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ABSTRACT Bone age assessment (BAA) is a common radiological examination used in pediatrics based on
an analysis of ossification centers and epiphyses of hand bones. Segmentation of hand bones could help give
specific descriptions of hand bone features in medical records and assess bone age automatically. This study
proposes a lightweight U-Net architecture multi-scale convolutional network for pediatric hand bone seg-
mentation in the X-ray image. The compact structure is based onU-Net architecture with two down-sampling
and up-sampling operations and multiple filters with different kernel size are adopted for countering hand
bone scale variations during growth in children. This is the first-hand bone segmentation study with deep
learning and the experiment results indicate promising performance in hand bones segmenting, especially
for small bones of the hand.

INDEX TERMS Bone age assessment, U-Net, multi-scale convolutional network, segmentation of hand
bones, X-ray.

I. INTRODUCTION
Bone age assessment (BAA) is a radiological examination
for pediatrics to determine any discrepancy between a child’s
skeletal age (the developmental age of their bones) and their
chronological age (in years, taken from birth date) [1]. The
examination is based on an analysis of ossification centers
in the carpal bones and epiphyses of tubular bones including
distal, middle, and proximal phalanges as well as ulna and
radius (Fig. 1). For example, an illness may cause accelerated
or delayed appearance of epiphyses or ossification centers.
BAA is commonly used to manage endocrine disorders and
pediatric syndromes [2].Moreover, BAA is used in prediction
of the adult height as well as in forensic medicine [3].

There are twomethods applied in clinical routine: Greulich
and Pyle (GP) [4] and Tanner and Whitehouse (TW) [5]. The
G&P method focuses on a set of regions of interest (ROIs) of
the hand and wrist joints (Fig. 1). The TW method (also the
TW2 and TW3 for the second and third editions, respectively)
analyzes 20 ROIs and assigns a staging score to each of them.
However, both of these two methods are time-consuming
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and cumbersome tasks. The average reading time is 84 s
and 474 s for GP and TW methods, respectively [6]. More-
over, both methods suffer from high intra- and inter-observer
variability. The average spreads of the reading are 0.96 year
(11.5 months) for the G&P and 0.74 year (8.9 months) for the
TW2 [7]. Hence, automated BAA is desired.

The traditional method for computer-assisted BAA relies
on image processing, including hand bones segmenting and
relevant ROI feature extracting. Pietka et al. [8] proposed a
method for epiphyseal/metaphyseal segmentation. The fea-
tures extracted from the ROIs describe the stage of skeletal
development objectively. Giordano et al. [9] proposed an
Epiphyseal/Metaphyseal ROI segmentation method by using
the Difference of Gaussians filter and extracting main fea-
tures of these bones for the stage TW2 evaluation. They all
deal with the problem of segmentation of certain regions
within the radiograph. However, a rather low accuracy rate
of the bone segmentation may be caused due two reasons.
First, a nonuniformity of the image background should be
suppressed prior to the image analysis [10]. Second, hand
orientation sometimes [11] varies from the standard position
without the cooperation of little children, reducing the seg-
mentation robustness.
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FIGURE 1. An example of hand image radiograph with superimposed regions of interest.

Another type of BAA method relies on the deep learning
technique [12]. This method aims at encoding visual features
directly. Spampinato et al. [11] proposed and tested several
deep learning approaches to assess skeletal bone age auto-
matically. Ren et al. [10] propose a regression convolutional
neural network (CNN) to automatically assess the pediatric
bone age from hand radiograph. They first adopt attention
maps as inputs for the regression network. Although these
studies open a new paradigm for automated BBA, they are not
sufficient since it is hard to give specific descriptions of hand
bone features in medical records. Additional, only analysis
with each single hand bone is in accordance with the TW
method. Therefore, not only the estimated bone age but also
the hand bones segmentation is needed to clinical application.

Recently, with the great development of deep learn-
ing [13], [14], many conventional methods, such as the
graph-based segmentation approaches [15] or those based
on handcrafted local features [16], have been replaced
by deep segmentation networks, which typically pro-
duce higher segmentation accuracy [17]. For example,
Ronneberger et al. [18] introduced the U-Net, which used the
skip-architecture that combined the high-level representation
from deep decoding layers with the appearance representa-
tion from shallow encoding layers to produce detailed seg-
mentation. Moreover, it adopted architectures with pyramidal
shapes, including 4 down-sampling and up-sampling oper-
ations. It employed low-resolution feature to help locating
the object and normal-resolution feature to improve seg-
mentation accuracy for details [19]. Although the U-Net
architecture perform well in cell [18] and brain tumor [20]
segmenting tasks, it still underperforms in details [21].
Arguably, the number of down-sampling operations adopted
in CNN for higher segmentation accuracy depends on the
specific problem. For example, Jégou et al. [22] extended

DenseNets to deal with the problem of semantic segmenta-
tion with 3 down-sampling operations and achieved state-of-
the-art results on urban scene benchmark datasets such as
CamVid and Gatech. Zhou et al. [23] presented U-Net++

architecture where the encoder and decoder sub-networks
are connected through a series of nested. In theory, this
architecture included 4 sub-networks with 1-4 numbers of
down-sampling operations separately and achieved intersec-
tion over union (IoU) gain in polyp, liver, and cell nuclei
segmentation tasks. In BAA, the appearance of small bones
of the hand, especially small ossification centers in the carpal
bones and epiphyses of tubular bones, are vital for bone age
assessment, especially for 0-7 years old children [4].

To obtain accurate segmentation results of hand bones
in X-ray, we proposed a lightweight U-Net architecture
multi-scale convolutional network. Different number of
down-sampling operations adopted in U-Net architecture
were compared for hand bones segmentation task and we
choose 2 in this work. Moreover, as hand bones becoming
larger within growth in children (Fig. 2), same sized ker-
nels combination may not counter hang bones scale varia-
tions [24]. Szegedy et al. [25]. proposed an Inception module
to process visual information at various scales. Motivated
by it, we introduce a multi-scale block with different kernel
sizes to extract scale-relevant features.We evaluate the ability
of different networks for small bones segmentation with the
accuracy of small bones detection. This is the first hand bone
segmentation studywith deep learning and the results indicate
promising performance in hand bones segmenting, especially
for small bones of the hand.

II. MATERIALS AND METHODS
We propose a lightweight U-Net architecture multi-
scale convolutional network to complete the hand bones
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FIGURE 2. Growth pattern of carpal bones from newborn to 7-year-old (A-H).

FIGURE 3. U-Net architecture with 4 down-sampling and up-sampling operations (U-Net4).

segmentation. We compare different numbers of down-
sampling and up-sampling operations of U-Net architecture
to obtain higher performance in hand bones segmentation.
Particularly, we adopt multi-scale block like Inception model
to extract the scale-relevant features, which consists of mul-
tiple filters with different kernel size. The network then
segments the hand bones end-to-end.

A. LIGHTWEIGHT U-NET ARCHITECTURE
The number of down-sampling and up-sampling operations
in pyramidal shape networks depends on the specific problem
for higher segmentation accuracy. Therefore, we compare dif-
ferent number of down-sampling and up-sampling operations
of U-Net architecture to find a specific lightweight network
structure for hand bone segmentation. The original U-Net
(U-Net4) we adopted is illustrated in Fig. 3. The size of input

image is 256 ∗ 256. It consists of the repeated application
of two 3 × 3 convolutions (unpadded convolutions), each
followed by a rectified linear unit (ReLU) [26] and a 2× 2
max pooling operation with stride 2 for down-sampling.
Every step in the expansive path consists of an up-sampling
of the feature map followed by a 2 × 2 convolution (‘‘up-
convolution’’) that halves the number of feature channels, a
concatenation with the correspondingly cropped feature map
from the contracting path, and two 3 × 3 convolutions, each
followed by a ReLU. At the final layer a 1 × 1 convolution
is used to map each 64-component feature vector to the
desired number of classes. We compared different U-Net
architectures with different number of down-sampling and
up-sampling operations (Fig. 4) and U-Net++ [23] for the
same hand bone segmentation task and we found the U-Net2

could obtain optimal performance.
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FIGURE 4. U-Net architectures with different number of down-sampling
and up-sampling operations.

B. MULTI-SCALE NETWORK ARCHITECTURE
We designed a multi-scale convolutional neural net-
work (msCNN) based on the U-Net2 architecture to learn the
scale-relevant density maps from hand bones with different
sizes (Fig. 5)[24]. The first convolution layer is a traditional
convolutional layer with 9×9 kernel size to remap the image
feature. Multi-Scale Blob (MSB) is employed in the network,
which is an Inception-like model (Fig. 6) consisting of mul-
tiple filters with different kernel size (including 3× 3, 5× 5,
7×7 and 9×9). ReLU is applied after each convolution layer
working as the activation function of previous convolutional
layers except the last one [26]. Detailed parameter settings
are listed in Table 1. Moreover, to evaluate the segmentation
performance with MSB, the MSBs adopted in this network
were replaced by single kernel sizes (including 3× 3, 5× 5,
7×7 and 9×9) and the segmentation results of 4 single kernel
size networks were tested separately. The energy function
is computed by a sigmoid activation function over the final
feature map combined with the dice coefficient loss function.
The dice coefficient is defined as

2 ∗ S1 ∗ S2
S1 + S2

where S1 is the segmentation result and S2 is the groundtruth.

C. EVALUATION METRICS
The segmentation results have been evaluated using the dice
coefficient, IoU, sensitivity and the specificity. The IoU is
defined as (S1 ∩ S2)/(S1 ∪ S2) where S1 is the segmentation
result and S2 is the groundtruth. In addition, sensitivity is used
to evaluate the number of TP and FN that is

sensitivity =
TP

TP+ FN
,

and specificity is defined as

specificity =
TN

TN + FP
,

in which TP, FP, TN and FN denote the true positive, false
positive, true negative and false negative measurements,
respectively.

TABLE 1. The architecture and parameters of lightweight U-Net
architecture multi-scale convolutional network.

Moreover, to evaluate the detail segmentation accuracy of
small bones of the hand, the detection accuracy (DACC) were
calculated as

DACC =
Ns
Ng

,

where Ns is the number of small bones of the hand
segmented with the network and Ng is the number of
small bones of the hand in groundtruth. The segmented
bones are not connected to any adjacent bones. The small
bones of the hand are located in three ROIs: Phalangeal
ROIs; Carpal ROIs and Ulnar & Radius ROIs (Fig. 1).
Specifically:

Phalangeal ROIs include: Distal phalangeal epiphysis
(Dis); Middle phalangeal epiphysis (Mid) and Proximal pha-
langeal epiphysis (Pro);

Carpal ROIs include: Hamate (Ham); Capitate (Cap);
Triquetral (Tri); Lunate (Lun); Trapezoid (Tra1); Trapezium
(Tra2) and Scaphoid (Sca);

Ulnar & Radius ROIs include: Distal ulnar epiph-
ysis (Uln) and Distal radius epiphysis (Rad).
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FIGURE 5. Lightweight U-Net architecture multi-scale convolutional network based on the U-Net2 for pediatric hand
bone segmentation in X-ray image.

FIGURE 6. Multi-scale block with different kernel size.

III. EXPERIMENTAL RESULTS
A. DATASET
The assessment of the segmentation accuracy of the proposed
network described in the previous section, was carried out
on the Digital Hand Atlas Database System [1], a public and
comprehensive X-ray dataset for automated skeletal bone age
benchmarking. The dataset contains 1391 left-hand X-ray
scans of children of age up to 18 years old, divided by
gender and race. Each X-ray scan comes with two bone
age values, provided by two expert radiologists. To evaluate
the segmentation performance of small bones of the hand,
the images of children more than 7 years old are excluded in
our experiment, cause the small bones of the hand of children

start to merge together since 8 years old. Finally, 429 X-ray
images of children from birth to 7 years of age were employed
and we randomly split the dataset into training (252 images),
validation (89 images), and test (88 images) sets, without
patient overlap.

B. TRAINING DETAILS
The input images and their corresponding segmentation maps
are used to train the network with the stochastic gradient
descent implementation. Data augmentation [27] was per-
formed including image rotation within −20◦ to 20◦, image
translation within the ratio 0-0.2, image scaling within the
ratio 0-0.2, image horizontal flip, and image brightness shift-
ing in the whole image within the ratio 0.8-1.2. The data
augmentation operation is performed by Keras Application
Programming Interface [28]. The experiments are tested on
Keras and trained on a NVIDIA GeForce GTX 1080Ti GPU
(11GB) with a 64 GB RAM. The training time(s/epoch) is
7 and running time(s/img) is 0.0287.

C. COMPARISON OF SEGMENTATION PERFORMANCE
WITH DIFFERENT U-NET BASED NETWORK
ARCHITECTURES
We compare the segmentation results for hand bone seg-
mentation with different U-Net architectures with different
number of down-sampling and up-sampling operations and
U-Net++. Fig. 7 shows typical segmentation results (the
redundant parts of the segmentation are circled in blue, the
neglected parts are circled in yellow and the red arrows point
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FIGURE 7. Examples of hand bone segmentation results of different U-Net based network architectures. The redundant parts of the segmentation
are circled in blue, the neglected parts are circled in yellow and the red arrows point to the false alarms.

TABLE 2. Segmentation results of different U-Net based networks.

TABLE 3. Segmentation results of modified U-Net2 with different kernel sizes.

to the false alarms). It shows that U-Net2, U-Net3 and Net4

achieves better performance than the other networks. U-Net1

is not robust enough against small input variance with only
1 down-sampling step, and U-Net++ fail to segment some
small bones.

Concluded from Table 2, except the U-Net1, the other
networks get similar segmentation performance by the mea-
surement of dice, IoU, sensitivity, specificity, respectively.
In addition, U-Net2 achieves the same segmentation perfor-
mance with much less parameters and higher computational
efficiency than other networks.

Moreover, the DACC of small bones of the hand were
shown in Fig. 8 for evaluating the detail segmentation

accuracy of different networks. In total, DACC of 12 different
types of hand bones were calculated with 5 methods and the
red column indicated the results of U-Net2. The DACC of
U-Net2 was higher than other networks in 9 types of hand
bones and was the second high in the rest 3 types (Pro, Rad
and Tra1).

D. COMPARISON OF SEGMENTATION PERFORMANCE OF
MODIFIED U-NET2 WITH DIFFERENT KERNEL SIZES
The improvement of segmentation performance with msCNN
was evaluated replacing the MSBs with different single
kernel sizes based on U-Net2 (Fig. 5). Fig. 9 shows typical
segmentation results. It shows that msCNN achieves better
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FIGURE 8. The detection accuracy (DACC) of small bones of the hand of different U-Net based network
architectures.

FIGURE 9. Examples of hand bone segmentation results of modified U-Net2 with different kernel sizes. The redundant
parts of the segmentation are circled in blue, the neglected parts are circled in yellow and the red arrows point to the
false alarms.

performance than networks with single kernel size. From
Table 3, CNN with single kernel size or MSB all get similar
segmentation performance by the measurement of dice, IoU,
sensitivity, specificity, respectively.

The DACC of small bones of the hand were shown in
Fig. 10 with different networks. DACC of 12 different types
of hand bones were calculated with 5methods and the red col-
umn indicated the results of msCNN. The DACC of msCNN
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FIGURE 10. The detection accuracy (DACC) of small bones of the hand of modified U-Net2 with different kernel sizes.

was higher than other networks, particularly with Phalangeal
ROIs (Dis; Mid; Pro).

IV. DISCUSSION
There have been lots of automatic BAA studies [1], [2], [6],
[8]–[11]. However, in the clinical setting, not only the bone
age but also the specific descriptions of hand bones fea-
tures are needed in medical records. To assess the bone age,
a set of ROIs of the hand and wrist joints are required to
be analyzed according to the G&P method as well as the
TW method. To provide more specific diagnostic message
besides bone age, we proposed a lightweight U-Net archi-
tecture multi-scale convolutional network for pediatric hand
bone segmentation in X-ray image. In our experiment over
the Digital Hand Atlas Database System, this method has
achieved promising segmentation results, especially for seg-
mentation of small bones of the hand.

As the children grow up from birth to 7 years of age,
the small bones of the hand start to appear and become larger
and larger. After 8 years old, they start to merge together. As a
result, the appearance of small bones of the hand, especially
small ossification centers in the carpal bones and epiphyses
of tubular bones, are vital for bone age assessment, especially
for 0-7 years old children [4]. Therefore, precise segmenta-
tion of small bones of the hand is more vital in clinical setting.
Because the traditional evaluation metrics such as IoU and
dice coefficient could only evaluate the segmentation perfor-
mance from the perspective of the entire image, we adopted

the DACC for assessment, which reflects the number of the
small bones detected with different methods. As the results
show, the network we proposed achieves higher performance
in segmentation of small bones of the hand.

Ronneberger et al. [18] introduced the U-Net and this
architecture performs well for biomedical image segmenta-
tion such as cell [18], brain tumor [20] kidney [29] seg-
menting. This structure contains serval down-sampling and
up-sampling steps, providing higher level features such as
the location information. And the concatenated layers with
normal resolution provide the detailed local appearance of
structures. For small bones of the hand segmentation task,
detailed features aremore important than higher level features
relatively. In our experiment, we compared different U-Net
architectures and U-Net2 and U-Net3 achieve higher detail
segmentation performance than other networks. Therefore,
we choose U-Net2 which can achieve satisfying results with a
small number of training parameters. The compact structure
also allows our model to be converged in a short time during
training.

GoogLeNet [25] is another widely used network first
proposed in 2014 and won the classification task of
ILSVRC2014. An inception module was proposed in the
network with multi-scale filters, which could extract more
features from different scales. As hand bones become larger
with the growth in children (Fig. 2), same sized kernels
combination may not counter hand bone scale variations.
Considering the improvement of the inception module in
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GoogLeNet and the elegant architecture of U-Net, we com-
bine both advantages and use different scaled filters in U-Net2

without changing the depth of the network. In our experiment,
U-Net2 with MSBs obtain higher DACC than other single
kernel size networks, particularly with Phalangeal ROIs (Dis;
Mid; Pro). Hand bones in Phalangeal ROIs are relatively
smaller than others and close to adjacent bones, making it
difficult to obtain precise segmentation. The results indicate
promising performance of our method in hand bones seg-
menting, especially for small bones of the hand.

V. CONCLUSION
We propose a lightweight U-Net architecture multi-scale con-
volutional network for pediatric hand bone segmentation in
X-ray image and it has achieved promising segmentation
results, especially for segmentation of small bones of the
hand.
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