning
mode when the amount of labeled data is small and imbal-
anced. The above problems result in substantial error and
wrong tendency to themajority class when utilizing themodel
to lithology recognition. In this paper, a semi-supervised
algorithm based on GAN(Generative Adversarial Network)
with Gini-regularization is proposed, called SGAN_G, which
takes borehole-side data as labeled data and seismic data as
unlabeled data. First, SGAN_G is trained by Adam(a method
for stochastic optimization) algorithm [23]. And then we
utilize the discriminator for lithology recognition. Finally,
we employ multi-sampling points of seismic data as inputs to
use the stratum information implicitly. The rest of the paper
is organized as follows. The basics of GAN is introduced
in Section II. The proposed novel algorithm is presented in
Section III. Experimental results and evaluations are given in
Section IV. Finally, the conclusion is given in Section V

II. PRELIMINARY KNOWLEDGE
In 2014, Goodfellow presented Generative Adversarial Net-
work(GAN) [24] which learns by a game between two

multi-layer networks, called the generator network G and
discriminator network D. Given a generator network G with
parameters θ (G) and a discriminator network D with param-
eters θ (D). Let z denotes random vectors sampled from some
simple noise distribution pz (z)(e.g., the uniform distribution
or Gaussian distribution). G represents a map from the space
of z to the space of data(like images): G : G (z; θ (G)) →
R|x|, where x is an image and |·| denotes the number of
dimensions [25].
Then D maps from x to a scalar: D : D (x; θ (D)) →

(0, 1), which indicates the probability of x from the real data
distribution pdata (x), rather than the generator distribution
pG (x). D is utilized to classify the input x as being from real
data(close to 1) or from G(close to 0), and G is employed
to deceive D into misclassifying its output as actual data.
G and D alternately train their parameters based on game
theory principles respectively, and finally reach a optimal-
point—the generator distribution pG (x) matches the actual
distribution pdata (x) andD cannot distinguish the inputs from
G. In other words, it can be summarized as a mini-max
problem, with a loss function defined as follow:

min
θ(G)

max
θ(D)

L (D,G) = Ex∼pdata(x)logD (x)

+Ez∼pz(z)log (1− D (G (z))) (1)

III. SEMI-SUPERVISED LEARNING BASED ON GAN
A. MODEL PRINCIPLE
In 2016, Salimans and Goodfellow et al. proposed
Semi-supervised Learning based onGAN (SGAN) [26], [27].
In the multi-classification problem, for a sample x, its outputs
can express as a K -dimensional vector L = 〈l1, l2, · · · , lk 〉,
where lk represents the score belonging to each category.
To use unlabeled samples for training, the discriminator net-
workD of SGAN solves a multi-classification task, instead of
a two-category task. Since using the fake data generated by
the generator network G, the discriminator network D also
needs to judge whether the input is from G in addition to the
category of the input. Therefore, the number of categories
in the classification problem increase to K + 1. The whole
process is shown in FIGURE 1. Note that the discriminator
network D includes three inputs: (1) the labeled data x̂
from the actual dataset, (2) the unlabeled data x̃ from the
real dataset, and (3) the fake data G (z) from the generator
network G.
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In SGAN, the loss function for training the discriminator
network D is redefined as follows:

L(D)= L(D_supervised)+ L(D_unsupervised) (2)

L(D_supervised)

=−Ex̂,y∼pdata(x̂,y)logpD
(
y|x̂, y < K+ 1

)
(3)

L(D_unsupervised)

=−Ex̃∼pdata(x̃)log
[
1− pD(y=K + 1|x̃)

]
−Ez∼pz(z)pD (y = K + 1|G (z)) (4)

where L (D_supervised) denotes standard supervised cross-
entropy loss function, L (D_unsupervised) represents the
unsupervised loss function which is the objective function of
conventional GAN.

To better approximate the distribution of actual data,
the loss function for training the generator network G is
defined as follow:

L (G) =
∥∥Ex̃∼pdata(x̃)f (x̃)− Ez∼pz(z)f (G (z))∥∥22 (5)

where f (·) denotes the output of the feature layer(the
layer before 〈l1, l2, · · · , lk , lk+1〉), and ‖·‖22 represents the
L2− norm.

B. PRINCIPLE VISUALIZATION
To illustrate the mechanism of SGAN carefully, we do
experiments on the simulated dataset to visualize the pro-
cess of model training. As shown in FIGURE 2, the outer
circle of the dataset is consist of positive samples, and
the inner circle is consist of negative samples (each circle
contains 1000 samples). To reflect the characterization of
semi-supervised learning, 50 samples are selected from the
left (right) part of the positive (negative) samples as labeled
data randomly, and the remaining are unlabeled data.

FIGURE 2. Toy dataset: positive and negative samples are distributed in
the outer and inner circle respectively. Red and blue points are labeled
data. The others are unlabeled.

For comparison, we train a Deep Neural Network(DNN)
on the labeled data firstly. DNN consists of feature extrac-
tion layers(4 × 2) and a classifier layer (logistic regression).
At first, the model maps the data to feature space through the
feature extraction layers. And then, it uses the classifier to
classify the data in the feature space. FIGURE 3(a) shows
the distribution of data in the feature space of the DNN

during training. It can be seen that the model has converged
after 25 epochs (an epoch means one iteration over the entire
input data). From the figure, the result illustrates that its
generalization ability is too bad, especially in the unlabeled
data. The error rate of the model on the unlabeled data is
about 50%.

As mentioned above, we train the SGAN model on the
labeled and unlabeled data, which consists of a generator
network G(2 × 2) and a discriminator network D same as
the DNN above. The random noise z is a one-dimensional
vector sampled from standard normal distribution. The loss
function ofG can better approximate the distribution of actual
data, while the unsupervised part of the discriminator loss
function makes their distribution divisible. And the super-
vised one can establish the segmentation boundary between
positive and negative samples in the feature space. As shown
in FIGURE 3(b), during the adversarial training process,
the fake data wraps positive and negative data respectively
and pulls them to the opposite direction. From the result,
compared to DNN, its error rate is 12.8% when the model
converged.

C. ENTROPY REGULARIZATION
In the information theory, entropy represents the uncertainty
of a random variable. Assume that X = 〈x1, x2, · · · , xn〉 is
a discrete random variable with n different values, and its
probability distribution can be expressed as p (X = xi) =
pi (i = 1, 2, · · · , n). Therefore, the entropy of X is defined
as follows:

Entropy (X) = −
n∑
i=1

pilogpi

s.t.Entropy (X) ∈ [0, 1] (6)

Obviously, the larger the entropy, the more uncertain the
random variable is, and vice versa. The output L of the
multi-classification model can be viewed as a random vari-
able X that conform to a multi-classification probability dis-
tribution, and each output corresponding to an entropy value.
The discrimination ability with respect to various types of
samples is crucial to measure the performance of classifi-
cation models. It means that the entropy of the output will
be smaller, as shown in FIGURE 4. Therefore, to enhance
the effectiveness of SGAN learning process, we improve
the unsupervised part of the discriminator loss function by
adopting an Entropy-regularization term, which can append
additional constraints for the model training on unlabeled
data.

When the probability p → 0, logpi → −∞, it may
cause the overflow in computer calculations. To solve this
problem, we utilize Gini-regularization to replace Entropy-
regularization. The Gini-regularization(also known as Gini-
impurity) is also an information measure which can reflect
the uncertainty of random variable distribution. In essence,
the Gini-impurity has similar distribution characteristics
to Entropy. For Entropy (X), if we expand the logpi by
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FIGURE 3. Distrubution on feature space. The black line denotes the segmentation boundary.

first-order Taylor series at p = 1, the Gini (X) can be
approximated to it.

Entropy (X) = −
n∑
i=1

pilogpi

=

n∑
i=1

pif (pi)

≈

n∑
i=1

pi

[
f (1)
0!
+
f ′ (1)
1!

(pi − 1)
]

= 1−
n∑
i=1

p2i

= Gini (X) (7)
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FIGURE 4. Predictions of multiple-class problems.

Algorithm 1Minibatch Stochastic Gradient Descent Training of SGAN_G
Input: pz(z): noise prior, pdata (x): data distribution, m: batch size, λ: coefficient of Gini_regularization
Output: discriminator D after training
1: for number of training iterations do
2: Sample minibatch of m noise samples

{
z(1), · · · , z(m)

}
from pz (z).

3: Sample minibatch of m labeled examples
{(
x̂(1), y(1)

)
, · · · , (x̂(m), y(m))

}
from pdata

(
x̂, y

)
.

4: Sample minibatch of m unlabeled examples
{
x̃(1), · · · , x̃(m)

}
from pdata (x̃).

5: Update the discriminator D by descending its stochastic gradient:

∇θ(D)
1
m

m∑
i=1

(
−logpD

(
y(i)|x̂(i), y(i) < K+ 1

)
−

[
log
(
1− pD

(
y = K + 1|x̃(i)

))
+ logpD

(
y = K + 1|z(i)

)]
+ λ

[
1−

K∑
k=1

pD
(
y = k|x̃(i)

)])
6: Update the generator G by descending its stochastic gradient:

∇θ(G)
1
m

∥∥∥f (x̃(i))− f (G (z(i)))∥∥∥2
2

7: end for
8: The gradient-based updates can use any standard gradient-based learning algorithm. We used Adam in our experiments.

Therefore, the formula (4) can be redefined as follows:

L (D_unsupervised_with_gini_regularization)

= L (D_unsupervised)+ λ

[
1−

K∑
k=1

pmodel (y = k|x̃)

]
(8)

where λ denotes the coefficient of regularization term, and it
can control the effect of the Gini-regularization term on the
loss function, λ ∈ (0, 1).

Therefore, the novel model proposed in this paper
is also called SGAN_G (Semi-supervised GAN with
Gini-regularization). The detailed process of SGAN_G is
introduced as Alogrithm 1.

D. THEORETICAL PROOF
Because of relying on the gradient descent algorithm(SGD) in
the training, we analyze the effect of the Gini-regularization
from its influence on the gradient. To simplify the representa-
tion, we utilize pj to represent the probability of the jth class:

pj = pD (y = j|x̃) =
exp

(
lj
)∑K

k=1 exp (lk)
(9)

According to the chain rule, we can obtain the gra-
dient of Gini-regularization respect to the jth element
lj (j = 1, 2, . . . ,K ) in the L layer:

∂Gini
∂lj
=
∂Gini
∂pj
·
∂pj
∂lj
+

K∑
k=1,k 6=j

∂Gini
∂pk

·
∂pk
∂lj

= 2p2j
(
pj − 1

)
+

K∑
k=1,k 6=j

2p2kpj

= 2pj

(
−pj +

K∑
k=1

p2k

)
, (2pj ≥ 0) (10)

where −pj +
∑K

k=1 p
2
k determines the direction of

the gradient, can be expressed as g = −pj +∑K
k=1 p

2
k .

Theorem 1: Given pj, under the constraint of
∑K

k=1,k 6=j =

1 − pj, for g, the lower bound can be expressed as G
(
pj
)
=

inf (g) = (Kpj−1)(pj−1)
K−1 , and the upper bound is H

(
pj
)
=

sup (g) =
(
2pj − 1

) (
pj − 1

)
.
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Proof: We introduce a Lagrangian multiplier β and
study the Lagrange function as follows:

L
(
p1, · · · , pj−1, pj+1, · · · , pK , β

)
= g+ β

pj − 1+
K∑

k=1,k 6=j

pk

 (11)

The first-order partial derivatives of each element in L can
be calculated as follows:

∂L
∂pi
= 2pi + β (12)

∂L
∂β
= −1+

K∑
k=1

pk (13)

where i = 1, · · · , j− 1, j+ 1, · · · ,K .
Let (12) and (13) equal to zero, we can obtain the local

extreme value of g, G
(
pj
)
=
(Kpj−1)(pj−1)

K−1 , when pj =
1−pj
K−1 .

G
(
pj
)
is the minimum value of g due to the Hessian matrix of

L is a positive definite matrix. Since 0 ≤ pi ≤ 1 − pj, g can
take the maximum value H

(
pj
)
=
(
2pj − 1

) (
pj − 1

)
at the

edge of the domain(i.e., one of the pi equals to 1− pj and the
others equal to zero).

Therefore, the gradient of Gini-regularization with respect
to lj is between 2pj · G(pj) and 2pj · H (pj), and their function
curves are shown in FIGURE 5.

FIGURE 5. Function curves. The red line represent the lower bound
of ∂Gini

∂lj
, i.e., 2pj · G(pj ), when K = 5 and the green line represent the

upper bound 2pj ·H(pj ).

The ratio of ∂Gini
∂lj

is depend on the probability distribution
of the rest K − 1 classes. When the distribution is balanced
or concentrated to a certain class, ∂Gini

∂lj
achieves the lower

bound or upper bound respectively. Once the distribution is
determined, ∂Gini

∂lj
will have the consistent changing tendency

and similar shape with the curves in FIGURE 5.
For example, when the probability distribution of the rest

K − 1 (K = 5) classes is balanced, ∂Gini
∂lj

achieves the lower

bound, 2pj · G
(
pj
)
. If pj > 1

K (indicates that the model
has classified the sample as the jth class), we can see that
∂Gini
∂lj

< 0 from FIGURE 5, which leads the model to update
in the direction of keeping increasing lj by SGD algorithm.
That means the confidence of the model will enhance in
classification. Furthermore, when pj → 1

K or1, it indicates
that the model has little or great confidence to classify the
sample as the jth class, the effect of Gini-regularization
decrease. Similarly, when pj < 1

K , the model further denies
that the sample belongs to the jth class. Therefore, the Gini-
regularization term can adjust the learning rate reasonably
and accelerate the convergence of the model.

However, the current predictions of the model is not nec-
essarily correct, especially at the beginning of training. Thus,
to avoid the model updating in the wrong direction, we add a
coefficient λ to control the effect of Gini-regularization.

Consider the final segmentation plane in the feature space,
as shown in FIGURE 3, the Gini-regularization term can also
make the distance from the sample points to the segmenta-
tion plane larger. Just like the idea of the maximum-margin
hyperplane in SVM, it can improve the generalization ability
of the model.

IV. EXPERIMENTS
A. GENERAL DATASETS
To validate the effectiveness of our proposed algorithm,
we modified the loss function based on the original SGAN.
Moreover, the same datasets are utilized, includes the
MNIST(consists of 700000 28 × 28 digits images) [28],
CIFAR-10(consists of 600000 32 × 32 natural images
in 10 classes) [29] and SVHN dataset(consists of over 600000
32×32 digit images in the natural scene) [30] in experiments.
Meanwhile, we randomly select 100, 4000, and 1000 (aver-
age distributed in each category) samples from the training set
as labeled data respectively, and the remaining as unlabeled
data. The experimental hardware environment is a k80 graph-
ics card with 11G memory. For the complex cifar-10 and
svhn datasets, the time cost is so expensive that each epoch
consume 10 minutes. The experiment results of test error
curves are shown in FIGURE 6, λ = 0 represents the result of
the original. It can see that the Gini-regularization term can
help the model converge faster and better when the value λ is
proper. Unfortunately, λ is data-dependent; therefore, it must
go through many repeated experiments to find the optimal
value.

B. LITHOLOGIC DATASETS
The post-stack seismic data is from a certain area of Huabei
Oilfield, with a total of 1956 traces and 501 sampling points,
and the sampling rate is 2ms. Since the amplitude data of
different frequencies can record the stratum information,
the low-frequency amplitude data reflect the general strati-
graphic structure distribution better, and the high-frequency
amplitude data indicates the stratum details better. Therefore,
one full-frequency data and eight different frequency data
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FIGURE 6. Test errors of different λ on MNIST, CIFAR-10 and SVHN. The black line represents the original SGAN model.
The others are SGAN_G models with different λ.

FIGURE 7. Test errors of SGAN and SGAN_G on lithologic dataset.

of the seismic data are selected as input. To train the model
better, the input data needs to be normalized.

The area contains a total of lithology data from seven well
logs. The vertical resolution of the seismic data is lower than
the well logging data. Therefore, the original lithology curve
must be roughened. According to the porosity, the lithology
of the formation is divided into shale, sand stone and other
lithology, which are represented by 0, 1, and 2 respectively,
as lithology identification output data. The dataset includes
2,000 labeled data samples which are divided into test and
training datasets according to 1:3. Moreover, we introduce
900,000 unlabeled data for semi-supervised models.

To validate the effectiveness of SGAN_G, we compare
with SGAN, DBN, BP neural network, Random Forest and
AdaBoost models. In experiments, SGAN_G and DNN are
implemented by using tensorflow in python, DBN is imple-
mented by using python numpy library, and Random Forest
and AdaBoost are calling python sklearn library. The opti-
mal parameters of the model adopt minimizing test error
according to grid search (as shown in Table 1). Note that the
coefficient of L2-regularization term is set to 0.1 in the BP
model, as well as the discriminator of SGAN_G and SGAN,
to enhance the generalization ability.

The training error and the test error are two critical
factors to measure classification performance. The training
error illustrates the credibility of the model, and the test
error represents the availability of the model (the degree of
generalization). If the training error is small, and the test
error is large, lead to the over-fitting, otherwise, lead to

FIGURE 8. Lithologic profile predicted by sixe models. Black, white, and
gray represent shale, sandstone, and other lithology. (a) Adaboost.
(b) RandomForest. (C) DNN. (d) DBN. (e) SGAN. (f) SGAN_G.

the under-fitting. Therefore, the test error and the training
error is small simultaneous, can ensure the model with strong
generalization ability.

From the analysis of themodel errors (as shown in Table 1),
we can see that the test error of the BP network is smaller
than that of Random Forest and AdaBoost, but it is still
larger. Compare to the BP network, the test error of the DBN
network significantly reduced. It is worth noting that the test
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FIGURE 9. The input and output of models: (a) single-point sampling: the corresponding lithology is
predicted according to each sample point’s feature and (b) multiple-points sampling: the lithology
of the center point is predicted according to multiple-points’ feature.

TABLE 1. Comparison of experimental results.

error of SGAN model is reduced by 6.2% compared to the
DBN network, which is a significant improvement of model
performance. The SGAN_G model proposed in this paper,
further reduced the test error by 2.2%. FIGURE 7 shows the
test error curves of SGAN(λ = 0.0) and SGAN_G(λ =
0.1) model. It validates that the Gini-regularization term can
improve the convergence speed and generalization ability of
the model.

FIGURE 8(a-f) show the lithology profile identified by the
sixe models, with black, white, and gray corresponding to
shale, sandstone, and other lithology. The above experiments
demonstrate that the lithology profile identified by SGAN_G
is more detailed and clearer, and the horizon is more contin-
uous. By contrast, the profiles identified by other models are
relatively rough and some are very blurred. Either from the
test error or identification of the lithology profile, SGAN_G
is the best of the sixe models.

1) MULTI-SAMPLING POINTS
Due to the formation has continuity in the longitudinal direc-
tion, any sampling point associates with its adjacent points.

TABLE 2. The experiment of multi-sampling points.

Therefore, compared with using single sampling point of
seismic trace(shown in FIGURE 9(a)), utilizing multiple
adjacent points as input(shown in FIGURE 9(b)) take full
advantage of ‘‘layer’’ information to achieve better recogni-
tion results [16]. Let k denotes the number of neighborhood
sampling points. As shown in Table 2, with multi-sampling
points method, the test error of SGAN_G further decrease
to about 5% (k = 7), can obtain the optimal classification
performance.

To compare the impact of multi-sampling points on
lithology recognition in detailed, FIGURE 10 shows the
recognition results of the lithology section with the time
window from 0.2 to 1.0 seconds and traces from 300 to
1500. By comparison, the experiment results illustrate that the
number of neighborhood sampling points is a critical factor
for lithology recognition. When k = 1, the identified profile
is delicate, though the test error is significant. With the k
increases, the main horizon of the identified lithology profile
becomes clearer. But when k ≥ 7, because of the complex
structure of undergroundmedia and the lithology changes fre-
quently, the lithologic boundary becomes unclear. The exces-
sive sampling points will affect the recognition of the target
lithology. Therefore, in practical applications, the lithology
profile of different resolutions can be identified by adjust-
ing the size of k , and analyses the profile from various
aspects.
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FIGURE 10. Lithologic profile predicted by multiple. Black, white, and gray represent shale,
sandstone, and other lithology. (a) k = 1. (b) k = 3. (c) k = 5. (d) k = 7.

V. CONCLUSION AND FUTURE WORK
In petroleum exploration, machine learning approaches have
been widely utilized as an effective means of modeling. With
the advent of the era of big data, the effect of deep learning
has surpassed the traditional machine learning method, and
become a hot spot of research and application. In these, there
are numerous studies on GAN. The semi-supervised learning
based on GAN effectively employs a large amount of unla-
beled data to establish a nonlinearmapping between input and
output according to a small amount of labeled data. Since the
information provided by the unlabeled data for model train-
ing is limited, therefore, we utilize the Gini-regularization
term to the unsupervised part of the original discriminator
loss function to help the model converge faster and bet-
ter. In the field of lithology recognition, because logging
data (labeled data) is minimal, supervised learning methods
are challenging to achieve good results, and generalization
ability. SGAN_G can employ a mass of seismic data as
unlabeled data for training. Thus, the model can extract fea-
tures better which are very consistent with the data char-
acteristics in the field of lithology recognition. Through
experimental comparison, the performance of lithology

recognition enhance significantly. Moreover, using multi-
sampling points as inputs, containing the information of
‘‘layer’’, further improves the recognition accuracy.

Notwithstanding the performance of the classifier could
not degrade in the balanced general datasets(MNIST,
CIFAR-10, and SVHN) or the unbalanced dataset(lithologic
dataset) in our models. But the security of introducing unla-
beled samples is essential and needs to be further analyzed
and studied in future work. Besides, the selection of optimal
value only relies on multiple repeated experiments. There-
fore, how to obtain the proper λ more efficiently and auto-
matically will be the focus of further research.
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