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ABSTRACT The distributed adaptive tracking control schemes are addressed to deal with the formation
control problem of multiple unmanned aerial vehicles subject to input saturation, actuator fault, and external
disturbance. First, a novel adaptive backstepping control approach associated with a command filter is
presented to settle the model uncertainty and input saturation problems. Second, a robust fault-tolerant
controller is introduced to tackle the case with external disturbance, actuator fault, and model uncertainty
by estimating the upper bounds of the faults and external disturbances. In addition, the proposed controllers
enable the asymptotical stability of the closed-loop system in case of undirected interaction graph. Finally,
the numerical simulations demonstrate that the proposed approaches are effective for the unmanned aircraft
vehicle (UAV) formation system with various constraints.

INDEX TERMS UAV formation, backstepping control, input saturation, actuator fault, asymptotical
stability.

I. INTRODUCTION
Formation control for multiple unmanned aircraft vehi-
cles (UAVs) has attracted the burgeoning interest during the
past several years [1]–[4], since it promises great potentials in
both civilian and military applications, such as surveillance,
reconnaissance, rescue missions, fire monitoring [5]–[7],
to name a few. Some of these tasks may be parlous and not
suitable for human pilots. To this end, it is appropriate to
complete the tasks above using autonomous UAVs in a for-
mation. From a practical point of view, the design of efficient
control approach for the UAVs is an undoubtedly central issue
to bring about trajectory tracking in the formation.

The formation control for UAVs indicates designing cen-
tralized or distributed control algorithms to drive the UAVs
to the desired formation while maintaining the expected rel-
ative position and common velocity. The distributed con-
trol strategy for UAV formation, which makes use of the
local information of the neighbors, becomes one choice to
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accomplish intricate formation tasks with high control accu-
racy, robustness and environmental adaption. Generally, there
are three control approaches in this field, namely behav-
ioral, leader-following, and virtual structure based formation
control [8]. Correspondingly, several formation control algo-
rithms for UAVs have been presented, including model pre-
dictive control scheme [9], [10], artificial potential function
method [11]–[13], finite-time control approach [14], etc.

Although most of the existing formation control algo-
rithms of UAVs are elegant and intuitively appealing, they
need an implicit assumption that the actuators are able to
afford any requested control force. However, available force
amplitude is limited owing to the physics characteristic of
the actual UAVs. As a result, the assumption may lead to
serious discrepancies between commanded input and actual
control force, and the control system does not work anymore
[15]. Consequently, it is essential to design the formation
control algorithms subject to input saturation constraint in
this sense. Backstepping control design methodology asso-
ciated with command filter is an effective tool to overcome
the input saturation problem [16]. The designed filter struc-
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ture can produce bounded output signals, which guarantees
that the actual control input is bounded within the required
values to solve the input saturation problem. By incorpo-
rating the command filter and adaptive control technique,
Farrel et al. [17] and Sonneveldt et al. [18] solve the input
saturation problem in aircraft adaptive flight control design.
In [19], Li et al. propose an adaptive backstepping control
algorithm for optimal descent tracking. Recently, Zheng et al.
present the robust adaptive backstepping control schemes
for autonomous attitude cooperative control to overcome
the input constraint, model uncertainties, and external dis-
turbances in [20]. In [21], Cui et al. study the distributed
consensus control problem by incorporating the command
filtered technique into the backstepping design to compensate
the effect of input saturation. Yu et al. use the backstepping
and the disturbance observer to solve the problems of actuator
faults and input saturation in [5]. Zhang et al. address the
nonlinear robust close formation control algorithm via the
command filtered backstepping technique in [22]. However,
it should be noted that, the coordinated control of multiple
UAVs formation in the presence of input constraint andmodel
uncertainty is seldom considered yet.

The fault-tolerant capacity of the control algorithms is
another fundamental issue in the formation. As a matter of
fact, some faults (e.g., a loss of effectiveness or lock-in-place)
may occur owing to the malfunction of actuators, which do
not only have an adverse impact on control performance but
also influent flight safety. To this end, capability of main-
taining formation flying in presence of faults is one of the
most important issues that need to be addressed, and hence
many fault tolerant control approached have been addressed
in the past decades. In [23], [24], adaptive sliding mode
control strategies are proposed to counteract actuator faults.
Liu et al. [25] present leader-follower adaptive fault-tolerant
control structure along with a collision avoidance strategy.
Yu et al. [26] address an adaptive fault-tolerant formation
control approach and the exponential stability is obtained.
In [27], a fault-tolerant control strategy with application to
formation flight of multiple UAVs is presented to achieve
the finite-time stability. However, the fault tolerant control
problemwith parameter uncertainty for UAV formation using
backstepping method is seldom settled to the best knowledge
of the authors. Besides, the external disturbances are not
considered in most of the literature.

In this study, the adaptive backstepping formation control
schemes are adopted to deal with the input saturation, actuator
fault and external disturbance problems during the maneu-
ver. The main contributions of this paper, relative to other
works, are summarized as follows:

(1) In the research of input saturation problem, backstep-
ping control combined with command filter is a common
approach due to the advantages of simple and reliable charac-
teristic in application. Therefore this method is employed to
design formation control algorithms in some literature such
as [19], [20]. However, the assumption that no input satura-

tion occurs after finite time is needed to assure the stability
in [19], [20]. In this paper, this assumption is removed in the
developed adaptive backstepping control algorithm. In addi-
tion, the relative position error between the UAV and its
neighbors is used to design the virtual velocity error variable,
so the information exchanges are utilized in the distributed
control strategy. Meanwhile, the adaptive law is designed to
estimate the mass of the UAV, and the command filter is
developed to counteract the input saturation constraints for
implementation.

(2) In this paper, multiple actuator constraints such as input
saturation and actuator fault are considered simultaneously.
The fault-tolerant term is introduced to eliminate the faults of
the actuators, and the distributed fault tolerant backstepping
control method is designed. The tracking errors are enforced
to the origin, despite of the actuator constraints in the multi-
UAV formation system. With the aid of the introduced fault-
tolerant term, the corrective control command is executed and
the specified formation configuration can be maintained. Dif-
ferent from the existingwork of active fault-tolerant control in
[5], [23], this paper studies the passive fault-tolerant control
for multiple UAVs considering parameter uncertainty and
disturbance simultaneously, and the complex fault detection
and diagnosis schemes are not required.

(3) The stability of closed-loop control system with
the designed controllers is analyzed strictly using Lya-
punov method and moreover the asymptotic stability of
the closed-loop system is achieved instead of uniform ulti-
mate bounded stability. Meanwhile, in numerical simulation,
the position and velocity of the UAVs are perturbed by the
zero-mean Gauss white noise to verify the robustness of the
presented control approach. The simulation results indicate
the favorable performance in presence of the noise.

The rest of the paper is organized as follows. After pro-
viding the UAV formation model and basic graph theory in
Section II, a distributed adaptive backstepping control law
with input saturation constraints for UAV formation is pro-
posed in Section III. After that, a distributed robust fault tol-
erant formation control law is introduced to deal with external
disturbances and actuator fault. Corresponding stability anal-
ysis is also provided strictly. Numerical simulation results
and conclusions are presented in Section IV and Section V
respectively.

II. RELATED FUNDAMENTAL THEORY
A. MATHEMATICAL MODEL OF UAV FORMATION
In this section, the UAV kinematic and dynamic equations
are given by the point mass model. For the formation system
composed of n UAVs in 3-dimensional space, the kinematics
of the ith UAV can be described as the follows [1]

ẋi = Vi cosχi cos γi
ẏi = Vi sinχi cos γi
żi = Vi sin γi (1)
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FIGURE 1. The UAV model diagram.

where i = 1, · · · , n is the index of multiple UAVs. For the
i th UAV, (xi, yi, zi) is the position in the inertia frame, Vi is
the speed, χi is the heading angle, γi is the flight path angle.
The dynamics of the ith UAV can be described as [1]

V̇i = (Ti − Di)/mi − g sin γi
χ̇i = Li sinφi/(miVi cos γi)

γ̇i = (Li cosφi − mig cos γi)/(miVi) (2)

where Ti is the engine thrust, Li and Di are the vehicle lift
and the drag, respectively. mi, g and φi are the mass the
gravitational constant and the banking angle, respectively.
The dynamic model diagram of the UAV is shown in Fig. 1.

Define the control input Fi =
[
Ti Li sinφi Li cosφi

]T,
the position pi =

[
xi yi zi

]T, and the velocity vi =[
ẋi ẏi żi

]T. Then from Eq. (1) and (2), it can be obtained that

ṗi = vi
miv̇i = αi + miεi + β iFi (3)

where,

αi =

−Di cosχi cos γi−Di sinχi cos γi
−Di sin γi

 (4)

εi =
[
0 0 g

]T (5)

β i =

 cosχi cos γi − sinχi − sin γi cosχi
sinχi cos γi cosχi − sinχi sin γi

sin γi 0 cos γi

 (6)

It is easy to obtain that the matrix β i is invertible, and its
inverse matrix is

β−1i =

 cosχi cos γi sinχi cos γi sin γi
− sinχi cosχi 0

− sin γi cosχi − sinχi sin γi cos γi

 (7)

B. CONTROL OBJECTIVE
The objective of the paper is then to design the distributed
formation controllerFi such that all the UAVs can achieve the
designed formation configuration with fault-tolerant ability
and input saturation constraint, and the formation system
follows a prescribed reference trajectory.

FIGURE 2. Schematic representation of formation keeping. (a) Initial
positions without formation. (b) Final positions within formation.

Formation coordination requires that UAVs should main-
tain their geometric configuration during formation maneu-
vers. In this study, the desired position of the ith UAV is
denoted as pdi = pdo + pFi , where p

d
o is the desired position

of the formation center, pFi is the desired position of the UAV
relative to the formation center. So we need to design the
controllersFi to track the desired trajectory such that pi→ pdi
and ṗi → ṗdi as t → ∞. Also note that pi → pdi and
vi → ṗdi = vdi indicate the realization of formation tracking,
and pi − pFi → pj − pFj indicates that the formation keeping
is realized during transition, as shown in Fig. 2.

C. BASIC GRAPH THEORY
In this paper, we employ weighted undirected graphs to
describe local information exchanges between UAVs in a
formation [28]. A weighted undirected graph G = (ν, ς, C)
consists of a node set ν = {1, 2 . . . , n}, an edge set ς ⊆
ν × ν, and a weighted adjacency matrix C. If there exists
information transmission from the jth node to the ith node,
then there exists an edge from the jth node to the ith node,
denoted as (i, j) ∈ ς . In an undirected graph, if (i, j) ∈ ς ,
then (j, i) ∈ ς . The element of the adjacency matrix C is
defined as cij = cji > 0 if (i, j) ∈ ς and i 6= j, otherwise
cij = 0.
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III. MAIN RESULTS
A. BACKSTEPPING CONTROL DESIGN
In this part, it is assumed that the actuators of the UAVs can
only afford limited control force. In addition, the mass of
the UAV are unavailable due to fuel consumption or measure
uncertainty. To overcome these problems, a unified adaptive
backstepping control algorithm associated with command
filter, which is a recursive nonlinear control design approach
to use part of system states as virtual control to guarantee
the stability of each recursive step, is proposed to achieve
the trajectory tracking. Meanwhile, an antiwindup saturation
compensator is associated with the controller under input
saturation.

Due to the input saturation constraints, the controller can
be expressed as

Fi = sat(f i) (8)

where sat(·) denotes the nonlinear saturation function, which
is defined as sat(y) = [ sat(y1) sat(y2) sat(y3) ]T and

sat(yi) = sgn(yi) min{y0, |yi|} (9)

for the vector y = [ y1 y2 y3 ]T, i = 1, 2, 3, sgn(·) is the sign
function, y0 > 0 is the bound parameter of the saturation
function.

The position and velocity tracking error are defined as
ei1 = pi − pdi and ei2 = vi − vdi , respectively. From Eq. (3),
the error dynamics equations can be derived as

ėi1 = ei2 (10)

miėi2 = αi + miεi + β iFi − mip̈
d
i (11)

Then the adaptive backstepping control algorithms with input
saturation can be designed in the following.

Firstly, the backstepping variables are defined

zi1 = γ i − ξ i (12)

zi2 = ei2 − γ i (13)

where γ i is the virtual control to be designed later, ξ i is the
output of a command filter to be defined later. The virtual
velocity error γ i is defined as

γ i = −k1ei1 − ri (14)

where k1 > 0 is a constant, ri =
n∑
j=1

cij(ei1 − ej1) represents

the information exchanges between the ith UAV and its neigh-
bors, cij is the ith row and jth column element of the adjacency
matrix C with the weighted undirected graph. Then Eq. (10)
can be written as

ėi1 = zi2 − k1ei1 − ri (15)

Let a candidate Lyapunov function be

V1=
1
2

n∑
i=1

eTi1ei1 +
1
4

n∑
i=1

n∑
j=1

cij(ei1 − ej1)T(ei1 − ej1) (16)

From Eqs. (10)-(15) and cij = cji, the derivative of V1 is
computed as

V̇1 =
n∑
i=1

ėTi1ei1 +
1
2

n∑
i=1

n∑
j=1

cij(ei1 − ej1)T(ėi1 − ėj1)

=

n∑
i=1

zTi2ei1−
n∑
i=1

k1eTi1ei1−
n∑
i=1

eTi1ri+
1
2

n∑
i=1

n∑
j=1

cijeTi1ėi1

−
1
2

n∑
i=1

n∑
j=1

cijeTi1ėj1 −
1
2

n∑
i=1

n∑
j=1

cijeTj1ėi1

+
1
2

n∑
i=1

n∑
j=1

cijeTj1ėj1

=

n∑
i=1

zTi2ei1−
n∑
i=1

k1eTi1ei1−
n∑
i=1

eTi1ri+
1
2

n∑
i=1

n∑
j=1

cijeTi1ėi1

−
1
2

n∑
j=1

n∑
i=1

cjieTi1ėj1 −
1
2

n∑
i=1

n∑
j=1

cijeTj1ėi1

+
1
2

n∑
j=1

n∑
i=1

cjieTj1ėj1

=

n∑
i=1

zTi2ei1 −
n∑
i=1

k1eTi1ei1 −
n∑
i=1

eTi1ri +
n∑
i=1

n∑
j=1

cijeTi1ėi1

−

n∑
i=1

n∑
j=1

cijeTj1ėi1

=

n∑
i=1

zTi2ei1 −
n∑
i=1

k1eTi1ei1 −
n∑
i=1

eTi1ri +
n∑
i=1

eTi2ri (17)

Secondly, the estimation of the UAV mass mi is denoted
by m̂i, and the estimation error m̃i = mi − m̂i. The command
filter ξ i is designed as

m̂iξ̇ i = −k2ξ i − β i1Fi (18)

where the constant k2 > 0,1Fi = f i −Fi is the discrepancy
between the designed control f i and the actual controlFi. The
action of the command filter is to compensate the saturation
effect of Eq. (8).
From the definition of zi2 and virtual control input Eq. (14),

we obtain the dynamics of zi2

miżi2 = mi(ėi2 − żi1 − ξ̇ i)

= αi + miεi + β iFi − mip̈
d
i − miżi1 − miξ̇ i

= αi + miH i + β iFi − m̂iξ̇ i − m̃iξ̇ i

= αi + miH i + β if i − β i1Fi − m̂iξ̇ i − m̃iξ̇ i

= αi + miH i + β if i + k2ξ i − m̃iξ̇ i (19)
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whereH i = εi− p̈di − żi1. The control input and adaptive law
are proposed as

f i = β
−1
i (−αi−m̂iH i−k2ξ i−k3zi2−ei1−

n∑
j=1

cij(ei1−ej1))

(20)
˙̂m = λizTi2(H i − ξ̇ i) = λiz

T
i2(εi − p̈

d
i − γ̇ i) (21)

where the constant k3 > 0, λi > 0.
Theorem 1: For the UAV formation control system

(10)-(11), if the controller is designed as Eqs. (8) and (20),
the adaptive law is designed as Eq. (21), the command filter
is designed as Eq. (18), and the communication graph is
undirected, then the position and velocity tracking error ei1
and ei2 would converge to zero as the time goes to infinity.

Proof: The Lyapunov function candidate is selected as

V2 =
1
2

n∑
i=1

mizTi2zi2 + V1 +
1
2λi

n∑
i=1

m̃2
i (22)

It is observed that the Lyapunov function V2 ≥ 0, and V2
is a positive-definite function. Differentiating V2 along the
system and using Eqs. (19)-(21) yield that

V̇2 =
n∑
i=1

mizTi2żi2 + V̇1 +
n∑
i=1

1
λi
m̃i ˙̃mi

=

n∑
i=1

zTi2
(
αi + miH i + β if i − m̃iξ̇i + k2ξi

)
+

n∑
i=1

zTi2ei1

−

n∑
i=1

k1eTi1ei1 −
n∑
i=1

eTi1ri +
n∑
i=1

eTi2ri −
n∑
i=1

1
λi
m̃i ˙̂mi

=

n∑
i=1

zTi2
(
m̃iH i − m̃iξ̇ i − k3zi2 − ri

)
−

n∑
i=1

k1eTi1ei1

−

n∑
i=1

eTi1ri +
n∑
i=1

eTi2ri −
n∑
i=1

m̃izTi2
(
H i − ξ̇i

)
= −k3

n∑
i=1

zTi2zi2 − k1
n∑
i=1

eTi1ei1 −
n∑
i=1

eTi1ri

+

n∑
i=1

(−k1ei1 − ri)T ri

= −k3
n∑
i=1

zTi2zi2 − k1
n∑
i=1

eTi1ei1 −
n∑
i=1

rTi ri

−
k1 + 1

2

n∑
i=1

n∑
j=1

cij
(
ei1 − ej1

)T (ei1 − ej1)
≤ 0 (23)

So zi2, m̃i, ri and ei1 are all bounded. From Eqs. (19) and (20),
we obtain that

miżi2 = m̃iH i − k3zi2 − ei1 − ri − m̃iξ̇ i (24)

Thus żi2 is also bounded. Differentiating Eq. (23), we can
obtain that V̈2 is bounded due to the fact that zi2, żi2, ei1 and ėi1

are all bounded. Therefore V̇2 is uniformly continuous. From
Barbalat’s Lemma [29], it concludes that V̇2 converge to zero.
Consequently, zi2, ri and ei1 converge to zero as the time goes
to infinity. Therefore, ei1→ 0 and ei2 = zi2− k1ei1− ri→ 0
as t →∞.
Remark 1: Compared with the results in [19], [20], our

results do not need the assumption that no input saturation
occur after finite time. Moreover the asymptotic stability is
achieved under the proposed controllers instead of uniform
ultimate bounded stability. This is the main merit and inno-
vation of the presented control approach.
Remark 2:Note that ei1−ej1 = pi−pj−(p

d
i−p

d
j ) and p

d
i−p

d
j

is related to the formation shape, thus the positions of the
UAV’s neighbors should be utilized. From this point of view,
the controller (20) is distributed. According to the preceding
analysis, the controller (20) can be viewed as the sum of
station-keeping and formation-keeping behaviors. Specifi-
cally, the first five items of controller (20) are station keeping
terms and are intended to drive the UAV to its final position.
The last one item, generated by consensus algorithms similar
to those of [28], is formation-keeping terms and intends to
help the UAVs maintain formation configuration during the
maneuver.
Remark 3: In the proof of Theorem 1, it is only assumed

that the interaction graph is undirected and the connectedness
of the graph is not needed. Even when there is no information
transmission, the conclusion is also valid. In such a case,
the controller (20) becomes centralized trajectory tracking
controller without any information interactions.

B. ADAPTIVE CONTROLLER WITH ACTUATOR FAULTS AND
DISTURBANCES
Note that we do not consider the external disturbances and
actuator faults currently. However, the UAV would inevitably
suffer unknown bounded external disturbances owing to
uncertain outdoor flying environment, such as wind gust,
the payload mass variation, nonlinear aerodynamic friction,
and so on. Moreover, the tremendous and complicated forma-
tion system may emerge various faults easily, and the impact
of the faults may lead to the failure of overall formation sys-
tem, evenwhen the impact of faults could be a slight reduction
in efficiency. In this case, we assume that the actuators of
the UAV may lose its effectiveness partially and the external
disturbances are also considered.

Without going into the details of the possible nature of
actuator faults, the UAV error dynamics model (11) with
actuator faults and disturbances is given by

miėi2 = αi + miεi + d i + 0iβ iFi − mip̈
d
i (25)

where d i = [d (1)i d (2)i d (3)i ] is the unknown external distur-
bances bounded with ‖d i‖∞ ≤ Di, andDi > 0 is an unknown
constant. The actuator effectiveness0i = diag{δ(1)i , δ

(2)
i , δ

(3)
i }

is a diagonal time-varying matrix, which satisfies 0 < τi ≤

min{δ(1)i (t), δ(2)i (t), δ(3)i (t)} ≤ 1. Note that the case δ(j)i =
1(1 ≤ j ≤ 3) means that the jth actuator of the ith UAV
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works normally, and 0 < τi ≤ δ
(j)
i < 1 represents that the ith

actuator has partially lost its effectiveness, but it still works
all the time.

The robust fault-tolerant adaptive controllers are proposed
as

Fi = F(1)
i + F

(2)
i + F

(3)
i (26)

F(1)
i = β

−1
i (−αi−m̂iY i−k3zi2−ei1−

n∑
j=1

cij(ei1−ej1))

(27)

F(2)
i = −β

−1
i diag{θ̂ (1)i , θ̂

(2)
i , θ̂

(3)
i }sgn(zi2) (28)

F(3)
i = −β

−1
i D̂isgn(zi2) (29)

˙̂m = λizTi2Y i (30)

where Y i = εi − p̈di + k1ei2, F
(1)
i is the normal controller,

F(2)
i is the adaptive compensation control term that is to

countervail the partial failure of actuators, θ̂ (j)i (1 ≤ j ≤ 3) is
the estimate of θ (j)i , θ (j)i is a constant parameter to be defined.
The adaptive update law of θ̂ (j)i is designed as

˙̂
θ
(j)
i = γ

(j)
i

∣∣∣z(j)i2 ∣∣∣ (31)

where z(j)i2 is the j th element of zi2, γ
(j)
i > 0 is a gain coeffi-

cient. And F(3)
i is the disturbance rejection term to eliminate

the external disturbances, where D̂i is the estimation of Di.
The adaptive update law of D̂i is designed as

˙̂Di = δi ‖zi2‖1 (32)

where δi > 0 is a gain coefficient. From Eqs. (26)-(29),
it follows that

0iβ iFi = 0iβ iFi
= β iFi − (I3 − 0i)β iFi
= −αi − m̂iY i − k3zi2 − ei1 − ri − D̂i sgn (zi2)

− diag
{
θ̂
(1)
i , θ̂

(2)
i , θ̂

(3)
i

}
sgn (zi2)−(I3 − 0i)β iFi

(33)

According to Eqs. (25) and (33), it is derived that

miżi2 = mi (ėi2 + k1ėi1)

= αi + miεi + d i + 0iβ iFi − mip̈
d
i + k1miei2

= αi + miY i + d i + 0iβ iFi
= m̃iY i+d i−k3zi2−ei1−(I3−0i)β iFi − D̂i sgn (zi2)

−

n∑
j=1

cij
(
ei1−ej1

)
−diag

{
θ̂
(1)
i , θ̂

(2)
i , θ̂

(3)
i

}
sgn (zi2)

(34)

It is assumed that the control force is bounded in
practice, which is previously assumed to be bounded
in [15], [25]–[27], namely ‖Fi‖∞ ≤ lf . Let

M i = [M (1)
i M (2)

i M (3)
i ]T = −(I3 − 0i)β iFi

Then M (j)
i (j = 1, 2, 3) is bounded and expressed as∣∣∣M (j)

i

∣∣∣ ≤ 3lf
(
1− δ(j)i

)
≤ θ

(j)
i (35)

where θ
(j)
i is the unknown constant upper bound of

3lf (1− δ
(j)
i ).

Theorem 2: For the UAV formation control system
Eqs. (10) and (25) with actuator faults and external distur-
bances, the adaptive fault tolerant controller is designed as
Eqs. (26)-(29), the adaptive laws are designed as Eqs. (30),
(31) and (32). If the communication graph is undirected,
the position and velocity tracking error ei1 and ei2 would
converge to zero as the time goes to infinity.

Proof: The Lyapunov function candidate is selected as

V3 = V2 +
1
2δi

n∑
i=1

D̃2
i +

n∑
i=1

3∑
j=1

(
θ̃
(j)
i

)2
2γ (j)

i

(36)

where D̃i = Di − D̂i. From Eqs. (30), (34) and (35), we can
obtain that

V̇2 =
n∑
i=1

mizTi2żi2 + V̇1 +
1
λi

n∑
i=1

m̃i ˙̃mi

= −k3
n∑
i=1

zTi2zi2 − k1
n∑
i=1

eTi1ei1−
n∑
i=1

eTi1ri +
n∑
i=1

m̃izTi2Y i

+

n∑
i=1

zTi2d i+
n∑
i=1

eTi2ri−
n∑
i=1

zTi2ri+
n∑
i=1

zTi2 (I3−0i)β iFi

−

n∑
i=1

3∑
j=1

θ̂
(j)
i

∣∣∣z(j)i2 ∣∣∣− n∑
i=1

D̂i ‖zi2‖1−
n∑
i=1

m̃izTi2Y i

≤ −k3
n∑
i=1

zTi2zi2−k1
n∑
i=1

eTi1ei1−
n∑
i=1

eTi1ri+
n∑
i=1

D̃i ‖zi2‖1

+

n∑
i=1

3∑
j=1

θ
(j)
i

∣∣∣z(j)i2 ∣∣∣− n∑
i=1

3∑
j=1

θ̂
(j)
i

∣∣∣z(j)i2 ∣∣∣− n∑
i=1

(k1ei1+ri)T ri

= −k3
n∑
i=1

zTi2zi2−k1
n∑
i=1

eTi1ei1+
n∑
i=1

D̃i‖zi2‖1 −
n∑
i=1

rTi ri

+

n∑
i=1

3∑
j=1

θ̃
(j)
i

∣∣∣z(j)i2 ∣∣∣− k1 + 1
2

n∑
i=1

n∑
j=1

× cij
(
ei1 − ej1

)T (ei1 − ej1)
(37)

Differentiating V3 and using Eqs. (31), (32) and (37) yield
that

V̇3 = V̇2 −
1
δi

n∑
i=1

D̃iḊi −
n∑
i=1

3∑
j=1

θ̃
(j)
i

γ
(j)
i

ˆ̂
θ
(j)
i

≤ −k3
n∑
i=1

zTi2zi2−k1
n∑
i=1

eTi1ei1+
n∑
i=1

D̃i ‖zi2‖1−
n∑
i=1

rTi ri
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+

n∑
i=1

3∑
j=1

θ̃
(j)
i

∣∣∣z(j)i2 ∣∣∣− k1 + 1
2

n∑
i=1

n∑
j=1

× cij
(
ei1 − ej1

)T (ei1 − ej1)
−

n∑
i=1

D̃i ‖zi2‖1 −
n∑
i=1

3∑
j=1

θ̃
(j)
i

∣∣∣z(j)i2 ∣∣∣
= −k3

n∑
i=1

zTi2zi2 − k1
n∑
i=1

eTi1ei1 −
n∑
i=1

vTi vi

−
k1 + 1

2

n∑
i=1

n∑
j=1

cij
(
ei1 − ej1

)T (ei1 − ej1)
≤ 0 (38)

It follows that V3 is bounded, and zi2, m̃i, vi, θ̃
(j)
i , D̃i, ei1 ∈ L∞

are all bounded. From Eq. (34), we can obtain that żi2 ∈ L∞,
ėi1 = zi2 − k1ei1 − vi ∈ L∞. Meanwhile, the fact that V3 is
bounded and V̇3 ≤ 0 implies lim

t→∞

∫ t
0 V̇3(τ )dτ <∞, thus

k3
n∑
i=1

∫
∞

0
zTi2zi2dτ+k1

n∑
i=1

∫
∞

0
eTi1ei1dτ ≤ lim

t→∞

∫ t

0
V̇3(τ )dτ<∞

(39)

In other words, zi2, ei1 ∈ L2. From Barbalat’s Lemma [29],
it concludes that zi2 and ei1 converge to zero as the time goes
to infinity.
Remark 4: The proposed controllers (26)-(29) are discon-

tinuous because of the term sgn(zi2), which may bring about
undesirable chattering in the vicinity of switching. This prob-
lem can be alleviated by replacing the discontinuous function
sgn(zi2) by a continuous function tanh(zi2) or sat(zi2).

IV. SIMULATION RESULTS
A. BASIC PARAMETER SETTINGS
Simulation results are presented in this section to support the
proposed methods. A scenario with four UAVs in the forma-
tion is considered. The gravity constant is g = 9.81 kg/m2.
The drag in the UAV model Eq. (2) is calculated by [3]

Di =
0.5ρ(Vi − Vwi)2SCD0 + 2kdk2nL

2
/
g2

ρ(Vi − Vwi)2S

where ρ is the atmospheric density and equal to 1.225 kg/m3,
Vwi is the gust, S is the wing area and equal to 1.37 m2,
CD0 is the zero-lift drag coefficient and equal to 0.02, kd is
the induced drag coefficient and equal to 0.1, and kn is the
load-factor effectiveness and equal to 1.

The mass of the UAVs are m1 = 1.5 kg, m2 = 2kg,
m3 = 1.8kg, m4 = 1.6kg, respectively. The initial values
of the position and velocity are given by

p1(0) =
[
−58 62 584

]Tm,
v1(0) =

[
5 5

√
2 5

√
2
]T

m/s

p2(0) =
[
−62 60 580

]Tm,
v2(0) =

[
11
4

11
√
3

4
11
√
3

2

]T
m/s

FIGURE 3. Position tracking errors with controller (20).

p3(0) =
[
−60 −60 416

]Tm,
v3(0) =

[
6 6 6

√
2
]T

m/s

p4(0) =
[
55 63 410

]Tm,
v4(0) =

[
5
√
3

2
15
2

5

]T
m/s

The desired positions of the UAVs relative to the formation
center are given by

p1F(0) =
[
−60 −60 60

√
2
]T
m,

p2F(0) =
[
60 60 60

√
2
]T
m,

p3F(0) =
[
−60 −60 −60

√
2
]T
m,

p4F(0) =
[
60 60 −60

√
2
]T
m.

The desired position and velocity of the formation center
are given by

pdo =
[
0 100t 500

]T m,
vdo = ṗdo.

Then the desired position and velocity of each UAV are
given by

pdi = pFi + p
d
o,

vdi = ṗdi , i = 1, 2, 3, 4.

The sensor noise is considered in the simulations. Assume
that the position and velocity of UAVs are perturbed by a
zero-mean Gauss white noise. The white noise has a variance
of 0.0002. When the proposed controllers are implemented,
the weighted adjacency matrix associated with the communi-
cation topology is chosen as

C =
[
cij
]
4×4 =


0 1.2 0 1
1.2 0 0 0
0 0 0 0.8
1 0 0.8 0


The parameters of the controller (20) are chosen as

k1 = 0.2, k2 = 8, k3 = 150, λi = 0.001, the initial values
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FIGURE 4. Velocity tracking errors with controller (20).

FIGURE 5. Formation tracking and keeping performance with
controller (20).

of m̂i in Eq. (21) and ξ i in Eq. (18) are chosen as
m̂1(0) = 2 kg, m̂2(0) = 2.1 kg, m̂3(0) = 2.2 kg, m̂4(0) =
1.8 kg, ξ i(0) = [1 1 1]T. The parameter of the saturation
function in Eq. (8) is chosen as y0 = 300. The parameters
of controller (27) are chosen as k1 = 0.2, k2 = 8, k3 =
150, λi = 0.001, the initial values of m̂i in Eq. (21), D̂i in
Eq. (32) and θ̂ (j)i in Eq. (31) are chosen as m̂1(0) = 2 kg,
m̂2(0) = 2.1 kg, m̂3(0) = 2.2 kg, m̂4(0) = 1.8 kg, D̂1(0) = 2,
D̂2(0) = 3, D̂3(0) = 4, D̂4(0) = 5, θ̂ (j)i = 1. The actuator
effectiveness is selected as

δ
(1)
i (t) =

{
1 t ≤ 10
1− 0.1(i+ 1)e−(t−10) t ≥ 10

δ
(2)
i (t) =

{
1 t ≤ 15
1− 0.1e−0.5i(t−15) t ≥ 15

δ
(3)
i (t) =

{
1 t ≤ 20
1− 0.05(i+ 2)e−0.2(t−10) t ≥ 20

The external disturbances are chosen as

d i=

(i+ 1) cos(0.1t)+ 2i sin(0.2t)
2i cos(0.2t)+ 3i

(i− 3) sin(0.1t)− 2i

T

N for i=1, 2, 3, 4.

FIGURE 6. Command filter with controller (20).

FIGURE 7. Actual control force with controller (20).

To describe the formation tracking and formation keeping
performance of the UAVs quantitatively, the formation track-
ing error µ1 and formation keeping error µ2 are defined as

µ1 =
1
4

4∑
i=1

‖ei‖2

µ2 =
∣∣∥∥p1−p2∥∥2−∥∥p1−p3∥∥2∣∣+∣∣∥∥p1−p2∥∥2−∥∥p3−p4∥∥2∣∣
+
∣∣∥∥p2 − p4∥∥2 − ∥∥p3 − p4∥∥2∣∣

According to the assignment of the desired formation config-
uration, it is clear that smaller µ1 and µ2 during formation
maneuver mean the better performance of formation tracking
and formation maintenance.

B. THE SIMULATION RESULTS OF CONTROLLER (20)
The simulation results of the backstepping controller (20) are
demonstrated in Fig. 3-Fig. 7, respectively. It can be seen
from Fig. 3 that the position errors ei1 converges to zero
eventually, which shows that the control objective is achieved.
In addition, the UAVs reach the desired position and follow
the desired reference trajectory finally. The responses of the
velocity error ei2 are shown in Fig. 4. It can be observed that
the velocity error decays quickly as well. Fig. 5 illustrates
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FIGURE 8. Position tracking errors with controller (26).

FIGURE 9. Velocity tracking errors with controller (26).

the formation tracking error µ1 and formation keeping error
µ2. It shows that µ1 and µ2 can also converge to zero, which
implies the favorable formation-tracking and formation-keep
performance. The responses of the actual control force Fi
are shown in Fig. 7. The developed controllers are clearly
able to satisfy the input saturation constraint, while all the
components of Fi are not beyond the maximum values of the
given bound. Therefore the simulation results demonstrate
the validation of the presented controller (20) with actuator
saturations.

C. THE SIMULATION RESULTS OF CONTROLLER (26)
The simulation results of the controller (26) are given
in Fig. 8-Fig. 11. The position tracking errors of the UAVs are
given in Fig. 8, which shows that the position tracking errors
decay quickly as the time goes on. From Fig. 9, the velocity
errors of the UAVs also converge to zero as the time goes on.
So the purpose of tracking the desired trajectory and main-
taining the desired configuration is attained. Fig. 10 shows the
formation-keeping performance of controller (26) with and
without information exchanges (i.e. cij = 0). It is observed
that the formation-keeping errorµ1 can both converge to zero
finally, and the controller (26) with information exchanges

FIGURE 10. Comparision of the formation tracking performance.

FIGURE 11. Comparision of the formation kepping performance.

has the advantages of faster convergence velocity and higher
tracking precision. The formation keeping error µ2 with and
without information exchanges is presented in Fig. 11, which
shows that the controller (26) with information exchanges
has faster convergence velocity and equal level tracking
precision. In summary, the controller (26) with information
exchanges has the better control performance. These simula-
tions verify the feasibility of the developed control algorithms
solidly.

V. CONCLUSION
The adaptive backepping control schemes of UAV formation
in presence of input saturation and actuator fault constraints
are studied. An adaptive backstepping controller with an
appropriate command filter is proposed to solve the problem
of input saturation andmodel uncertainty. Then, a robust fault
tolerant backstepping controller is introduced to overcome
external disturbance, actuator fault and model uncertainty.
The stability of the system with the proposed controllers is
assured by choosing a reasonable Lyapunov function. It is
found that the presented control algorithms enable a fleet of
UAVs to form the desired formation if the interaction graph
is undirected. The simulation results validate the favorable
performance of the developed control methods. It indicates
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that the control algorithmwith information exchanges has the
better control performance. Also, several other topics includ-
ing collision avoidance and time delay need to be further
investigated. These issues will be the subject of the future
works.
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