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ABSTRACT Energy management strategies can directly determine the dynamic performance and fuel
economy of plug-in hybrid electric vehicles (PHEVs). In this paper, an adaptive equivalent consumption
minimization strategy (A-ECMS) is proposed based on the energy balance principle of the hybrid powertrain
of the target vehicle, by which a pair of boundary equivalent factors can be determined according to the
future transportation information. Then, the equivalent factor is calculated in real time based on the energy
variation in the powertrain system during the operation. Consequently, the torque distribution between the
engine and the motor can be determined by solving the Hamilton function according to the dynamically
adjusted equivalent factor, and thus, the energy management control is adaptively realized. The simulations
were conducted considering three typical driving conditions, different battery aging statuses, and inaccurate
road information. The results manifest that the proposed algorithm is feasible to improve the fuel economy
with attainable adaptivity and robustness compared with the typical ECMS.

INDEX TERMS Plug-in hybrid electric vehicles (PHEVs), adaptive equivalent fuel consumption minimum
strategy (A-ECMS), energy balance principle, equivalent factor, probability factor.

I. INTRODUCTION
As a combination of electric drive and traditional engine
drive, hybrid electric vehicles (HEVs) can effectively reduce
fuel consumption and exhaust emissions, compared to inter-
nal combustion engine (ICE) vehicles [1]. With the devel-
opment of battery technologies, plug-in HEVs (PHEVs) not
only incorporate all functions and merits of HEVs, but also
can supply a certain all-electric range (AER) powered by
the built-in battery pack [2]. Since PHEVs contain at least
two energy sources, usually the engine and battery, an indis-
pensable control problem arises that the power distribution
between these two energy sources needs to be properly dealt
with, referred to as the energy management [3]. An efficient
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energy management for PHEVs cannot only improve the fuel
economy with the premise of satisfying the driving power
demand, but also extend the battery lifetime and reduce the
emissions.

Nowadays, a variety of research has been conducted for
energy management strategies of PHEVs. Usually, they can
be mainly divided into two categories: 1) rule-based strate-
gies, and 2) optimization-based strategies [4]. For the rule-
based strategy, as its name implies, a most important task
is to design an effective rule table, which usually requires
enough development experience. In this case, trial-and-error
iterations are often conducted trying to control the engine
working in the most efficient region, thereby gaining the
desired controlling efficiency [5], [6]. Finally, a pre-defined
rule table can be generated to control the energy distribu-
tion according to the vehicle powertrain status including the
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engine, battery, and power demand [7]. A typical rule-based
strategy is the charge depletion/charge sustaining (CD/CS)
scheme, which is widely adopted by vehicle manufacturers.
Usually, the rule-based method does not take into account the
system’s dynamic characteristics and relies much on previous
engineering experience [8]. From this point of view, it is
difficult for rule-based algorithms to find an optimal solution
effectively and a variety of design intensity and repetitive
iteration is necessary to improve the controlling performance.

For optimization-based strategies, investigators usually
utilize them to find the optimal or quasi-optimal solutions.
One type of these strategies is based on intelligent algorithms
that need a series of training actions [9]. Popular solutions
include neural networks (NN) [10], [11], genetic algo-
rithm (GA) [12], simulated annealing (SA) algorithm [13],
particle swarm optimization (PSO) [14], etc. For these types
of methods, one main constraint is that they all need the
detailed trip information, which is difficult to acquire in real
application. Another point is that they rely on a variety of
optimal operation data, which should be obtained by other
optimization algorithms. Different from rule-based strategies,
these methods usually train the control model as a black
box with a variety of offline data and typical driving condi-
tions. No doubt, they are cost-effective, time-consuming, and
demand intensive computation labor and considerable storage
space.

Another type of optimization-based algorithms is mainly
based on the optimal theory and can be divided into two
categories: global optimization algorithms and instantaneous
optimization methods. Global optimization algorithms can be
dynamic programming (DP) [11], convex optimization [15],
quadratic programming (QP) [3], [16], and linear program-
ming. These algorithms can find the global optimal solution
given prior knowledge of driving conditions [5]–[9]. They
are usually regarded as the benchmark for evaluating other
strategies’ performance. DP is firstly adopted to achieve the
energy distribution for a hybrid electric truck [17]. A main
concern when applying DP is the induced intensive matrix
computation, i.e., the so-called curse of dimensionality. Con-
vex optimization can be applied to find the optimal energy
distribution only if the vehicle model can be built as a single
or multi convex functions [18]. QP can be applied to optimize
the fuel economy if the fuel rate can be approximated with
a series of quadratic equations [19]. In engineering applica-
tions, global optimization strategy lays a solid foundation for
developing more feasible and real-time energy management
strategies.

In contrast, instantaneous optimization strategies can con-
sider transient characteristics of the motor and engine under
different operating conditions in real time, thereby deter-
mining proper working modes of the hybrid system and
achieving energy distribution. The most representative can-
didates belong to the equivalent consumption minimization
strategy (ECMS) [20] and Pontryagin’s minimum princi-
ple (PMP) [21], [22]. Both strategies are essentially the
same and declare to find optimal solutions by solving the

Hamilton function. The ECMS converts the current electric
energy consumption into the future fuel consumption of the
engine in an equivalent manner, and then calculates the min-
imum instantaneous equivalent fuel consumption, by which
the optimal energy distribution ratio is decided [23]. The
ECMS exhibits strong dynamic adaptability, which does not
require prior knowledge of driving conditions and can theo-
retically achieve the optimal or near-optimal solutions, com-
pared to DP. On this account, it has attracted wide attention
from industry and academia that have make much effort to
improve its controlling performances.

For the ECMS, a key problem is to estimate the equiv-
alent factor timely and accurately, which can be obtained
by solving a two-point boundary problem that consists of
the Hamilton function, terminal cut-off conditions and corre-
sponding constraints. Directly finding the solution is difficult
and sometimes even impossible. Traditional way to obtain
the optimal equivalent factor is achieved through simula-
tion and experiment. These methods can be time consuming
and yet the acquired equivalent factor can only be effec-
tive in a specific condition. They are difficult to adapt to
real complex driving conditions. Currently, the most popular
manner is to determine the optimal equivalent factor offline
under different driving cycles, and then identify the driving
condition online to choose appropriate values for real-time
application [4], [24], [25]. This method is validated effec-
tive under a single driving condition; however, it usually
cannot be qualified when the driving condition is highly
mixed with different road types. Compared with the simple
ECMS, the adaptive ECMS (A-ECMS) is more capable of
managing energy distribution and improving fuel economy
to some extent [26], [27]. In [28], [29], the A-ECMS is pro-
posed by regulating the battery state of charge (SOC) based
on linear or nonlinear control algorithms, such as the typi-
cal proportional-integral-differential (PID) controller. It can
reduce correlation between the equivalent factor and driving
condition, and only needs to calculate the difference between
the current SOC and expected value. In this manner, dynamic
adjustment of the equivalent factor can be tackled according
to feedback of the SOC difference. However, this method
takes the SOC error into account, and neglects influences
induced by the battery capacity variation. Furthermore, with
the development of global positioning system (GPS), graph-
ical information system (GIS), and intelligent transportation
system (ITS), more detailed transportation information can be
acquired and possibly predicted in advance based on internet
of vehicles (IOV) [30], by which the equivalent factor can
be tuned dynamically. How to effectively make use of future
transportation information to achieve adaptive regulation of
the equivalent factor has become a research focus.

Considering the aforementioned problems and emerging
technologies, in this study, a novel A-ECMS is proposed
for the PHEV based on energy balance principle of the
hybrid system, which can be easily applied during the charge
sustaining (CS) stage of the vehicle. The strategy aims to
improve the real-time controlling performance and reduce the
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calculation complexity. In this paper, the proposed A-ECMS
consists of two layers. In the upper layer, the energy bal-
ance model of the powertrain system is built and the rela-
tionship between the battery electric energy and fuel heat
energy is determined. Meanwhile, the future transportation
information needs to be acquired ahead of departure, and
based on it, the variation range of the equivalent factor is
defined by calculating a pair of boundary equivalent factors.
The main function of the bottom layer is to determine the
probability factor according to real-time energy variation
during operation and regulate the equivalent factor adap-
tively based on the determined probability factor within the
restrictions determined in the upper layer. Simulations were
conducted under three typical driving cycles, i.e., the urban
dynamometer driving schedule (UDDS), new European driv-
ing cycle (NEDC) and worldwide harmonized light vehicles
test cycle (WLTC), to verify performance of the proposed
strategy. Results manifest that the proposed algorithm can
gain superior fuel savings under different driving conditions,
compared to the typical ECMS. In addition, the proposed
algorithm also takes the battery degradation into account.
Simulation results show that when the battery is degraded,
the savings can reach up to 12%, proving effectiveness and
robustness of the proposed algorithm. Furthermore, simula-
tion with inaccurate road information was also performed to
validate the algorithm’s adaptivity when faced with impre-
cise global driving information. The main contributions of
this study can be attributed to the following two aspects:
1) A novel A-ECMS is proposed based on the energy balance
principle of the hybrid powertrain system. The strategy can
regulate the equivalent factor dynamically according to the
driving condition and battery performance variation. Com-
pared to the typical ECMS, generality and robustness of
the strategy are obviously improved. 2) The energy balance
model of the PHEV is built, and the transformation relation-
ship is built between the battery power and engine power,
by which it becomes easier to apply the proposed algorithm.

The remainder of this paper is organized as follows.
Section II models the PHEV and powertrain components.
In Section III, adaptive adjustment of the equivalent factor
is introduced in detail. Section IV provides corresponding
simulations and verifies feasibility of the proposed algorithm,
followed by the main conclusion drawn in Section V.

II. PHEV MODEL AND CONFIGURATION
The vehicle studied in this paper is a parallel PHEV. The
main powertrain topology is sketched in Fig. 1. It can be
observed that there exists a clutch between the engine and
integrated-starter-generator (ISG), and an automated manual
transmission (AMT) is equipped between the ISG and final
drive. The main parameters are listed in Table 1, where we
can find that the maximum engine power is 105 kW and
the maximum motor power is 52 kW. It can be intuitively
judged that the engine occupies most of the power demand
during the CS stage. The AMT has five gear ratios, i.e.
2.56/1.55/1.02/0.73/0.52, and can be shifted automatically

FIGURE 1. Structure of the PHEV powertrain system.

TABLE 1. Vehicle specifications.

according to the speed and power demand, leading to easier
design of the energy management strategy.

A. VEHICLE LONGITUDINAL DYNAMIC MODEL
In this study, the main target is to improve the fuel economy
and maintain the SOC around the stable value under the
CS mode. To achieve this target, the vehicle longitudinal
dynamics model needs to be established,

P+dem = (mgf cosα+mg sinα+ma+0.5CDAρav2) · v (1)

P+dem =
(
P+mot+P

+

ice

)
η̄m (2)

where P+dem denotes the demanded power of the vehicle,
P+mot means the output power of the motor, P+ice is the engine
power. It is necessary to note that the superscripts+ and− in
this paper denote the default value of the variable is positive
and negative, respectively. η̄m means average efficiency of
the mechanical transmission system. m expresses the vehi-
cle mass, g is the gravity acceleration and equals 9.8 m/s2,
f presents the rolling coefficient, α is the slope of road,
CD expresses the drag coefficient, A is the frontal area and
supposed to be 2.25 m2, ρa is the air density, v is the vehicle
speed, and a denotes the vehicle acceleration.

B. ENGINE MODEL
For the engine, the common modeling manner mainly
includes the theoretical analysis, numerical simulation and
experimental data fitting method. Since the engine is a high
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nonlinear time-varying system, in this study, we adopt the
experimental data fitting method to lessen computation bur-
den without much influence on modeling precision. By inter-
polating the steady experimental data, the engine fuel rate and
efficiency can be calculated as,

ṁf (t) = f (Te(t), ne(t)) (3)

ηe =
Te(t) · ne(t)

9550× ṁf (t) · HLHV
(4)

where ṁf (t) is the fuel rate, and ne,Teandηe denote its speed,
torque and efficiency, respectively.HLHV is the lower heating
value of the fuel and equals 44000 kJ/kg. Fig. 2 shows the
engine fuel rate map with respect to different torque and
speed. Fig. 3 shows the engine hot efficiency map, from
which we can find that the maximum efficiency is greater
than 35%.

FIGURE 2. Engine fuel rate map.

FIGURE 3. Engine efficiency model.

C. ELECTRICAL MOTOR MODEL
Similar to the engine modeling process, this study employs
the experimental data fitting method to model the electrical
motor. The motor’s efficiency and speed characteristics can
be acquired by interpolation of experimental data, as shown
in Fig. 4, and it can be found that its highest efficiency is more
than 90%.

D. BATTERY MODEL
In this study, an effective but simple battery model, which
consists of a voltage source and a resistor connected in series,

FIGURE 4. Electric motor efficiency map.

FIGURE 5. Battery model.

is adopted based on the experimental data and empirical
formula, as shown in Fig. 5. As can be seen in Table 1,
the rated voltage of the battery is 259 V and its rated capacity
is 41 Ampere hour (Ah).

According to the Kirchhoff’s voltage law, the current of the
battery can be expressed as,

I+(t) =
E(SOC)−

√
E(SOC)2 − 4R(SOC)P+(t)
2R(SOC)P+(t)

(5)

where P+(t) denotes the battery output power, E(SOC)
presents the open circuit voltage (OCV), I+(t) denotes the
loop current, and R(SOC) expresses the internal resistance.
In addition, the battery SOC is a key control parameter
when devising the energy management strategy. In this
study, the coulomb counting method is employed to estimate
the SOC, as:

SOC = SOC0 −

∫ t
t0 I
+(t)dt

Cbat
× 100% (6)

where SOC0 is the initial value of the SOC, and Cbat denotes
the battery rated capacity, i.e., 41 Ah.

In the next step, the ECMS will be employed to achieve
real-time energy management of PHEVs.

III. REAL-TIME ENERGY MANAGEMENT STRATEGY
Since the PHEV can be charged from an external power
source, the vehicle can be powered only by the motor until
the battery SOC drops to an allowable low threshold. In this
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FIGURE 6. Structure of the proposed A-ECMS.

study, the proposed A-ECMS is only applied during the CS
stage to manage the energy distribution, thereby achieving
superior fuel economy and maintaining the SOC within the
designed region. The A-ECMS that is based on the energy
balance principle is structured in Fig. 6, from which it can
be clearly observed that two control layers exist in the whole
framework. Detailed calculation process can be described as
follows:

1) Ahead of departure, the global transportation informa-
tion needs to be acquired with the help of GPS, GIS and ITS,
and a pair of boundary equivalent factors can be estimated
according to the global driving information.

2) During operation, the equivalent factor is calculated
based on the real-time probability factor, which is determined
according to variation of the battery energy.

3) By finding the control variables that minimize the
Hamilton function, the optimal control target can be opti-
mized and consequently the toque commands of the engine
and motor can be determined.

4) Repeat steps 2) to 3) until the vehicle reaches the
destination.

A. EQUIVALENT FUEL CONSUMPTION
MINIMUM STRATEGY
As is well known, ECMS is a typical energy management
strategy for HEVs stemmed from PMP. The essence of ECMS
is that the energy released by the battery is transferred to the
equivalent fuel consumption, and on this basis, the optimal
torque distribution scheme, that can minimize the instanta-
neous equivalent fuel consumption in the premise of satisfy-
ing the driver’s demand, is allocated to the engine and motor,
respectively.

The overall target of the optimization can be formulated as:

F = min J (u(t), x(t)) (7)

where J denotes the fuel consumption, x(t) is the state
variable, i.e., the battery SOC, and the engine torque Te is
considered as the control variable u(t). Based on (5) and (6),

the following state function can be constructed, as:

ẋ(t) = f (x(t), u(t), t) = −
I (u(t),E(x),R(x))

Cbat
(8)

where ẋ(t) denotes the variation rate of the SOC. In addition,
x and u are subject to the following constraints,{

xmin ≤ x ≤ xmax

umin ≤ u ≤ umax
(9)

Based on (7) and (8),J can be further calculated,

J (u, x) = φ(x(tf ))+
∫ tf

t0
ṁf (u(t), t)dt (10)

where φ
(
x
(
tf
))

is a penalty term for converging the final
SOC to the initial value. In this study, since what we concern
is minimization of the fuel consumption during the CS stage,
we assume that both the initial SOC and terminal SOC are
the same and equal SOC0. In addition, the main parts of the
powertrain are subject to the following constraints, as:

SOC ∈ (SOCmin, SOCmax)
Pbat ∈ (Pbat_min,Pbat_max)
Te ∈ (Te_min,Te_max)
Tm ∈ (Tm_min,Tm_max)

(11)

where Pbat denotes the battery power, and Tm means the
motor torque. Here, a co-state variable λ(t) is introduced to
build the Hamilton function H , as:

H (x(t), λ(t), u(t), t) = λ(t)f (x(t), u(t), t)+ ṁf (u(t), t)

= λ(t)ẋ(t)+ ṁf (u(t), t) (12)

where λ(t) is a time variable, similar to the Lagrange multi-
plier. According to PMP [31], a necessary condition should
be satisfied when minimizing J , as:

u∗(t) = argmin (H (x(t), λ(t), u(t), t)) (13)

where u∗(t) is the optimal control variable. Based on (12),
λ̇ can be derived, as:

λ̇ = −
∂H (x(t), λ(t), u(t), t)

∂x(t)
= −λ(t)

∂ ẋ(t)
∂x(t)

(14)

Combining (14) and (8), we can attain:

λ̇(t) =
λ(t)
Cbat
·
∂I (u(t),E(x),R(x))

∂x

=
λ(t)
Cbat
·

(
∂I
∂E
·
∂E
∂x
+
∂I
∂R
·
∂R
∂x

)
(15)

From (15), we can find that λ(t) is highly nonlinear with the
battery internal resistance and OCV, thus it is difficult to get
an analytical solution. Based on (8), we can get:

ẋ(t) = SȮC = −
Pbat (t)

E(SOC) · Cbat
(16)

By substituting (16) into (12), an updated Hamilton function
with respect to Pbat (t) can be obtained:

H (x(t), s(t), u(t), t) = s(t)
Pbat (t)
HLHV

+ ṁf (t) (17)
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where s(t) is called the equivalent factor, which can be
defined as:

s(t) = −λ(t)
HLHV

E(SOC) · Cbat
(18)

Actually, the physical meaning of s(t)Pbat (t)HLHV
in (17) is the

equivalent fuel consumption corresponding to the battery
power, and we can say that the physical meaning of (17)
can be regarded as the current instantaneous equivalent fuel
energy consumption. Now the instantaneous equivalent fuel
rate ṁequ can be expressed a sum of the fuel rate of the engine
ṁf and equivalent fuel rate of the battery ṁbat , as:

ṁequ(t) = ṁbat (t)+ ṁf (t) = s(t)
Pbat (t)
HLHV

+ ṁf (t) (19)

Based on (13),u(t) can be controlled to minimize ṁequ(t),
thereby optimizing the global target function J . For ease
of analyzing the energy conversion, the equivalent power
consumption Pequ(t) can be calculated by multiplying the
fuel’s lower heat value, as:

Pequ(t) = s(t)Pbat (x, u, t)+ Pfuel(u, t) (20)

where Pfuel(u, t) = ṁf (t)HLHV . Now we can consider that
the physical meaning of s(t) is the coefficient of transferring
the electrochemical energy of the battery to the fuel’s lower
heat energy.

Based on discussion detailed above, a pivotal problem
when applying the ECMS is to decide the equivalent factor
properly, which can directly influence the total fuel con-
sumption and driving performance. The larger the equivalent
factor, the smaller output power of the electric driving system
will be. Under this situation, the energy management strategy
tends to reduce the discharge power of the battery or even
inversely charge the battery. Or else, if the equivalent factor
decreases, the discharge power of the battery will become
larger and the motor will provide more power to drive the
vehicle. In this manner, the SOC will be controlled within a
certain range and can possibly return to its original value at
the end of the driving cycle.

In the following, the steps of calculating the equivalent
factor based on the energy variation of the powertrain will
be detailed.

B. DETERMINATION OF REAL-TIME EQUIVALENT FACTORS
Since the equivalent factor can directly affect management
of the engine power and motor power, first, two extreme
conditions are herein considered to make sure its searching
range can be further restricted: 1) When the engine works
with the maximum power output, the vehicle is driven only by
the engine and the remaining power is utilized to charge the
battery. In this case, remaining energy of the battery is most,
and the equivalent factor should bemaximum. Nowwe define
it as the charging equivalent factor Schg. 2) When the engine
is off and the vehicle is driven purely by the motor, the battery
outputs the most energy in comparison with other conditions.
In this case, we define the current equivalent factor, which

should be minimum, as the discharging equivalent factor Sdis.
Consequently, we can conclude that s(t) ∈

[
sdis, schg

]
. For

ease of building the relationship among s(t), Schg and Sdis,
a probability factor p(t) ∈ [0, 1] is defined, and s(t) can be
formulated as:

s(t) = p(t) · schg + (1− p(t)) · Sdis (21)

Now, the following task turns to determination of Schg, Sdis,
and p(t).

1) CALCULATION OF THE BOUNDARY
EQUIVALENT FACTORS
As discussed above, in order to determine Schg and Sdis,
we need to first analyze the relationship between the bat-
tery energy variation and fuel energy variation. To this end,
an energy balancemodel of the powertrain system is built, and
its main function is to describe energy transfer routes when
the vehicle operates, as shown in Fig. 7.

FIGURE 7. The energy balance model of the powertrain system.

As can be seen in Fig. 7, E+fuel and E+bat denote the
fuel energy and battery energy, and η̄f and η̄ele mean the
average efficiency of the engine drive system and electric
drive system, respectively. E+pos and E

−
neg express the driving

energy and regenerative energy, respectively. The regenera-
tive energy stored in the battery can be expressed as−E−neg×

η̄m × η̄ele. When E+fuel η̄f ≤ E+pos
/
η̄m, the engine cannot

supply enough driving energy and the battery compensates
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the gap with energy of E+bat ; on the contrary, when E+fuel η̄f >

E+pos
/
η̄m, the engine provides sufficient driving energy and

the redundant energy is charged to the battery with energy of(
E+fuel η̄f − E

+
pos

/
η̄m

)
η̄ele.

When the trip ends, the consumed energy of the bat-
tery 1Ebat and the fuel energy of the engine 1Ef can be
calculated as:{
1Ebat = Ebat_int − Ebat_end =

∫ tend
0 (EOCV (t)I (t)) dt

1Ef = HLHV
∫ tend
0 ṁf (t)dt

(22)

where Ebat_int and Ebat_end denote the initial electric energy
and remaining energy of the battery, respectively.

If the engine is under the maximum power mode,
energy increment of the battery when the trip ends can be
calculated as:

1E−bat_fuel =
(
E+pos/η̄m −1E

+

f _fuel × η̄f

)
× η̄ele

+E−neg × η̄m × η̄ele (23)

where 1E−bat_fuel can be regarded as sum of the regenerative
energy and supplemental energy generated from the extra
engine power. 1E+f _fuel is the fuel energy consumption that
partially drives the vehicle and meanwhile residually powers
the motor for charging the battery.

Similarly, if the vehicle is under the pure electrical driv-
ing mode, the consumed energy when the trip ends can be
calculated as:

1E+bat_ele =
(
E+pos/η̄m −1E

+

f _ele × η̄f

)
/η̄ele

+E−neg × η̄m × η̄ele (24)

where 1E+bat_ele denotes the difference between the driving
energy from the battery and regenerative braking energy,
and 1E+f _ele denotes the consumed fuel energy in this mode.
To calculate Schg and Sdis, another special condition needs to
be considered, in which the engine power equals the driving
power and the regenerative energy is utilized to charge the
battery. Now, we can attain:{

1E−bat_0 = E−neg × η̄m × η̄ele
1E+f _0 × η̄f × η̄m = E+pos

(25)

where 1E−bat_0 denotes the energy stored in the battery from
regeneration, 1E+f _0 indicates fuel energy of the engine in
this condition. By substituting (25) into (23) and (24) and
eliminating E+pos and E

−
neg, the relationship between the fuel

energy and battery energy under these two extreme conditions
can be obtained, as:
(
1E−bat_0−1E

−

bat_fuel

)
×

1
η̄f η̄ele

=1E+f _fuel−1E
+

f _0(
1E−bat_0 −1E

+

bat_ele

)
×
η̄ele

η̄f
= 1E+f _ele −1E

+

f _0

(26)

As discussed in Section III, the physical meaning of s(t)
is the coefficient when the battery electrochemical energy
is converted into the lower fuel heat energy of the engine.

As such, 1/
(
ηf ηde

)
, expressed in (26), denotes the value of

schg when the engine supplies the maximum output power;
and η̄ele/η̄f indicates the values of sdis when the vehicle is
under the pure electric driving mode. Consequently, sdis and
sdis can be calculated, as:

schg =
1

η̄f η̄ele
=

1E+f _fuel −1E
+

f _0

1E−bat_0 −1E
−

bat_fuel

sdis =
η̄ele

η̄f
=

1E+f _ele −1E
+

f _0

1E−bat_0 −1E
+

bat_ele

(27)

Now, we can conclude that based on (26) and (27), Schg and
Sdis can be determined by analyzing the fuel consumption and
battery status under these three extreme conditions.

2) DETERMINATION OF THE INSTANTANEOUS
PROBABILITY FACTOR
After calculating these two boundary equivalent factors,
p(t) needs to be determined. Here we suppose that the max-
imum discharging energy and maximum charging energy
of the battery are respectively E+sdis (t) and E

−
schg (t) from the

current moment until the end of the trip. In order to ensure
that the ending SOC equals with the initial value, we attain:

[SOC0 − SOC(t)]× Cbat × EOCV + E−schg (t)× p(t)

+E+sdis (t)× [1− p(t)] = 0 (28)

where SOC0 denotes the initial SOC, and SOC(t) is the
current SOC. Based on (28), the probability factor can be
calculated,

p(t) =
E+sdis (t)+ [SOC0 − SOC(t)]× Cbat × EOCV (t)

E+sdis (t)− E
−
schg (t)

(29)

It is necessary to note that in order to guarantee adaptive
regulation of the probability factor according to the driving
condition, E+sdis (t) and E

−
schg (t) should be updated in real time.

To attain it, we divided them into three parts: 1) the currently
consumed battery energy Enow; 2) the regenerative energy E−re
absorbed from the motor in the remaining trip; and 3) the
released energy E+ed is or absorbed energy E−echg of the battery
in the remaining trip when S = Sdis or S = Schg . As such,
we can get,{

E+sdis (t) = Enow + E−re + E
+

e_dis

E−schg (t) = Enow + E−re + E
−

e_chg
(30)

where Enow can be calculated by integrating the real-time
power, as:

Enow =
∫ t

0
EOCV (t)I (t)dt (31)

In addition, the regenerative energy E−re can be calculated,

E−re = 1E
−

bat_0 −1E
−

bat_0(t) (32)
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Furthermore, the released energy E+e_dis and absorbed energy
E−e_chg can be determined, as:

E+e_dis =

[
E+pos − E

+
pos(t)

]
η̄eleη̄m

E−e_chg = η̄ele

η̄f [1E+f _fuel −1E+f _fuel(t)]

−

[
E+pos − E

+
pos(t)

]
η̄m


(33)

Combining (25) and (27), we can calculate these three effi-
ciency coefficients, as:

η̄ele =

√
sdis
/
schg

η̄f = 1
/√sdisschg

η̄m = E+pos
/(

E+f _0η̄f
) (34)

Now based on (29)–(34), p(t) can be determined. Then,
according to the determined schg and sdis together with p(t),
the real-time equivalent factor trajectories can be sequentially
determined. In the next step, simulation is conducted to calcu-
late the equivalent factor, apply the proposed ECMS strategy
and demonstrate its efficacy.

FIGURE 8. Speed curve of three driving cycles.

IV. SIMULATION AND DISCUSSIONS
To verify performance of the proposed real-time energy
management strategy, simulations were carried out based on
Autonomie, which is an effective and precise vehicle simu-
lation tool developed by Argonne National Laboratory [32].
Since the battery degrades gradually with usage and the
driving conditions are possibly acquired with some error, in
this study, we divide the whole simulation into three parts:
1) study with healthy battery, 2) study with the degraded
battery, and 3) validation with inaccurate global driving con-
dition. As such, the algorithm adaptivity can be substan-
tially validated. In this paper, three typical driving cycles,
i.e., UDDS, NEDC and WLTC, were simulated to compare
the fuel savings with respect to the proposed A-ECMS and
traditional ECMS. Corresponding speed profiles of these
three driving cycles are shown in Fig. 8, demonstrating that

TABLE 2. The best equivalent factor of UDDS, NEDC and WLTC.

FIGURE 9. SOC curves of two algorithms under three driving cycles.
(a) UDDS cycle; (b) NEDC cycle; (c) WLTC cycle.

the vehicle speed profile includes the highway and the urban
condition.

A. COMPARING THE PROPOSED ALGORITHM WITH
TRADITIONAL ECMS UNDER DIFFERENT
DRIVING CYCLES
In this study, two indicators are applied to evaluate perfor-
mances of the proposed control strategy, of which one is the
fuel consumption in the end of the trip and the other is the
final SOC value. We assume that the initial SOC equals 0.3,
which means the vehicle certainly operates in the CS stage.
After a variety of trial and error, the optimal equivalent
factors, i.e., SUDDS , SNEDC and SWITC , under these three
driving cycles can be found for the typical ECMS, as listed
in Table 2. Then, we apply each parameter to realize the
energy management of PHEVs under these three cycles. All
the nine SOC variation curves in comparisonwith those based
on the proposed algorithm are shown in Fig. 9. To fairly com-
pare fuel savings, a fuel consumption correction technique,
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TABLE 3. Simulation results of two algorithms under three typical driving cycles.

formulated in (34), is applied to make sure that the ending
SOC is the same.

CFC = FC −
1SOC ×WSOC × η̄

sgn(1SOC)
ele

η̄f × HLHV × 1000
(35)

where CFC means the corrected fuel consumption,
FC expresses the fuel consumption, 1SOC = SOCead −
SOCint denotes the difference between the final SOC and
target SOC, and Wsoc indexes the whole energy that could
be released by the battery, as:

WSOC = 3.6× 72× 41× 3600 (J ) (36)

According to (35) and (36), the corrected fuel consumption
results are listed in Table 3. From Fig. 9, it can be observed
that the proposed A-ECMS can maintain the ending SOC
in the vicinity of the setting value, however, the traditional
EMCS can only guarantee that the optimal equivalent factor
corresponding to the current driving cycle can maintain the
ending SOC value as desired and may lead to obvious drift
if the unmatched equivalent factor is applied to the current
driving cycle. By comparing the corrected fuel consumption
listed in Table 3, the proposed algorithm can achieve more
fuel savings than the traditional ECMS. For instance, under
the UDDS cycle, when the equivalent factor of the traditional
ECMS equals to the optimal equivalent factor sUDDS , the cor-
responding fuel saving is 0.61% more than that based on the
proposed algorithm. However, if the equivalent factor is not
equal to the optimal factor calculated based on the current
driving profile and instead equals the optimal factor based on
the NEDC or WLTC cycle, the fuel saving of the traditional
ECMS will be worse than that of the proposed algorithm.
In contrast, the adopted A-ECMS algorithm can dynamically
regulate the equivalent factor according to the driving condi-
tion, thereby ensuring the superior fuel economy all the time.

B. ADAPTATION BEHAVIOR OF PROPOSED STRATEGY
WITH DEGRADED BATTERY PARAMETERS
Since the proposed algorithm determines Sdis and Schg in
terms of the energy balance function before departure,
the battery health status, that reflects the battery energy
variation, will lead to change of the boundary equivalent
factors. Thus, the real-time equivalent factor should be
updated accordingly. Existing research reveals that when the

FIGURE 10. Battery parameters comparison.

FIGURE 11. SOC curves based on the two algorithms with the degraded
battery under three driving cycles. (a) UDDS cycle. (b) NEDC cycle.
(c) WLTC cycle.

battery degrades, the capacity decreases, the internal resis-
tance increases, and yet the OCV does not show obvious
change [33], [34]. According to the degradation data supplied
in [35], in this study, we suppose that the battery capacity
drops from 41 Ah to 36.7 Ah after 1900 cycles. The capacity
variation and resistance increment are shown in Fig. 10.
As before, three driving cycles are simulated based on the
proposed A-ECMS and the traditional ECMS, respectively,
and both algorithms consider the battery capacity varia-
tion. Related results are shown in Figs. 11–12 and listed
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FIGURE 12. Simulation results based on the two algorithms with
degraded battery parameters under the WLTC cycle. (a) Equivalent factor
curve based on the proposed algorithm. (b) Engine operating point based
on the proposed algorithm. (c) Motor operating point based on the
proposed algorithm. (d) Engine operating point based on the traditional
ECMS. (e) Motor operating point based on the traditional ECMS.

TABLE 4. Comparison of the boundary equivalent factors with different
battery parameters under three driving cycles.

TABLE 5. Battery efficiency comparison with degraded and healthy
battery under three driving cycles.

in Tables 4-6. Fig. 11 depicts the SOC curves based on the
two algorithms under three driving cycles. Fig. 12 shows the
trajectory of the equivalent factor under the WLTC cycle, and
the operating points of the engine and motor based on the two
algorithms. Table 4 compares the boundary equivalent factors
with different health status of the battery. To conveniently
compare and analyze two algorithms, the average operating
efficiency of the battery is listed in Table 5 and corresponding
fuel consumption is demonstrated in Table 6.

From Fig. 11, it can be found that the SOC trajectory
based on the proposed strategy is kept almost the same with
that of the healthy battery. Nevertheless, since the equivalent
factor of the traditional ECMS is fixed, the SOC trajectory

when the battery is degraded differs obviously from that
when the battery is healthy, and the ending SOC under the
degraded condition deviates from the setting 0.3. As can be
found in Table 4, when the battery parameters change after
degradation, the proposed A-ECMS can dynamically update
the boundary equivalent factors, and the charging equivalent
factor schg increases, whilst the discharging equivalent factor
sdis decreases. As can been illustrated in Fig. 12 (a), due to
variations of the boundary equivalent factors, the real-time
equivalent factor based on the proposed algorithm changes
accordingly, thereby guaranteeing that the ending SOCmain-
tains near the initial setting value.

As shown in Fig. 12 (b)-(e), it can also be observed that in
order to maintain the SOC near the initial value, the operating
points of the engine and motor vary obviously. As men-
tioned before, when the battery capacity degrades, its internal
resistance increases. To reduce the energy lost dissipated by
the internal resistance during driving, the motor operating
points will move downward on a large scale, meaning that
the motor power and bus current will decrease when driving
the vehicle; and to ensure that enough regenerative power
can be absorbed, the motor operating points remain basically
the same as before when the vehicle decelerates. In this
case, the output power of the engine needs to increase to
compensate the gap caused by the motor, thereby meeting
requirement of the driving demand. From Table 6, we can
find that when the simulation is conducted with the traditional
ECMS based on the degraded battery, the fuel consumption
is the same as that based on the healthy battery, however,
the ending SOC becomes lower. This is because the tra-
ditional ECMS still adopts the previous optimal equivalent
actor, which keeps the operating properties of the engine and
battery almost unchanged, the ending SOC exhibits obvious
drop caused by the internal resistance increment and capacity
attenuation.

As can be seen in Table 5, when the battery degrades, its
operating efficiency would certainly decrease due to increase
of the internal resistance, and accordingly the proposed algo-
rithm adaptively reduces the motor power and improves the
engine power. In this manner, the battery internal energy loss
can be reduced, and thus the proposed algorithm regulates
the battery power output with higher efficiency, compared to
that of the traditional ECMS. As such, the fuel savings can be
further improved. FromTable 6, we can find that the proposed
A-ECMS is much more superior than the traditional ECMS
when the battery degrades. The corrected fuel savings can
reach up to 5% to 11%, proving self-adaptivity and robustness
of the proposed algorithm.

C. PERFORMANCE ANALYSIS UNDER THE CONDITION
OF INACCURATE ROAD INFORMATION
In this study, an assumption is made that the whole road
conditions can be acquired in advance based on GPS, GIS
and ITS. However, precise acquisition is not an easy task.
Usually, the anticipated global driving information is esti-
mated by calculating the average speed of vehicles on road
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TABLE 6. Simulation results of two algorithms with degraded or healthy battery parameters under three driving cycles.

FIGURE 13. The speed profiles with different noises.

within certain intervals [36, 37]. Thus, some difference may
exist between the real vehicle speed and statistical average
speed. To further validate the fuel savings when acquiring the
global driving condition with different errors, the UDDS is
adopted and the white noise with amplitudes of 10, 20 and
30 is respectively added. Then, a one-order lowpass filter is
imposed to smooth the vehicle speed profile. In this manner,
the new driving condition with certain errors is generated,
as shown in Fig. 13.

As depicted in Fig. 13, the 10Noise, 20Noise and 30Noise
denote the updated driving cycles which are processed by the
lowpass filter after adding the white noises with amplitudes
of 10, 20 and 30, respectively. As can be seen, the vehi-
cle speed varies more obviously than before, and the root-
mean square error (RMSE) between the constructed driving
cycle and original cycle is 3.75, 7.12 and 10.94, respec-
tively. Related simulations were conducted, the SOC varia-
tion curves are shown in Fig. 14 and detailed results are listed
in Table 7.

As presented in Table 7, when the RMSE of the con-
structed driving cycle becomes larger, the charging boundary

FIGURE 14. The SOC trajectories with differences of driving conditions.

TABLE 7. Simulation results with different noise of driving conditions.

equivalent factor will increase, and the discharging boundary
equivalent factor will decrease. This is arisen by large fluc-
tuation of the vehicle speed when the noise is added. From
Fig. 14, we can find that when the 10Noise cycle is simulated,
the SOC trajectory is similar with that based on the original
UDDS cycle; and when the RSME becomes larger, the SOC
trajectory derivatesmore obviously from the setting 0.3. From
Table 7, we find that the corrected fuel consumption of the
10Noise cycle is almost the same as that of the original UDDS
cycle; however, when the RMSE becomes larger, the fuel con-
sumption greatly increases. To summarize, we can say that
large speed errors would certainly lead to increment of the
fuel consumption, and when there exists limited difference
between the acquired road information and real driving speed,
the proposed algorithm can still take effect in saving the fuel
consumption.

V. CONCLUSION
In this paper, a novel A-ECMS is proposed to achieve
the energy management of PHEVs during the CS stage.
To achieve it, the global speed information is acquired ahead
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of departure, and a real-time varied probability factor and a
pair of boundary equivalent factors are dynamically deter-
mined according to the energy balance function and battery
status. Then, the equivalent factor is adaptively regulated
according to the global information and boundary equivalent
factors. Based on it, the proposed A-ECMS finalizes the
energy distribution of the target PHEV in real time. Simu-
lation results manifest the effectiveness and self-adaptivity
of the proposed A-ECMS, in particular when the battery
capacity degrades and when inaccurate road information is
acquired.

Next step work will be focused on improving the fuel
economy further by refining control parameters. In addi-
tion, the hardware-in-the-loop (HIL) validation and actual
vehicle test will also be conducted based on the proposed
algorithm.
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