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ABSTRACT For a given polar code construction, the existing literature on puncturing for polar codes focuses
on finding the optimal puncturing pattern, and then re-selecting the information set. This paper devotes
itself to find the optimal puncturing pattern when the information set is fixed. Puncturing the coded bits
corresponding to the worst quality bit channels, called worst quality puncturing (WQP), is proposed, which
is analyzed to minimize the bit channel quality loss at the punctured positions. The simulation results show
that the WQP outperforms the best existing puncturing schemes when the information set is fixed.

INDEX TERMS Polar codes, puncture, quasi-uniform puncturing, worst quality puncturing, Gaussian
approximation.

I. INTRODUCTION
Polar codes are proposed by Arıkan in [1] and are
proven to achieve the capacity of binary-input, memoryless,
output-symmetric (BMS) channels with a low encoding
and decoding complexity. The construction of polar code
(selecting the good bit channels from all N bit chan-
nels) can be classified as construction using Monte-Carlo
simulations [1], density evolution (DE) [2], [3], bit chan-
nel approximations [4], density evolution with a Gaussian
approximation (GA) [5], [6], and polarization weight
(PW) [7].

To achieve arbitrary code lengths and code rates, punc-
turing of polar codes are reported in [8]. The quasi-uniform
puncturing (QUP) algorithm is proposed in [9]. Re-ordering
the bit channels after puncturing with GA is proposed in [10].
The aforementioned puncturing procedures need to re-order
the bit channels by GA after puncturing. In [11], to achieve
the maximum throughput, the authors made a conjecture that
the coded bits with the highest first-error probability should
be transmitted first. As noted in [11], there is no proof for this
procedure.

In practical applications, typically the information bit
set is fixed once calculated, for example, in concatenation
and interleaving schemes. Therefore, if a system alternates
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between puncturing and non-puncturingmodes, it is desirable
to fix the information bit set in order to re-use the existing
encoding and decoding structures of polar codes. The existing
puncturing schemes [8]–[10] are not optimized in this sense.

In this work, puncturing for polar codes is designed to
re-use the original information bit set while optimizing the
puncturing pattern. We prove that puncturing the coded bits
with indices corresponding to the frozen bit channels (bit-
reversed version) is theoretically optimal in terms of the union
bound of the block error probability. We further propose
to puncture from the indices corresponding to the worst bit
channel quality, which is called the worst quality punctur-
ing (WQP) in this paper. It is proven that WQP maintains
the minimum overall bit channel quality loss at the punc-
tured positions. Note that the work in [10] did propose a
similar heuristic Algorithm 4. No proof is provided there to
support the proposed puncture pattern. Furthermore, in the
current paper, the proof does not assume a successive cancel-
lation (SC) decoder in calculating the likelihood ratios (LRs).
Instead, the proof is based on the basic partial order (PO) of
polar codes [3], [12], which is independent of the underlying
channels or decoder types.

The remaining paper is organized as follows. In Section II,
the basics of the polar codes are introduced. The optimal
puncture choice is proven from the theoretical perspec-
tive in Section IV. The numerical results comparing the
WQP algorithm with the exiting puncturing algorithms are
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provided in Section V. The concluding remarks are at the
end.

II. PRELIMINARY OF POLAR CODES
For a given BMS channel W : X −→ Y , its input alphabet,
output alphabet, and transition probability are X = {0, 1}, Y ,
and W (y|x), respectively, where x ∈ X and y ∈ Y .
Let GN be the generator matrix: GN = BNF⊗n, where

N = 2n is the code length (n > 1), BN is the permutation
matrix used for the bit-reversal operation, F , [ 1 0

1 1 ], and
F⊗n denotes the nth Kronecker product of F . Let u be the
source vector. Let u(a : b) denote a subvector of u with
elements from ua to ub. Note that in this paper, vector entries
are indexed from element 0 to element N −1 when the length
of the vector is N . A codeword x is obtained from x = uGN .
A vector channel is defined as:

WN (y|u) = WN (y|x = uGN ). (1)

The vector channelWN can be split to a set of N binary-input
channels W (i)

N (0 ≤ i ≤ N − 1), defined as

W (i)
N (y,u(0 : i− 1)|ui)=

∑
u(i+1:N−1)∈XN−i−1

1
2N−1

WN (y|u).

(2)

The channelW (i)
N is called bit channel i, meaning that it is the

channel that bit i experiences.
The original code length N of polar codes is limited to

the power of two, i.e. N = 2n. To obtain any code length,
puncturing is typically performed. The code length of the
punctured codes are denoted byM , containing K information
bits. Let Q denote the number of punctured coded bits with
Q = N −M . The code rate of the punctured codes is R with
R = K/M .
For the punctured mode, the decoder does not have a priori

information of the punctured bits. Equivalently, the transition
probability of a punctured channel H is H (y|0) = H (y|1) =
1/2. It can be easily shown that the punctured channel capac-
ity is: I (H ) = 0.

III. CHANNEL DEGRADATION PROCESS
The binary expansion of the integer i (0 ≤ i ≤ N − 1) is:
(i)b = (b1, b2, . . . , bn) (b1 is the MSB). Define π{i} as the
bit-reversal permutation operation of i:

π{i}=π{(b1, b2, . . . , bn)}= (bn, . . . , b2, b1)=
n∑

k=1

bk2k−1.

(3)

When the argument of π{·} is a set, it performs bit reverse to
each element of the set.

The partial order (PO) defined by Definition 2 of [3] is
introduced in this section and is used in the sequel to prove
the optimum puncturing pattern. For two bit channels i and j,
the tth bit of the binary expansions of i and j is bt and b′t .
If for each t (1 ≤ t ≤ n), bt ≥ b′t , then bit channel j is

stochastically degraded with respect to bit channel i, denoted
by W (j)

N � W (i)
N [3], [12]. If i and j satisfy this relationship,

we call j is covered by i: j �c i. The degradation from this PO
is written as W (j)

N �c W
(i)
N (or W (i)

N �c W
(j)
N ) in this paper to

specifically refer to it, and this PO is written as POc. Note
that 1) a channel is both degraded and upgraded to itself:
W (j)
N �c W (j)

N and W (j)
N �c W (j)

N ; 2) the covering and the
degradation is transitive. A simple example shows the POc
relationship for N = 8. Let (i)b = (110) and (j)b = (100).
Because for every bit bt and b′t (1 ≤ t ≤ 3) of (i)b and (j)b,
it holds that bt ≥ b′t . Then the covering relationship exists:
j �c i. With POc, it can be established that W (4)

8 �c W
(6)
8 .

A. BASIC DEGRADATION MAPPINGS
The simplest case of POc can be identified for the case ofN =
2:W (0)

2 �c W
(1)
2 ,W (0)

2 �c W
(0)
2 , andW (1)

2 �c W
(1)
2 . With this

basic form, a surjective degradation mapping is defined:

f : D �c→ D′, (4)

where the domain is D = {{0}, {1}, {0, 1}} and the codomain
D′ = {{0}, {0, 1}}. The specific degradation mapping of f is:

{0} or {1}
�c
→ {0}, (5)

{0, 1}
�c
→ {0, 1} with 0→ 0 and 1→ 1. (6)

For any given element D ∈ D, there is an unique element
D′ ∈ D′ obtained from the surjective mapping f . Also
from (5) and (6), it can be seen that the cardinality is pre-
served: |D| = |D′|. Therefore, the degradation mapping f is
surjective and cardinality preserving. The mappings defined
in (5) and (6) are called the basic degradation mappings.

We provide the following example to illustrate the map-
pings defined in (5) and (6). With N = 2, there are only
two bit channels: bit channel 0 and bit channel 1. Let D
contains any combinations of these two bit channel indices. If
wewant to find out what are the bit channels that are degraded
(from POc) to those contained in D, then (5) and (6) can
be employed. For example, let D = {1}. Then according
to (5),D′ = {0}. This mapping of course can be immediately
verified since W (0)

2 �c W
(1)
2 . If D = {0}, D′ = {0} from (5).

This also conforms with the fact that a channel is both sta-
tistically degraded and upgraded to itself. When D = {0, 1},
the mapping in (6) is applied to obtain D′ = {0, 1}. In this
mapping, (6) also specifies that 0 → 0 and 1 → 1. In this
case, each bit channel in D′ is degraded to one bit channel
in D. The basic degradation mappings can be graphically
illustrated in Fig. 1.

B. GENERAL DEGRADATION MAPPINGS
The mappings defined in the previous section can be used
as the building block to form the degradation mappings for
polar codes with a block length of N = 2n. Define a set
D0 ⊆ {0, 1, . . . ,N−1}. Like the basic degradationmappings,
a set D′ is desired which contains bit channels which are
degraded (from POc) to bit channels in D0. This degradation
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FIGURE 1. The basic degradation mappings for N = 2. The white nodes at
the right side are elements in D. The white nodes at the left side are
elements in D′ .

FIGURE 2. The bit channel degradation process for N = 8. From the right
to the left, there are three levels: level one denoted by b1, level two
denoted by b2, and level three denoted by b3.

set can be formed recursively from level 1 to level n as shown
in Fig. 2. Fig. 2 is a full expansion of the structure of the
bit channel transformation of polar codes defined in [1]. The
building block in Fig. 2 is the one-step transformation of
polar codes with N = 2, illustrated by the diagram in the
gray rectangle: with a bit ‘0’ in the basic block, the output
is the upper left channel W (0)

2 ; otherwise the output is the
lower left channel W (1)

2 . When referring to the nodes of
the transformation graph, the N nodes in each column are
indexed in the bit-reversed order.

Since in the general case, the final degradation set D′ is
obtained in n recursive levels, we use Dn, instead of D′,
to refer to the final set. The intermediate set at level k is
similarly denoted as Dk . The destination set Dn from the

initial set D0 can be obtained recursively from the following
steps:

• The entries of the initial setD0 are assigned to the nodes
of the input of level 1 in the bit-reversed order.

• Applying the basic degradation mappings in (5) and (6)
to level k (1 ≤ k ≤ n) with the input set Dk−1, the set
Dk of level k can be obtained.

The process defined in these two steps is called the general
degradation process in this paper. For example, in Fig. 2,
the initial set isD0 = {2, 3, 4, 7}. The bit-reversed set π{D0}

is assigned to the nodes in the right-hand side, denoted by the
white nodes. Following the degradation process, this initial
set goes to set D1, D2, and D3, all denoted by the white
nodes of Fig. 2 in each level. The details of the process are
provided below to illustrate the usage of the basic degradation
mappings in the general case.

• Level 1. The first white node is colored because of
π{4} = 001. The MSB of (4)b = (b1, b2, b3) = (100)
is b1 = 1. According to equation (5), the reached white
node of this basic step is the upper left node, as indicated
in Fig. 2. The same mapping is applied to the second
white node. The last two white nodes are the input to
the same basic one-step transformation. These twowhite
nodes are colored because of π{3} = 110 and π{7} =
111. The MSBs of (3)b = (b1, b2, b3) = (011) and
(7)b = (b1, b2, b3) = (111) are 0 and 1, respectively.
According to equation (6), both the two nodes at the
left-hand side of this connection are white, as indicated
in Fig. 2. With the three basic degradation mapping at
level 1, the set D1 is obtained as: D1 = {0, 2, 3, 7}.

• Level 2. The basic degradation mappings can be applied
to level 2. In this level, the second bit b2 determines the
reached white nodes. The set D2 can be determined as
D2 = {0, 1, 2, 5}.

• Level 3. In this level, the third bit b3 determines the
reached white nodes. The set D3 is obtained as D3 =

{0, 1, 2, 4}.

The following lemma formally states this general degrada-
tion process.
Lemma 1: Let the set Dn be obtained from the initial

setD0 following the general degradation process. For any j ∈
Dn, there is an element i ∈ D0 such that W (j)

N �c W (i)
N .

The mapping between the sets Dn and D0 is unique and
|Dn| = |D0|.

Proof: Consider the element i ∈ D0 with a binary
expansion of (i)b = (b1, b2, . . . , bn) (b1 is the MSB). Let
(i′)b = (b′1, b

′

2, . . . , b
′
n) be the index of the node that forms

the basic one-step transformation with node i at the input to
level 1. A property of polar code transformation is that at
level k (1 ≤ k ≤ n), the two nodes that form the basic
one-step transformation only differ at bit k of their binary
expansions [1]. Therefore i and i′ differ only at bit 1 (the
MSB): b1 6= b′1. There are two cases: i′ ∈ D0 or i′ /∈ D0.
Denote i1 as the index of the reached node of i at level 1, and
the first bit of its binary expansion is b′′1 .
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When i′ /∈ D0, then at level 1, the mapping defined by (5)
can be applied: i is mapped to itself i1 = i (b1 = 0), or to
i′ with i1 = i′ (b1 = 1). Since b1 6= b′1, then b

′

1 = 0 when
b1 = 1. Therefore, in this case, i1 = i �c i (when b1 = 0) or
i1 = i′ �c i (when b′1 = 0 and b1 = 1), resulting in b′′1 �c b1.

When i′ ∈ D0, the mapping in (6) can be applied: i maps
to i and i′ maps to i′. In this case, i1 = i �c i, also resulting
in b′′1 �c b1.
Combining the cases of i′ /∈ D0 and i′ ∈ D0, it can

be concluded that the reached i1 is covered by i because b1
covers b′′1 .

Recursively applying the mapping in (5) and (6) from
level 1 to level k (1 ≤ k ≤ n), and denote ik as the reached
index of i at level k . Following the same reasoning of level 1,
the reached index ik is covered by ik−1 (i0 = i) because the
kth bit of the binary expansion of ik is covered by that of
ik−1. Therefore it can be concluded that at level n, the value
in = j that i reaches is covered by i by noting that covering is
transitive, which indicates that W (j)

N �c W
(i)
N from POc.

Since the basic mapping (from D to D′) in (5) and (6)
is unique and cardinality preserving, the recursive mapping
from level 1 to level n is also unique and |Dn| = |D0|.

If we write the nodes in the example of Fig. 2 in the order
corresponding to the basic degradation mappings, the four
sets are: D0 = {2, 3, 4, 7} H⇒ D1 = {2, 3, 0, 7} H⇒
D2 = {2, 1, 0, 5} H⇒ D3 = {2, 1, 0, 4}. Each element
in Dk is covered by the corresponding element in Dk−1,
as indicated (and can be easily verified) by Lemma 1.

IV. OPTIMAL PUNCTURING WITH A
FIXED INFORMATION SET
Denote I as the set containing the indices for the information
bits and the set F containing the indices for the frozen bits.

A. CONNECTION OF PUNCTURING WITH BIT
CHANNEL QUALITY
When at least one of the two input channelsW is a punctured
channel H , the output channel W (1)

2 degrades to a punctured
channel in the one-step transformation [13]. The following
lemma states this fact.
Lemma 2: With one of the input channelsW being a punc-

tured channelH , the bit channelW (1)
2 degrades to a punctured

channel. If both two input channels W are punctured chan-
nels, W (1)

2 and W (2)
2 are punctured channels.

The proof of Lemma 2 follows from the proof of
Lemma 1 in [13]. Lemma 2 shows that the punctured channel
propagation of the one-step transformation follows exactly
the same unique and cardinality preserving mapping of the
basic degradation defined in (5) and (6). Similar to the degra-
dation process, a new process, called the puncturing process,
can be defined by recursively applying the one-step punctur-
ing mapping in Lemma 2.

With the puncturing process and the degradation process
following exactly the same mapping, the following lemma
can be immediately obtained from Lemma 1.

Lemma 3: Let the destination set Qn be obtained from
the initial set Q0 following the puncturing process. Then all
bit channels in Qn are punctured channels. There is also an
unique mapping from Q0 to Qn with |Qn| = |Q0|.

B. OPTIMAL PUNCTURING PATTERN
The following lemma is one of the main results of this paper.
Lemma 4: Fixing a given information set I and frozen

set F , consider a puncturing set Q with Q ⊆ F and another
puncturing set Q′ with Q′ ∩ I 6= ∅. Then
• Any selection Q ⊆ F is close in the sense that the
destination set Qn is still a subset of F : Qn ⊆ F .

• When the union bound of the block error probability of
the considered system is designed to be smaller than 1/2,
then we have PB(Q′) ≥ PB(Q), where PB(·) is the union
bound of the block error probability conditioned on the
inside argument.
Proof: For the first part of this lemma, we need to

invoke Lemma 1. In Lemma 1, it is shown that for a bit
channel k in Q ⊆ F , there is a corresponding bit channel
k ′ in Qn that is stochastically degraded to it (W (k ′)

N �c W
(k)
N )

because the puncturing process and the degradation process
follows exactly the same mapping. This indicates that in the
construction stage of polar codes, bit channel k ′ can only be
in F because k ∈ F andW (k ′)

N �c W
(k)
N . With the unique and

cardinality preserving mapping, all bit channels in Qn are in
the set F because Q ⊆ F . This concludes the proof of the
first part.

Let Pb(W
({i})
N ) be the error probability of the ith bit channel.

Then the union bound of the block error probability with the
set Q is

PB(Q) =
∑
i∈I

Pb(W
(i)
N ). (7)

From the second part of this lemma, it is assumed that this
union bound PB(Q) is smaller than 1/2. Now let i ∈ Q′ ∩ I.
Let j ∈ Q′n be the bit channel that i reaches at the last level.
From Lemma 1, it is known that W (j)

N �c W (i)
N . Since i ∈

Q′ ∩ I, bit channel j is a bit channel that is stochastically
degraded to it, which is still possibly a bit channel in I. From
Lemma 3, it is known that the propagated sets Qn and Q′n
contain punctured channels. In the case that j ∈ Q′n and j ∈
I, the puncturing set Q′ renders an information bit channel
j to be a punctured channel, which bears an error probability
Pb(W

(j)
N ) = 1/2. Seen from (7), the union bound PB(Q′) >

1/2. Therefore, PB(Q′) ≥ PB(Q) considering the fact that
Qn ⊆ F and j ∈ Q′n is possibly in the set I.

Before introducing Lemma 5, the bit channel quality loss
is defined for each punctured coded bit. Let the index of a
punctured coded bit be π{i} with i ∈ Q. And let the unique
mapping of this punctured bit be j ∈ Qn. According to
Lemma 3, bit channel j is also a punctured channel. For a
punctured channel, the error probability is therefore 1/2 as can
be seen from Section II. Let Pb(W

(j)
N ) be the error probability

of bit channel j without puncturing. The bit channel quality
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loss αi is the difference of the bit channel error probability
before and after puncturing the coded bit π{i}. Then the
bit channel quality loss of puncturing the coded bit π{i} is
defined as:

αi = 0.5− Pb(W
(j)
N ). (8)

Note that the error probability Pb(W
(j)
N ) can be obtained from

any of the construction procedures such as [1], [4]–[6], which
should be available when selecting the information set I.
Lemma 5: The optimal puncturing pattern Po for a given

information set I and frozen set F must be the one with
Po ⊆ F . Furthermore, when Po contains the bit channels
corresponding to the worst channel quality, the selection
Po produces the minimum bit channel quality loss at the
punctured positions compared to all the other puncturing
selections.

Proof: The first part of this lemma is directly from
Lemma 4. We only need to prove the second part. Let |Po| =
Q. Ordering the set F according to the bit channel quality in
the ascending order:F = {f1, f2, . . . , fN−K } and Pb(W (f1)

N ) >
Pb(W

(f2)
N ) > . . . > Pb(W

(fN−K )
N ). Then Po = {f1, f2, . . . , fQ},

which contains indices of the worst Q bit channels. Consider
another puncturing selection Pf with |Pf | = Q, which
replaces element fl (1 ≤ l ≤ Q) of Po with another element
fg (g > Q). Then the relationship between these two bit
channels is:W (fl )

N �c W
(fg)
N . The elements fl and fg propagate

to the final level n to elements fln and fgn, respectively. From
Lemma 1, it is known that W (fln)

N �c W (fl )
N and W

(fgn)
N �c

W
(fg)
N . As bit channel fl is among the worst Q bit channels,

then fln ∈ Po. Therefore with the optimal puncturing Po,
the overall bit channel quality loss at the punctured positions
is:

αPo =

Q∑
i=1

{0.5− Pb(W
(fin)
N )}. (9)

With fg ∈ F and W
(fgn)
N �c W

(fg)
N , it can be concluded that

fgn is still in the set F : it can be bit channel fg itself, or a bit
channel stochastically degraded to it. Therefore, fgn is in the
set {f1, f2, . . . , fQ, fQ+1, . . . , fg}. If fgn ∈ {f1, f2, . . . , fQ}, then
Pf reaches to the same set of Po, which produces the same
overall bit channel quality loss at the punctured position.
If fgn ∈ {fQ+1, . . . , fg}, Pb(W

(fgn)
N ) < Pb(W

(fln)
N ) from the

ordering of F . Then overall it is true that:

αPf − αPo = Pb(W
(fln)
N )− Pb(W

(fgn)
N ) ≥ 0. (10)

The puncturing pattern based on Lemma 5 is called the
worst quality puncturing (WQP) in this paper to differentiate
with the existing QUP procedure.

C. COMPARISON WITH QUP
To begin with the comparison, let us first review the imple-
mentation of the QUP scheme. It works as the followingwhen
fixing the information set:

• For a given numberQ of coded symbols to be punctured,
set P ′ = {0, 1, . . . ,Q− 1};

• Perform the bit reversal operation to the set P ′ to obtain
the puncturing set of the coded symbols P = π{P ′}.

According to Lemma 5, the WQP works in the following
steps:

• Arrange the frozen set F in the ascending order of the
bit channel quality (as in the proof of Lemma 5);

• Select the first Q elements of the ordered set F as the
puncturing set Po;

• Perform the bit reversal operation to the set Po to obtain
the puncturing set of the coded symbols P = π{Po}.

The following toy example shows the specific process
for QUP and WQP and the final punctured bit channels of
them. Let N = 8, and Q = 4 coded symbols are to be
punctured. The QUP selects P ′ = {0, 1, 2, 3} as the initial
set. Then the bit reversed version of it is applied as the set
for the coded symbols, illustrated in Fig. 3-(a), where the
initial set D0 = P ′. This procedure is channel independent.
For WQP, the bit channels need to be sorted first. Assume
the underlying channel is a BEC with an erasure probability
0.5. Then the bit channel quality is sorted in the descending
order of: [7, 6, 5, 3, 4, 2, 1, 0]. With Q = 4 coded symbols
to be punctured, WQP selects P0 = {0, 1, 2, 4} as the initial
puncturing set, shown from Fig. 3-(b) (D0 = P0).
Although the final reached punctured bit channels are the

same for WQP and QUP in this example, the final reached
punctured bit channels could vary between these two proce-
dures for the general cases. For example, in the subsequent
simulation in Section V, Q = 70 coded symbols (among
N = 256) are to be punctured. With QUP, there is actually
an information bit channel i = 64 within [1, 70]. This bit
channel is a punctured bit channel, resulting in an error
probability of 1/2 no matter what is the operating SNR.

On the other hand, the WQP scheme searches among the
worst frozen bit channels, producing punctured bit channels
again in the frozen set, as illustrated from Lemma 4. As long
as the number of punctured coded symbols satisfying Q ≤
N − K , there will be no punctured information bit channels
from the WQP scheme.

V. NUMERICAL RESULTS
In this section, simulations are performed for polar codes
with different block lengths and code rates, also over different
channel types. Different construction procedures are also
tested. Specifically, additive white Gaussian noise (AWGN)
channels and binary erasure channels (BECs) are used as the
underlying channels. For AWGN channels, the Tal-Vardy’s
construction procedure in [4] and the GA procedure [5], [6]
are employed to select the information set. For BEC channels,
the iterative calculations of Bhattacharyya parameters in [1]
are performed to select the information set. For comparison,
the PW construction with β = 21/4 in [7] is also used in the
construction. The information set is fixed once selected.
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FIGURE 3. Puncturing of QUP and WQP for N = 8 and Q = 4. (a) QUP.
(b) WQP.

In Fig. 4, the frame error rate (FER) performance of WQP,
along with QUP puncturing, is shown. The corresponding bit
error rate (BER) is shown in Fig. 5. The block length of the
polar code is N = 256. The number of punctured coded sym-
bols is Q = 70, resulting in a final code length of M = 186.
The code rate is R = 1/2 after puncturing. The SC decoding
and the SCL (with CRC) decoding [14] are both employed in
the simulations. The list size of the SCL decoding is eight,
and eight CRC bits (with the generator polynomial 0x9B) are
added in addition to the original information bits.

For the SC decoding, it can be seen that WQP outperforms
QUP scheme in this example, as there is a punctured informa-
tion bit channel i = 64 for QUP. It can also be observed that,
the PW construction and the Tal-Vardy construction achieve
the same FER and BER performance with the SC decoding.

For the SCL decoding with CRC checks, the FER of
the QUP scheme improves dramatically: no error floor is

FIGURE 4. The frame error rate (FER) of polar codes in AWGN channels.
The original code length is N = 256. After puncturing, the code length is
M = 186 with the code rate R = 1/2. The list size of the SCL is 8 and
8 CRC bits are added.

FIGURE 5. The bit error rate (BER) of polar codes in AWGN channels. The
original code length is N = 256. After puncturing, the code length is
M = 186 with the code rate R = 1/2. The list size of the SCL is 8 and
8 CRC bits are added.

observed. This is due to the eight lists and the CRC checks,
which enables the decoder to pick a correct path. The FER
and BER performance of the WQP scheme also improve
when it comes to the SCL decoding with CRC checks. Again,
theWQP scheme outperforms the QUP scheme with the SCL
decoding.

The same phenomenon is observed when we increase the
code length to N = 1024, as shown in Fig. 6. In this case,
Q = 120 coded bits are punctured. The final code rate is
R = 3/4 after puncturing. There are 16 CRC check bits in this
case, with a generator polynomial 0x8005. The advantage of
WQP is more pronounced with the increase of the code rate,
since there are more information bits to experience punctured
channels for QUP. This can be verified by the bigger gap
between the performance ofWQP andQUP, whether employ-
ing the SC or the SCL decoding. When the code rate is small,
the performance difference of WQP and QUP is expected to
be negligible, seen from Fig. 7. In the case of Fig. 7, the code
length is 512, and Q = 112 coded bits are punctured. The
final code rate is R = 1/4. It can be seen that the performance
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FIGURE 6. The BER of polar codes in AWGN channels. The original code
length is N = 1024. After puncturing, the code length is M = 904 with the
code rate R = 3/4. The list size of the SCL is 8 and 16 CRC bits are added.

FIGURE 7. The BER of polar codes in AWGN channels. The original code
length is N = 512. After puncturing, the code length is M = 400 with the
code rate R = 1/4. The list size of the SCL is 8 and 8 CRC bits are added.

FIGURE 8. The BER of polar codes in BEC channels. The original code
length is N = 256. After puncturing, the code length is M = 186 with the
code rate R = 1/2. The list size of the SCL is 8 and 8 CRC bits are added.

between WQP and QUP is close. Note that the construction
of polar codes in this case is the GA construction, replacing
the Tal-Vardy construction in Fig. 4 to Fig. 6.

The WQP scheme is also studied in BEC channels,
reported in Fig. 8. Here the parameters of the polar code are
the same as in Fig. 4. The performance of WQP outperforms
QUP, as in the AWGN channels.

VI. CONCLUSION
This paper focuses on the puncturing design of polar codes
when the information set is fixed. The WQP algorithm is
shown to be the optimal puncturing pattern, which is proven
to minimize the overall bit channel quality loss at the punc-
tured positions. Simulation results confirm that WQP outper-
forms the existing puncturing schemes when the information
set is fixed.
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