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ABSTRACT Water suppression, in proton magnetic resonance spectroscopy (MRS) using post-processing
techniques, is very challenging due to the large amplitude of the water line, which shadows the metabolic
peaks with small amplitudes and complicates their quantification. In addition, the peak-shaped structure of
these spectra and the relatively small number of data points representing themmakes the suppression process
more cumbersome. In this paper, a post-processing water suppression technique based on the Schrödinger
operator is proposed. The method is based on the decomposition of the input MRS spectrum, using the
squared eigenfunctions of a semi-classical Schrödinger operator. The proposed approach proceeds in three
steps: first, the water peak is estimated using an optimal choice of the value of h to reconstruct the MRS
spectrum with a minimum number of eigenfunctions. Second, these estimated eigenfunctions are further
refined to ensure that they only represent the water line with no contribution from the metabolite peaks.
Finally, the estimated water peak is subtracted from the input MRS spectrum. The proposed method is tested
on simulated in vitro and real in vivo MRS data and compared with the Hankel–Lanczos singular value
decomposition with partial reorthogonalization (HLSVD-PRO) method. The results obtained show that the
semi-classical signal analysis (SCSA) performs comparably to the HLSVD-PRO in accurately suppressing
the water peak.

INDEX TERMS Eigenfunctions of the Schrödinger operator, magnetic resonance spectroscopy, water
suppression, digital signal processing.

I. INTRODUCTION
Biomedical signals consist of peaks, which reflect biolog-
ical activities and chemical properties of the human body.
Examples of such signals are Magnetic Resonance Spec-
troscopy (MRS) spectra, which allow the detection and
quantification of highly concentrated brain metabolites, such
as N-Acetyl-Aspartate (NAA), phospho-creatine (Cr) and
Choline (Cho) [1]. In the case of abnormalities or in spe-
cific clinical conditions, some other metabolites can arise
such as lactate (Lac) [2]. However, the quantification of
these metabolites is usually hampered by the presence of a
large water peak, which is of the order of 10000 compared
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to the metabolite resonances. Therefore, and for an appro-
priate metabolic quantification using 1H-MRS, the suppres-
sion of the water line is required. The suppression can
be achieved either during or after data acquisition, using
either pre-processing or post-processing techniques, respec-
tively. In the pre-processing scheme, water suppression is
performed by a combination of frequency-selective satu-
ration Radio-Frequency (RF) pulses and subsequent mag-
netic field gradients, played to saturate the water spins
before acquisition of the metabolic signals. Among these
techniques are CHESS [3], multiple pulses with opti-
mized flip angles (WET) [4], variable power RF pulses with
optimized relaxation (VAPOR) delays [5], and hyperbolic
secant (HS) waveform as a 90 degrees saturation pulse [6].
Usually, the pre-processing water suppression techniques,
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such as CHESS, significantly reduce the water peaks but
they leave a residual water which affect the quantification.
Moreover, the relevance of non-water-suppressed acquisition
for intra-scan motion correction has been proven to avoid
artifacts, which are induced due to the motion of the patient
inside the scanner [7]. In addition, studies have shown that
collecting water signal may be used as a reference to cor-
rect the line-shape distortion caused by eddy currents, as an
internal reference for absolute data quantification [8], or
as an indication of the normal mammary tissue in breast
cancer [9]. Therefore, post-processing techniques, based
on signal-processing methods, might be considered as a
good alternative to the pre-processing methods [10]–[13].
Several MRS post-processing technique methods have
been proposed [14]–[16]. An example is the well-known
Hankel-Lanczos Singular Value Decomposition (HLSVD)
method [16] and the Hankel Lanczos squares Singular Values
Decomposition with Partial Re-Orthogonalization (HLSVD-
PRO) [17], [18]. The HLSVD-based methods decompose
the unsuppressed residual water MRS spectrum into a set
of exponentially decaying components, and select those with
frequencies close to the frequency of water to reconstruct the
water resonance. The method has several modifications to
achieve better performance [19]–[21]. Other types of MRS
water suppression methods include Gabor transform [22],
Wavelet transform [23]–[25], Fourier-based method which
uses a convolution difference of the time-domain to remove
the water peak [26], and FIR based filters (MP-FIR) [27].
Optimization-based techniques have also been introduced to
remove the water peak inMRS spectra. Suchmethods include
Advanced Method for Accurate, Robust, and Efficient Spec-
tral fitting (AMARES) [28], the Automated Quantization of
Short Echo time MRS spectra (AQSES) [29] and the semi-
parametric approach using regularization [30].

Despite the efforts in developing efficient water
suppression post-processing methods, there are still several
challenges to be addressed. For instance, the shape of the
estimated water line may easily deviate from the theoret-
ical Lorentzian model, which leads to non-efficient water
removal. In addition, the low SNR of the output signal,
once the water line is removed, may affect data quantifi-
cation. To overcome these challenges, this paper proposes
a new water suppression algorithm, based on the squared
eigenfunctions associated with the negative eigenvalues of
the Schrödinger operator. These eigenfunctions have been
introduced in [31], for signal reconstruction and analysis,
have been successfully used for the analysis of arterial blood
pressure signal [32] as well as MRS denoising [33]. We refer
to this method as SCSA for Semi Classical Signal Analysis
(SCSA). The squared eigenfunctions of the Schrödinger
operator have very interesting properties, suggesting their
use for the analysis of pulse-shaped signals, as illustrated
in [33]. This paper extends the usage of the SCSA method
to water suppression in 1H-MRS spectroscopy. The proposed
algorithm consists of three steps: first, the water peak is
estimated by partially reconstructing the MRS spectrum,

using a minimum number of eigenfunctions. This step uses
an iterative optimization problem to find the optimal choice
of the number of eigenfunctions. Second, the eigenfunctions
belonging to the water peak are selected, while those repre-
senting the metabolic peaks are discarded. Third, the subtrac-
tion of the estimatedwater peak from the inputMRS spectrum
provides the suppressed water MRS spectrum.

This paper is organized as follows: In section II, the pro-
posed SCSA method for water suppression is introduced,
and generation of simulated data, as well as, acquisition of
in vitro, and in vivo MRS data are described. In section III,
the SCSA results are presented, and discussed in section IV.
Section V is devoted to the conclusion.

II. METHODS & MATERIALS
A. SIGNAL ANALYSIS USING THE
SCHRÖDINGER OPERATOR
The use of the eigenfunctions of the Schrödinger operator
for signal decomposition and representation has been intro-
duced in [31] and [34] where it has been proven that a real
positive input signal y(f ), that represents the real part of the
MRS spectrum, can be approximated by yh,γ (f ) given in the
following form:

yh,γ (f ) =

(
h
Lclγ

Nh∑
n=1

(−λnh)
γ ψ2

nh(f )

) 2
1+2γ

, (1)

where h and γ ∈ R∗+, λnh and ψnh(f ), for n = 1, · · · ,Nh,
refer to the negative eigenvalues, with λ1h < · · · <

λNhh < 0, and their associated L2-normalized eigenfunctions,
respectively, of the semi-classical Schrödinger operator H (y)
defined as follows:

H (y) = −h2
d2

df 2
− y, (2)

with,

H (y)ψ(f ) = λ .ψ(f ), (3)

where Lclγ =
1

22π
0(γ+1)
0(γ+2) is the universal semi-classical con-

stant, where 0 refers to the standard Gamma function.
The equation (1) provides an exact reconstruction of the

signal when h converges to zero. This was the reason for call-
ing this method the semi-classical signal analysis or SCSA
where h is called the semi-classical parameter. Moreover,
when h decreases, the number of eigenvalues increases and
the reconstruction improves, as explained in [31]. The effect
of the parameter γ has also been discussed in [34]. In this

paper, we fix γ =
1
2
and the equation becomes:

yh(f ) = 4h
Nh∑
n=1

φnh(f ) (4)

where the spectral components φnh(f ) are defined as follows:

φnh(f ) = κnh ψ2
nh(f ) (5)

where κnh =
√
(−λnh).
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The algorithm of the SCSA method for signal reconstruc-
tion has been reported in [31] and is given by:

Algorithm 1 The SCSA Reconstruction Algorithm
Input:MRS spectrum y(f ), h, γ .
Output: Reconstructed signal yh(f )

Step 1: Discretization of the Schrödinger operator
(eq. 2).

Step 2: Solving the eigenvalue problem.
Step 3: Selection of the negative eigenvalues and

their associated L2-normalized eigenfunctions.
Step 4: Reconstruction of the output signal yh(f )

(eq. 4).

B. THE SCSA METHOD FOR PULSE-SHAPED
SIGNAL RECONSTRUCTION
The SCSA is efficient in dealing with pulse-shaped sig-
nals, due to the nature of the squared eigenfunctions of
the Schrödinger operator. It is known that the first squared
eigenfunctions of the Schrödinger operator is localized at
the maximum of the signal (i.e., the water peak in MRS
spectrum) [33]. Moreover, as h decreases, the eigenfunction
oscillations increase and their amplitudes decrease (for the
nth eigenfunction, the number of oscillations is given by
n + 1), as illustrated in figure 1. These first eigenfunctions
have some interesting properties: they are very well localized
around the most significant peaks in the MRS spectrum, and
are model independent with no symmetric condition. This
indicates that the SCSA is a suitable method for pulse-shaped
signals. Because of the multi-peak nature of theMRS spectra,
the SCSA is well-adapted for their analysis. However, two
important challenges have to be addressed [31]. The first
challenge is the significant difference in amplitude between
the water peak and the metabolic peaks. The second chal-
lenge is the insufficient number of data points represent-
ing the MRS spectrum. Indeed for high amplitude signals
(e.g., water peak), the required number of eigenfunctions for
signal reconstruction is very large. This number cannot be
reached as it is limited by the size of the discrete Laplacian,
which depends on the number of data points. Therefore,
the SCSA algorithm has to be adapted to overcome these
limitations. Specifically, the proposed SCSA based algorithm
removes the water peak from theMRS spectrum in three steps
: first, it uses the eigenfunctions that dominantly reconstruct
the water peak and which have a negligible contribution to
the reconstruction of the metabolites. Secondly, it refines the
reconstructed water peak by removing the eigenfunctions that
are localized in the metabolites bandwidth. Finally, it sub-
tracts the estimated water peak from the input spectrum to
provide the water-suppressed MRS spectrum. The flowchart
of the proposed method is shown in figure 2.

C. WATER PEAK ESTIMATION AND SUPPRESSION
The SCSA makes use of the large water peak property for its
reconstruction with a small number of eigenfunctions due to

FIGURE 1. Example of spectral components φnh(f ) : (A) the input and
reconstructed MRS spectrum using h = 4.73. (B) Selected eigenfunctions
showing their localization property. (C) Illustration of the resemblance
between the shape of these squared eigenfunctions and the profile of the
input MRS peaks.

the localization of its eigenfunctions (see figure 1). The water
peak approximation is achieved in three steps:

1) WATER PEAK RECONSTRUCTION
The SCSA is used to reconstruct the input MRS spectra
using the set of Nwp eigenfunctions. However, only the first
eigenfunctionswill contributemostly to thewater peak recon-
struction. The water peak can be reconstructed using a small

eigenfunctions Nwp, such that Nwp '
N
140

which represents
almost 0.8% of the length N of the input spectra based on
the conducted experiment and dataset. Therefore, the optimal
value of h, referred to as hwp, should be determined in order
to decompose the MRS spectrum into this determined set
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FIGURE 2. The flowchart of the proposed water suppression method.

of eigenfunctions. The optimal value of hwp is found using
an iterative optimization process as shown in the algorithm 2.
Each one of the desired computed Nwp eigenfunctions con-

tributes to the reconstruction of some specific details within
the MRS spectrum.

2) WATER PEAK REFINEMENT
In this part, the eigenfunctions that contribute mostly to the
water peak are selected to refine the estimated water peak
ywp(f ) given by:

ywp(f ) = 4hwp

Nwp∑
n=1

S(n) κnh ψ2
nh(f ) (6)

where S(n) is the selection function defined by:

S(n) =

{
1, if ψnh(f ) is selected
0, elsewhere

(7)

The water peak reconstruction and the eigenfunction selec-
tion are described in Algorithm 2 and illustrated in Figure 3.

Algorithm 2Water Peak Estimation
Input :
y: input MRS spectrum
Nwp: Desired number of eigenfunctions

Output: ywp: Estimated water peak

� Reconstruct y using Nwp eigenfunctions
fwater ⇐ [−50Hz, 50Hz]
hwp,Nwp ⇐ SCSA_Nh(y,Nwp)
κ,ψ = SCSA(y, hwp)

� Select eigenfunctions contributing to the water
peak
for n⇐ 1→ Nwp do

if max(ψn) ∈ fwater then
S(n)⇐ 1 selected eigenfunction

end
end

� Subtract the water peak from the MRS spectra

ywp(f ) = 4 hwp

Nwp∑
n=1

S(n) κnh ψ2
nh(f )

return ywp(f )

function hwp,Nh = SCSA_Nh(y,Nwp) h⇐ max(y),

γ ⇐
1
2
. (yout ,Nh) = SCSA(y, h)

while ‖Nh − Nwp‖ 6= 0 do

h = h ∗
(
Nh
Nwp

)
(yout ,Nh) = SCSA(y, h, γ )

end
hwp = h
return hwp,Nh

3) WATER SUPPRESSION
Once the water peak is removed, the suppressed water MRS
spectrum yws(f ) is given by:

yws(f ) = y(f )− ywp(f ) (8)

In some water suppression cases, the water residue is still
large. This residue might affect the convergence of the used
quantification method. To solve this problem, the water
residue is further attenuated using the SCSA recursively,
as shown in Figure 4. The algorithm used for water residue
reduction is described in Algorithm 3. The proposed SCSA
based residual water suppression method will be tested on
different simulated and real MRS datasets. The results are
shown and discussed in the next sections.

D. MATERIALS AND DATASETS
1) SIMULATED DATA
Unsuppressed water spectroscopy data were simulated
using a basis set from the ISMRM MRS Fitting Chal-
lenge 2016. This basis consisted of MRS spectra from

VOLUME 7, 2019 69129



A. Chahid et al.: Residual Water Suppression Using the Squared Eigenfunctions of the SchrÖdinger Operator

FIGURE 3. MRS water peak estimation using eigenfunction selection using Nwp = 9 eigenfunctions.

FIGURE 4. Example of water residue attenuation.

Alanine (Ala), Aspartate (Ala), Choline (Cho), Creatine
(Cr), γ -aminobutyric acid (GABA), Glutamate (Glu), Lac-
tate (Lac), two lipids (Lip1 and Lip2), myo-Inositol (mI),
N-Acetyl-Aspartate (NAA) and Taurine (Tau) metabolites.
100 MRS spectra consisting of the 12 metabolites above with
different amplitudes at three different signal-to-noise ratio
(SNR, defined as the ratio of the power of the signal to the
power of the noise) values, namely 5dB, 10dB, and 20dB
were generated first. The following acquisition parameters
were used for data simulation for a 3 Tesla field strength
(Larmor frequency = 123.2 MHz). Sequence: PRESS,
TE = 30 ms, TE1 = 11 ms, TE2 = 19 ms, Spectral width =
4000 Hz, Number of points = 2048, tissue content: Gray
Matter (GM) = 60%, White Matter (WM) = 40%, Water
content: GM = 0.78 g/ml, WM = 0.65 g/ml, T2 of water:
GM = 110 ms, WM = 80 ms, T2 of metabolites = 160 ms.
Next, the water signal, simulated separately using the same
dataset above, was then multiplied by the edk t

2
factor to

Algorithm 3Water Residue Attenuation
Input :
yws: water suppressed MRS spectrum
Lws: Number of loop used for attenuation
Nwr : The used number of eigenfunctions

Output:
yws2: MRS spectrum with attenuated water residue

fwater ⇐ [−50Hz, 50Hz]
y⇐ yws(fwater )

for n⇐ 1→ Lws do
ywr ⇐ SCSA_Nh(y,Nwr )

end

yws2 ⇐ yws yws2(fwater )⇐ ywr
return yws2(fwater )

imitate the baseline distortion. Note that dk was modeled
as a uniformly distributed random variable between 0 and
0.005. Finally, the distorted water line was added to the noisy
metabolite signals to generate the unsuppressed water MRS
dataset.

2) IN VITRO DATA
In vitro water unsuppressed data was collected from a 3T
Siemens whole body scanner using TE/TR = 30/2000 ms,
1024 points, a bandwidth of 1250 Hz, Navg = 8, and
20× 20× 20 mm3 voxel size from a spherical water solution
phantom containing NAA and lactate with known concentra-
tions of 1 mM each. SCSA and HLSVD-PRO methods were
applied on the water unsuppressed data. The water line was
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calculated from the unsuppressed water data and used as an
internal reference to estimate the absolute concentrations of
the metabolites. The absolute concentrations of the metabo-
lites were estimated using the following equation:

Cmetabolite = Cwater ×
(

2
np

)
×

(
Ametabolite
Awater

)

×

exp
(

TE
T2metabolite

)
exp

(
TE

T2water

) ×
{
1− exp

(
−TR
T1water

)}
{
1− exp

(
−TR

T1metabolite

)}
(9)

The variable Cmetabolite is the metabolite concentration
(mM), Cwater is the water concentration used as an internal
reference (110 M) [35], [36], Ametabolite is the area of the
metabolite peak, Awater is the area of the water peak cal-
culated from the unsuppressed water data, np is the num-
ber of protons of a metabolite, and T1metabolite, T2metabolite,
T1water , T2water are the relaxation times of metabolites and
water [35]–[40].

3) IN VIVO DATA
In vivo data was collected from a 3T Siemens whole body
scanner with a total gradient strength of 45 mT/m and a
nominal slew rate of 200 mT/m/s. A 32-channel receive head
coil was used for data acquisition.
In vivo CHESS [3] water suppressed 16 × 16 MRSI data

was collected from 10 healthy volunteers using the Chemical
Shift Imaging (CSI) sequence, using the following parame-
ters: TE = 35 ms, TR = 2000 ms, Field of view (FOV):
100 × 100mm2, BW = 2000 Hz, Nfull = 512, Navg = 2.
Manual and automatic shimming were performed to maintain
the full-width half-maximum (FWHM) of the water peak
around 20 Hz. From the MRSI grid of each volunteer, four
voxels were selected (two close to the center of FOV and two
near the edge of FOV).Water residual removal was performed
on the selected voxels using both SCSA and HLSVD-PRO
methods. Two single voxel in vivo CHESS water suppressed
data (frontal lobe region) were collected with the same acqui-
sition parameters as the in vitro data. The CHESS water
suppression factor was varied to collect one spectrumwith the
best water suppression (minimal water residue) and a second
spectrum with poor water suppression (large water residue).
SCSA and HLSVD-PRO methods were applied on the spec-
trum with large water residue, and compared to the one with
minimal water residue.

4) DATA PROCESSING AND QUANTIFICATION
All experimental data analysis was performed using Matlab
(MathWorks, USA). Water suppression was performed using
both SCSA and HLSVD-PRO [17], [18] algorithms for
comparison purposes. All spectra were phase-corrected with
respect to the water peak before suppression. Themodel order
of HLSVD-PRO was set to 10. This model order was chosen
since it provided the optimum suppression considering all the
collected data [41]. For the in vivo MRSI data, the NAA at

TABLE 1. Absolute quantification in vitro results in mM for NAA and Lac
peaks after water suppression using SCSA and the HLSVD-PRO and their
comparison to the expected values.

2.02 ppm, Cho at 3.2 ppm, total Creatine (tCr) at 3.03 ppm,
mI at 3.55 ppm, and tCr at 3.9 ppm peaks were fitted to
a Lorentzian model using a quantification approach which
iteratively performs baseline estimation first, followed by the
peak quantification procedure using AMARES [28], [42].
This approach has been previously shown to yield better
quantification results as compared to the single pass opti-
mization method that models baseline and metabolite signals
together [43]. We also run Cramér Rao bounds criteria on the
quantified peaks to check on the quality of water suppres-
sion. The average Cramér-Rao bounds in percentage of the
quantified amplitude of the metabolite peaks along with the
standard deviations, are measured for all the signals. Zero-
filling with a factor of 2 is also performed to improve the
resolution of the spectra.

III. RESULTS
To investigate the robustness of the methods, we have ana-
lyzed the results in term of residual error and difference in
variance for simulated, in vitro, and in vivo MRS(I) data,
respectively. Furthermore, we have assessed the water sup-
pression quality of both methods using the average Cramér-
Rao bounds [44], which are generally used in in vivo studies
to assess the reliability of data quantification.

A. RESULTS WITH SIMULATED DATA
In Figure 5, the boxplot of the residual error between
the water-suppressed signals using SCSA (Figure 6c) and
HLSVD-PRO (Figure 6d) and the metabolite signals with-
out water line (Figure 6a) at three different noise levels are
displayed. Both methods provide comparable performance
in terms of the residual error values. However, the boxplot
in Figure 5 indicates that the SCSA has a lower median error
compared to the HLSVD-PROmethod for a lower noise level
(SNR = 10 dB and 20 dB) but the error range is higher
compared to HLSVD-PRO. The performance of SCSA also
slightly dropped for a higher noise level (SNR = 5 dB).

B. IN VITRO RESULTS
The in vitro spectrum was processed using SCSA and
HLSVD-PRO. The results are shown in Figure 7. The abso-
lute quantification results using both methods are reported
in Table 1. Both methods provided accurate results when
compared to the expected ones.

C. IN VIVO RESULTS
To further test the performance of the algorithms, the selected
40 in vivo signals from the ten volunteers, as described
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FIGURE 5. Boxplot of the residual errors after water suppression using the SCSA (red) and HLSVD-PRO (blue) methods on
100 simulated MRS spectra at three different noise realizations (SNR = 5 dB, 10 dB, 20 dB). The error is calculated as the
l2-norm of the difference between the water suppressed signal and the original water free signal (with noise).

FIGURE 6. (a) Absorption spectrum of a simulated MRS spectrum without water. (b) Absorption spectrum of a simulated
MRS spectrum with an added water peak. Absorption spectrum of the water suppressed signal using (c) SCSA and
(d) HLSVD-PRO. Red vertical boxes in all the sub figures indicate the water region.

in the Methods section, were processed using SCSA and
HLSVD-PRO. Both methods performed efficient water
residue removal, in most cases. Since no ground truth was
available for in vivo data to assess the quality of water
suppression, the performance of the methods was assessed
by calculating the difference between the variance of the
suppressed water region (4.2 to 5.2 ppm) and the vari-
ance of the noise region located at the outer edges of the
spectrum.

The boxplot of variance difference of the selected 40
in vivo MRS spectra for both methods is shown in Figure 8.
One can see that SCSA performs comparably to the

HLSVD-PRO in suppressing the water residue. Computed
NAA/Cr and Cho/Cr ratios of the 40 in vivo MRS spectra
for the SCSA and HLSVD-PRO methods are displayed in
the boxplot in Figure 9. Figure 10 shows the spectra of the
results obtained using in vivo MRSI data from one of the
volunteers. Both methods provide comparable quantification
results since the metabolites ratios are in agreement with the
literature [45].

The Cramér-Rao bounds of the quantified metabolite peak
amplitudes are reported in Table 2. Although both meth-
ods provide similar results, higher Cramér-Rao bounds are
observed with HLSVD-PRO than the SCSA method.
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FIGURE 7. (a) Absorption spectra (phase-corrected) of water
unsuppressed in vitro data, (b) showing the water suppressed in vitro
data using SCSA and (c) showing the water suppressed in vitro data using
HLSVD-PRO. Red vertical boxes in all the sub figures indicate the water
region.

FIGURE 8. Boxplots of error after residual water suppression using
SCSA (red) and HLSVD-PRO (blue) on in vivo MRSI data. The error is
calculated as the difference between the variance of the suppressed
water region and the variance of noise region.

FIGURE 9. In vivo quantification results given as metabolite ratios after
residual water removal using SCSA (red) and HLSVD-PRO (blue).

The performance of the SCSA method (Figure 11c)
and HLSVD-PRO method (Figure 11d) applied on the
single voxel spectroscopy data with large water residue

TABLE 2. Mean and standard deviation of Cramér-Rao bounds in % of
quantified amplitudes for NAA, Cho, tCr (3.03 ppm), mI and tCr (3.9 ppm)
metabolite peaks for the in vivo data.

TABLE 3. Average residual error in the metabolite and downfield
segment after water suppression using SCSA and HLSVD-PRO with respect
to a CHESS water suppression in single voxel spectroscopy in vivo data.

(Figure 11b) were compared to those with minimal water
residue (Figure 11a) in terms of average residual error in
the metabolite region (1 PPM - 4.2 PPM) and the downfield
region (≥5.3 PPM). Both methods provided similar results
with no baseline distortion as reported in Table 3 and shown
in Figure 11.

IV. DISCUSSION
We have developed a model free approach to perform water
suppression for MRS spectra using SCSA. In the simulation
results, water suppressed signals using SCSA (Figure 6c)
and HLSVD-PRO (Figure 6d) by applying water suppression
on the simulated MRS spectrum with an added water peak
(Figure 6b) were comparable in terms of residual error with
respect to the simulated reference metabolite signal without
water line (Figure 6a). From the box plots in Figure 5 obtained
using the spectra from Figure 6 at three different SNR levels,
we observed very low residual error values for both SCSA and
HLSVD at high SNR values. The differences in median value
and error range were not found to be significant between the
two methods. However at low SNR value of 5 dB, HLSVD
provided a better water suppression with less residual error
than SCSA. But, the residual errors obtained using both tech-
niques were very low and not significant from the box plot
in Figure 5 and hence they are comparable. For single voxel
MRS data (in vitro and in vivo), both SCSA and HLSVD-
PRO methods achieve efficient water suppression without
affecting the peaks of interest (Figure 7 and Table 1, Figure 11
and Table 3). However, the situation is more challenging in
the case of MRSI, where the data generally suffers from
low SNR, field in-homogeneity, and lower water suppression
efficiency, causing baseline distortion and peak shape defor-
mation. Still, the SCSA was capable to provide comparable
results to HLSVD as demonstrated by Figures 8-10.

Since SCSA is a model-free approach, it adapts to any
given water residue shape whereas other suppression tech-
niques rely on a predefined model to estimate and remove
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FIGURE 10. (a) Phase corrected absorption spectrum with large water residue in vivo of a voxel selected from the center of FOV of MRSI data of
one volunteer. The SCSA result on the spectrum of Fig (a) is shown in blue in Fig (b), and the fitting result is shown in red. Similarly, the HLSVD-PRO
result is shown in blue in Fig (c) and the corresponding fitting result is shown in red. (d) Phase corrected absorption spectrum with large water
residue of a voxel selected from the edge of FOV of the same volunteer. The SCSA result on the spectrum of Fig (d) is shown in blue in Fig (e), and
the fitting result is shown in red. Similarly, the HLSVD-PRO result is shown in blue in Fig (f) and the corresponding fitting result is shown in red.
Red vertical boxes in all the sub figures indicate the water region.

FIGURE 11. (a) Single voxel in vivo phase-corrected absorption spectrum with minimal water residue after CHESS, (b) single voxel in vivo
phase-corrected absorption spectrum with large water residue after CHESS, (c) SCSA result on the spectrum of Fig (b), and (d) HLSVD-PRO result on
the spectrum of Fig (b). Red vertical boxes in all the sub figures indicate the water region.

the water line (e.g: Lorentzian model used in HLSVD). Due
to the decomposition of the input spectrum into a set of eigen-
functions, the proposed method selects the eigenfunctions
belonging to the water residue signal only and discard those
representing noise and data artifacts. The eddy current effect

will appear on the collected spectra as baseline distortion or
field inhomogeneity effect. Their effect on MRSI data was
reduced using (e.g.: QUALITY [46], ECC [47]) methods
prior to data analysis. The SCSA method was insensitive to
the effect of eddy currents.
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The SCSA processes the real part of the phase corrected
MRS(I) data in the frequency domain. This is in agreement,
with the MRS users, where only the real part of the phase
corrected MRS(I) data is used for data quantification. Both
zero and first order phase corrections are performed prior to
the water suppression. This is essential, since it helps aligning
the water peak properly to a pulse-shaped signal form prior to
SCSA processing. However, to take into consideration the full
MRS information, considering the complexMRS spectrum is
currently under investigations. This will improve the outcome
and bypass few pre-processing steps such as phase correction
step. The preliminary results obtained so far on the complex
MRS spectrum are encouraging.

We also refined the SCSA method for a more efficient
water suppression while preserving the metabolite signals.
This was achieved by carefully selecting the eigenfunctions
belonging to water residue and discarding those representing
the peaks of interest. The number of required eigenfunctions
Nwp used to represent the water peak depends on the total
number of samples and the maximum amplitude of the MRS
spectrum. In our tests, we choose Nwp to be Nwp = N/140.

V. CONCLUSION
Suppression of the residual water signal from proton MRS
data in the human brain is a prerequisite for an accurate
quantification of brain metabolites. A novel and efficient
post-processing water suppression technique based on the
squared eigenfunctions of the Schrödinger operator has been
proposed. The method efficiently extracts the water peak
(or residue) from the MRS unsuppressed water spectrum
without altering the small metabolite resonances. The real
part of the input spectrum was decomposed into a set of
eigenfunctions of the Schrödinger operator first. Those con-
tributing mostly to the water peak (or residue) were sub-
tracted from the original data using a model-independent
approach, leading to a water free spectrum (with complicated
or unknown lineshapes), without attenuating the remaining
small peaks in the spectrum. This was confirmed by the
results obtained from simulated, in vitro and in vivo data.
Furthermore, the proposed method performs comparably to
the HLSVD-PRO in preserving metabolite information after
residual water suppression, while efficiently addressing the
baseline distortion caused by the water residue as demon-
strated with the help of simulated, in vitro and in vivo data.
SCSA is a novel method which performs as good as the
established standard HLSVD technique in term of residual
water suppression. In addition, the method has been shown
to be efficient in MRS data denoising. These results have
been obtained while processing the real part of the MRS data
only. However, to fully explore the potential of this method,
Future work will focus on extending the SCSA to complex
MRS spectra.
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