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ABSTRACT Traditional cognitive radio (CR) spectrum access techniques have been primitive and inefficient
due to being blind to the occupancy conditions of the spectrum bands to be sensed. In addition, current
spectrum access techniques are also unable to detect network changes or even consider the requirements
of unlicensed users, leading to a poorer quality of service (QoS) and excessive latency. As user-specific
approaches will play a key role in future wireless communication networks, the conventional CR spectrum
access should also be updated in order to be more effective and agile. In this paper, a comprehensive and
novel solution is proposed to decrease the sensing latency and to make the CR networks (CRNs) aware of
unlicensed user requirements. As such, a proactive process with a novel QoS-based optimization phase is
proposed, consisting of two different decision strategies. Initially, future traffic loads of the different radio
access technologies (RATs), occupying different bands of the spectrum, are predicted using the artificial neu-
ral networks (ANNs). Based on these predictions, two strategies are proposed. In the first one, which solely
focuses on latency, a virtual wideband (WB) sensing approach is developed, where predicted relative traffic
loads in WB are exploited to enable narrowband (NB) sensing. The second one, based on Q-learning, focuses
not only on minimizing the sensing latency but also on satisfying other user requirements. The results reveal
that the first strategy manages to significantly reduce the sensing latency of the random selection process by
59.6%, while the Q-learning assisted second strategy enhanced the full-satisfaction by up to 95.7%.

INDEX TERMS Cognitive radio networks, dynamic spectrum access, machine learning, self-organizing

networks, Q-learning.

I. INTRODUCTION

The concept of Cognitive Radio (CR) has been proposed
in 1999 [1] in order to use the electromagnetic frequency
spectrum more efficiently. On one hand, some portions of
the spectrum experience an over-utilization, making them
scarce in bandwidth, while on the other hand, some other
portions, such as the ones allocated by TV channels, may
experience an under-utilization [2], [3], leading to network
resource wastage. Mobile cellular networks, for example, are
supposed to accommodate a growing number of users with
increasing data traffic [4], albeit being bandwidth limited [5].

The associate editor coordinating the review of this manuscript and
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To mitigate the bandwidth scarcity in wireless communica-
tion networks, two different types of users have been intro-
duced in the CR concept: Primary User (PU) and Secondary
User (SU). The former is a licensed user who always has
priority to access the spectrum, while the latter is unlicensed
and can use the spectrum opportunistically. Given that SUs
utilize the vacant portions of the spectrum, this process not
only improves the spectral efficiency, but also eases the con-
gestion in the mobile cellular networks, especially in ultra-
dense scenarios.

As shown in Fig. la, there are four phases included
in the conventional CR spectrum access process: spectrum
sensing, spectrum decision, spectrum sharing, and spectrum
mobility [6]. In the spectrum sensing phase, SUs sense the
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FIGURE 1. (a) Conventional and (b) proposed CR spectrum access processes. The proposed method puts two additional phases (WB spectrum
prediction and QoS-based optimization) before sensing in order to enhance SU'’s satisfaction by selecting the network that suits best with the

requirements of SU.

spectrum continuously to find an idle channel to allocate.
In the spectrum decision phase, SUs choose a channel to
associate with (in case of multiple channels being available),
while spectrum sharing refers to the process of sharing the
available frequency band with other SUs. Finally, evacuating
the allocated channel in the presence of any PU in order to
avoid interference is called spectrum mobility [7].

In addition to these steps, CR spectrum sensing can be
divided into two main categories according to the size of
the bandwidth to be sensed, which are: narrowband (NB)
sensing and wideband (WB) sensing. The former refers to
the case when the bandwidth to be sensed is not larger than
the coherence bandwidth of the channel, while the latter hap-
pens when the sensed bandwidth is larger than the coherence
bandwidth [8].

Many NB spectrum sensing methods, such as energy
detector-based [9], cyclostationarity-based [10], matched-
filtering [11], etc., have been proposed in the literature [12].
However, the main drawback of NB sensing is that the band-
width to be sensed is limited, so is the spectral opportunity.
As such, NB sensing methods have to compromise on the
greater number of available bands by focusing on a certain
bandwidth.

Furthermore, because direct integration of NB sensing
methods with WB sensing is not possible due to their binary
decision approaches [8], other methods, such as sub-Nyquist
sensing [13], have been proposed for WB sensing. However,
the WB sensing methods are often more complex to imple-
ment [8], making them prone to higher latency due to long
sensing time [13]. As latency is a key parameter to consider
in future mobile networks, especially when SUs run real-time
applications, a large amount of sensing attempts can result
in SUs being unsatisfied. As such, in order to decrease the
sensing latency, predictive spectrum sensing methods have
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been proposed in the literature [7], [14]-[24]. The main idea
behind these methods is to produce an interface between WB
and NB sensing; this is done by predicting future occupancy
states of spectrum bands in WB to enable NB sensing to
focus only on the bands that are predicted to be available.
However, these prediction-based methods are not a contender
of existing sensing techniques, but rather complementary,
as the predicted availabilities of spectrum bands are exploited
before going through the conventional sensing process to
reduce the sensing latency [7]. Intuitively, the number of
required sensing attempts decays by decreasing the band-
width of interest, which in turn reduces the resultant latency.

Nonetheless, the methods employed in [7], [14]-[24] could
be unrealistic, as they rely on specific assumptions, such as
having historic data set on the occupancy of each individual
channel. As such, these predictive sensing implementations
seem to be impractical, since it is unlikely to have historic
data set on occupancy states for each individual channel.
In addition, even if the data set for each channel is available,
such kind of implementation would be very costly in terms of
both memory and energy consumption due to higher storing
and processing requirements. Furthermore, most of the afore-
mentioned works take merely the latency as a Quality-of-
Service (QoS) parameter and ignore other SU requirements
during the spectrum sensing phase.

In this study, as shown in Fig. 1b, we propose a novel
spectrum access approach, which includes a virtual predic-
tive WB spectrum sensing and QoS-based optimization, with
the aim of increasing the satisfaction of SUs by meeting
their user/application-specific requirements of latency, cov-
erage, and bandwidth. In the virtual predictive WB sensing,
instead of being interested in individual frequency channels,
the traffic loads of the Radio Access Technologies (RATSs)
are considered as a whole for predictions, as this approach
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necessitates significantly less memory and processing due to
less amount of data to be handled. Moreover, it is more likely
and easier to have historic traffic load data sets for RATs
than occupancy states of individual channels, and thus the
proposed virtual predictive WB sensing method makes the
process more realistic and practical.

In the proposed QoS-based optimization phase, two dif-
ferent decision strategies are introduced. The first strategy,
which will be called WB Predictive Sensing (WBPS) here-
after, focuses only on the sensing latency as a QoS parameter.
Particularly, the future traffic loads of the RATs, occupying
different portions of the WB spectrum, are predicted. Then,
the bandwidth of the RAT with the minimum relative traf-
fic load is selected to be sensed with NB sensing; hence,
the probability of finding a spectrum hole is boosted by
narrowing down the WB spectrum to the less utilized portion.
In this way, higher spectral opportunity of WB sensing and
easy implementation of NB sensing are both exploited. In
other words, given the aforementioned problems, WBPS is
the upgraded and modified version of existing predictive
spectrum sensing approaches.

The second strategy, which will be called Q-Learning
Enabled WBPS (QWBPS) hereafter, is a novel and more
robust approach, in which the decision process in WBPS
is consolidated by considering all the QoS requirements of
SUs, such as latency, coverage and bandwidth. Since the
proposed approach is not limited to these QoS parameters,
any other user requirement can easily be appended to the
model. Furthermore, the SUs are allowed to prioritize the
QoS parameters, rendering the proposed algorithm capable
of adapting itself to dynamically changing scenarios and
circumstances.

Normally, running a Q-learning algorithm also takes some
time, which may lead to an additional latency. However,
the proposed framework is proactive and timing is not an
issue, since the Q-learning implementation is performed in
advance by predicting the future traffic loads. Additionally,
as it will be elaborated in Section V-B, since the proposed
Artificial Neural Networks (ANN) algorithm is fed with time
and day inputs, it is able to predict the traffic load not only
for the next time slot but also for any given time and day.

However, despite QWBPS being more robust and dynamic,
it comes at the expense of more computational cost due to the
additional Q-learning implementation. In that regard, a trade-
off arises, in which it is better to use WBPS if the latency is
the only concern, while QWBPS is a better choice in case the
SU has additional concerns other than the latency.

The rest of the paper is organized as follows: Section II
summarizes the state-of-the-art on predictive CR manage-
ment. Section III presents the system model including the
analytic derivations, and Section IV elaborates the data
sets that are used to facilitate this work. Section V intro-
duces the proposed methodology in a comprehensive manner.
Section VI, first, provides detailed information about the
implementation phase, then discusses the obtained results.
Lastly, Section VII concludes the paper.
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Il. RELATED WORK

Spectrum prediction has been extensively studied in the liter-
ature by employing various techniques [7], such as Hidden
Markov Model (HMM) [18], [22], ANN [14], [20], Long
Short-Term Memory (LSTM) [17], Autoregressive (AR)
model [19], etc. In [14] the authors tried to predict the
future occupancy states of a channel by designing a Multi-
Layer Perceptron (MLP) with backpropagation (BP). They
generated a synthetic PU traffic for a single channel using
Poisson process, while the channel’s ON/OFF times were
determined using geometric distribution. It was observed
that the spectrum utilization was boosted and that the sens-
ing energy was decreased. An analytical model for SU’s
throughput was derived in [15] by considering both the
imperfect spectrum prediction and protection to PUs. Some
numerical studies were also performed to observe how
the SU’s throughput is affected by different parameters,
such as prediction error and the number of channels to be
sensed.

In [21] the performance of a BP ANN for spectrum pre-
diction was improved by employing genetic algorithm at
the training phase, as conventional BP ANN is very prone
to be trapped into a local optimum [25]. An HMM based
prediction of future states of a channel was presented in [16].
A channel selector, which includes a channel state predictor
and a channel environment evaluator, was introduced so that
the channel selection process becomes the combination of
Signal-to-Interference-plus-Noise-Ratio (SINR) level and the
availability of the channel. Another HMM based spectrum
prediction is presented in [22], where real data was collected
by measuring Wi-Fi signals via the experimental set-up with
four different antennas.

An ALOHA system was assumed in [23], in which a
second-order AR and Kalman filter were employed to predict
occupancy states of the spectrum. A recent work in [24] stud-
ied the predictive spectrum management in a comprehensive
manner. First, SU’s mobility was predicted using second-
order Markov model. Second, the spectrum prediction was
also performed and combined with the mobility predictions.
Finally, a channel selection phase was also executed in case
of multiple channel availability. The authors also included a
joint prediction cost model by considering the errors occur-
ring at each stage.

Nevertheless, most of the predictive sensing works avail-
able in the literature have been performed for a single
(or a few) channel(s) scenario. This is not applicable for
WB sensing albeit being practical for NB sensing, since
it is not possible to predict the future occupancy levels of
numerous frequency channels in WB. Furthermore, they [14],
[16]-[18], [20], [22], [24] mostly rely on the availability
of historic channel occupancy data sets for each individual
channel, making them even more unrealistic, since it is hard
to have such data sets for all channels at all possible locations
and times. In addition, in such implementations, the memory
and energy consumption increases with increasing bandwidth
of interest (or number of channels), as more data will be
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needed to conduct machine learning training for increased
number of channels.

Furthermore, as most of the existing studies were per-
formed using synthetically generated occupancy states;
i.e. 1 is busy and 0 is free, they are yet to be tested in more
complicated and realistic scenarios, where multiple channels
are available with different characteristics and limitations.
Therefore, there is a significant need for an implementa-
tion of predictive spectrum management schemes in more
complicated environments. In addition to the lack of real-
istic implementations, none of the studies aforementioned
considered QoS requirements of the SUs before proceeding
to the sensing phase. As such, in this paper, we propose
predicting the future traffic loads of RATs in WB instead
of predicting the occupancy states of individual frequency
channels, since it is easier to have/collect related data sets.
Moreover, due to less data requirements, the proposed vir-
tual predictive WB sensing method results in less mem-
ory and energy consumptions. Besides, the requirements of
SUs are also taken into consideration in order to augment
their experienced QoS satisfaction. Lastly, prioritization of
QoS parameters are also allowed to make the proposed frame-
work more user/application-specific.

The main contributions of this paper are:

1) In order to make the model realistic:

o four different RATs with different frequency
ranges are considered;

e a real data set from [26] is employed for
RAT-I and RAT-II, which mimics GSM and LTE,
respectively;

e RAT-III and RAT-IV are aimed to mimic IEEE
802.11n 5 GHz and IEEE 802.11n 2.4 GHz,
respectively. The synthetic data generation for
RAT-IIT and RAT-IV is inspired by the real data
measurements from [27].

2) Since the data set in [26] consists of many squared
grids, in order to avoid over-fitting as well as reducing
computational cost, a k-means algorithm is employed
to cluster the grids according to their traffic load
characteristics.

3) Due to diversified characteristics of each assumed RAT,
different ANN models are developed during future traf-
fic load predictions.

4) Two different decision approaches (WBPS and
QWBPS) are proposed to satisfy user-specific require-
ments. In particular, the WBPS approach is proposed
for users with only latency concern, while QWBPS is
developed for users who have other QoS requirements
in addition to latency. In WBPS, future traffic load
predictions for the RATSs are exploited to direct the
SUs to the most available RAT for latency reduction
purposes, while in QWBPS, future load predictions,
QoS requirements, and QoS element weights are
exploited in order to satisfy the requirements of the SUs
by using Q-learning.
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FIGURE 2. System model. An SU is surrounded by four different RATs.
RAT-I, RAT-II, RAT-III, and RAT-IV are aimed to take the characteristics of
GSM, LTE, IEEE 802.11n (5 GHz), and IEEE 802.11n (2.4 GHz), respectively.
SU: Secondary User, CR BS: Cognitive Radio Base Station.

5) A weighting mechanism for QoS elements is developed
to allow the SUs to prioritize their requirements. This
enables the users to adjust their requirements for spe-
cific applications, making the proposed method both
user and application centric.

Ill. SYSTEM MODEL

As shown in Fig. 2, the system model considers four RATs
around an SU. There is also a CR Base Station (CR BS) that
is responsible to provide coverage and data transmission for
the SU. Therefore, the SU in this environment searches for an
available frequency band to initiate its connection. Latency,
coverage, and bandwidth are considered as QoS parameters
in this study, and they will be detailed individually in the
following paragraphs.

A. USER REQUIREMENTS

The coverage requirement refers to the distance that the
SU will be away from its current location. If the SU is
mobile, for example, then it will need an RAT offering more
coverage in order for its connection to last longer. As shown
in Fig. 2, since RAT-I offers the widest coverage area, it would
preferably be selected as an RAT to be sensed in the case of
high mobility of the SU.

The bandwidth requirement, or data rate requirement,
in this work reflects how much bandwidth the SU demands to
run a desired application. In the case of video-conferencing,
for instance, huge data rates are required; hence, an RAT with
more available bandwidth is preferred.

Theorem 1: Let xy be a random variable that represents
full-satisfaction, where SU’s both coverage and bandwidth
requirements are satisfied simultaneously, such that xy = 1
if full-satisfaction is achieved, and x; = O otherwise. Then,
the expected value of full-satisfaction is

z
Elyl =) pripsis e
i=1
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where p;; is the probability of full-satisfaction for RAT i,
Ds.i IS the probability of selecting RAT i, and z is the number
of available RATSs.

Proof: We first develop a random search concept for
benchmarking purposes. In this random search model, SUs
first select a random RAT, after that channels in the frequency
spectrum of the selected RAT are sensed in a random manner
in order to find an available channel to occupy. Therefore,
the RAT selection is a random process following the dis-
crete uniform distribution. Let O be the set of the available
RAT options:

O = {1, ¥y, ..., W}, 2)

whose index set is
I={1,2,..,2z}. 3)

Let n ~ U(l,z) be a random variable used to select the
index of RAT to be sensed from I. Moreover, let ps be the
probability of being selected as an RAT to be sensed!:

1
ps =, “
4

where z = |[] is the cardinality of I.
SU’s QoS requirements (R) are given as:

R = (Re, Rp), )

where R is a 2-tuple of coverage requirement, R, € N, and
bandwidth requirement, R, € N.
Each RAT option can be equivalent to a tuple of its cover-

age and bandwidth capabilities, respectively, such that
Vi = (Oc,i, Op,i), Viel, (6)

where ®, and Oy, are the sets of coverage and bandwidth
capabilities, and

®C = [®C,1 ’ ®C,27 sy ®C,Z]7 (7)
and
Op = [Op,1, Op 2, ..., Op . (8)

Pe.i represents the probability of satisfying the SU’s cover-
age requirement with RAT i:

Pc,i = P(®c,i > R). )

Let x; be a random variable that represents the coverage sat-
isfaction, where x, = 1 if coverage satisfaction is achieved,
and x. = 0 otherwise. Then, the expected value of coverage
satisfaction is

z
Elxc] =) peipsi- (10)
i=1

Db, represents the probability of satisfying the SU’s band-
width requirement with RAT i:

pvi = P(Opi = Ry). (1D
Iplease refer to Table 1 for a glossary.
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TABLE 1. Glossary.

Parameter  Description
Probability of finding
Pa a vacant channel in the first attempt
Probability of being selected
ps as an RAT to be sensed
Probability of satisfying coverage
Pe requirement with the selected RAT
Probability of satisfying bandwidth
P requirement with the selected RAT
Dt Probability of full-satisfaction
z Number of available RATs
N, Number of available channels
in the selected RAT
N Total number of channels
in the selected RAT
R Coverage requirement of SU
Ry Bandwidth requirement of SU
O Coverage capability of the selected RAT
Oy Bandwidth capability of the selected RAT
Ya Prioritization weight for latency
Prioritization weight for
™ bandwidth requirement
Prioritization weight for
e coverage requirement
Predicted relative data traffic
c of the selected action
05, Cost of being in §; (State-I)
05, Cost of being in 2 (State-1I)
Ce Cost function for coverage requirement
Cb Cost function for bandwidth requirement
T Unit bandwidth (200 kHz)

Number of unit bandwidth

Let xp be a random variable representing the bandwidth sat-
isfaction, where xp = 1 if bandwidth satisfaction is achieved,
and xp = O otherwise. The expected value of bandwidth
requirement becomes:

Elxpl =) po.ipsi- (12)

i=1

Finally, the probability of full-satisfaction with RAT i is the
multiplication of satisfaction probabilities of both coverage
and bandwidth requirements:

Pti = Pe,iPb,i- (13)
]

B. SENSING LATENCY

Latency in this work refers to the delay caused by unsuc-
cessful sensing attempts, where the SU senses a frequency
channel that is already being used by a PU. Another attempt
with a different frequency channel is required after each
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FIGURE 3. Milan city divided into square-shaped cells [26]. In this study,
only the first 5,000 cells are considered (the lower half).

failure; hence, latency increases with the increasing number
of failures.

Let p, ; be the probability of finding a frequency hole with
RAT i in the first attempt:

Na,i
9
Ny

where N, ; and Ni; are the number of available channels
and the total number of frequency channels for RAT i,
respectively.

Therefore, it is obvious that a higher probability of finding
an available channel is obtained when the total number of
channels is small, which is the main idea behind the predictive
sensing approach.

Let x, be a random variable that represents finding a fre-
quency hole in a selected RAT, where x, = 1 is frequency
hole is found, and x, = 0 otherwise. Then, the expected value
becomes:

Pa,i = (14)

1 < Ny
Elx=-) N‘;’f. (15)

< i=1

IV. DATA SET & PREPROCESSING

There are two different data sets are employed in this work:
Milan city data set [26] for RAT-I and RAT-II; synthetic data
set, which is inspired by [27] during generation, for RAT-III
and RAT-IV.

A. DATA SET FOR RAT-1 AND RAT-II

Telecom Italia provides a data set belonging to Milan city
for November and December 2013. In this data set, Milan
city is divided into 10,000 square grids with a dimension
of 235 meters. For each grid, aggregated call-in, call-out,
SMS-in, SMS-out, and internet activity levels have been
recorded with 10 minutes resolution.

To use the data set in this study, we first combined call-
in and call-out activities as CALL, and SMS-in and SMS-out
activities as SMS. Then, historic data set for RAT-I is created
by combining CALL and SMS, while the internet activity
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TABLE 2. User motifs for RAT-111 and RAT-IV.

Week Motif Day Motif
RAT-IIT Workday Afternoon
RAT-IV Everyday All day

is treated as the historic data set for RAT-II. Due to some
missing data and for the sake of computational efficiency,
the first 5,000 cells and first 3 weeks of November data have
been considered. The first two weeks of the three-week data
set were used for training, while the remaining one week is
used for testing.

B. DATA SET FOR RAT-1il AND RAT-IV

Since RAT-III and RAT-IV are intended to mimic Wi-Fi
networks, Wi-Fi related data set is required. As we do not
have available data set for any Wi-Fi network, it is synthet-
ically generated by being inspired by [27], in which real
Wi-Fi data traffic was measured from 2147 wireless devices
(196 residential gateways in 110 different cities) for 2 months.
The primary objective of the work is to capture Wi-Fi usage
patterns of the users. The authors extracted many user motifs
(101 weekly motif and 112 daily motif), however 14 weekly
motifs and 48 daily motifs have strong supports, meaning
they are dominant over others [27].

In this study, two motifs are selected from [27] among the
provided dominant ones, as shown in Table 2, to generate our
data set for RAT-IIT and RAT-IV, but the proposed study is not
limited to any particular motif.

The synthetic data generation is carried out for 8 weeks,
where 7-week data is used for training purposes while 1-week
data is used for testing.

V. PROPOSED METHODOLOGY

In the traditional CR spectrum access process, SUs perform
either NB sensing or WB sensing methods in order to find an
available frequency band to allocate. Both have some certain
advantages and disadvantages. In the NB sensing, for exam-
ple, spectrum opportunities are limited with the narrower
bandwidth of interest, leading to missing opportunities. In the
WB sensing, on the other hand, albeit having more spectral
opportunities, time spent for sensing is higher due to the
larger amount of bandwidth to be sensed.

In this study, as shown in Fig. 1b, we propose a virtual WB
sensing method, in which traffic load predictions for various
RATs in WB are conducted in order to narrow down the band-
width to be sensed, enabling NB sensing methods. In other
words, NB sensing could be employed for the RAT, which is
selected from WB using traffic load predictions. More par-
ticularly, in case of multi-RAT availability, since each RAT
may use different frequencies and bandwidth, the bandwidth-
of-interest would most likely to be WB where NB sensing
is no more applicable. In the proposed virtual WB sensing
method, we choose an RAT out of all the available ones based
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on traffic load predictions and/or user requirements, and the
spectrum sensing procedure is performed to the bandwidth
of the selected RAT. As such, the WB bandwidth-of-interest
is narrowed to the bandwidth of the selected RAT, which in
turn enables NB sensing approaches. Therefore, the proposed
method uses the cooperation of WB and NB sensing by
exploiting the inherent advantages of both methods. Note
that the messaging between the SU, CR BS, and RATSs are
demonstrated in Fig. 4, which reveals how the proposed
method might be implemented in real-life scenarios.

The second main contribution of the proposed method is
to take the QoS requirements of the SUs into account, where
the objective function is adjusted according to user-specific
requirements with the help of Q-learning. As shown in Fig. 5,
the proposed QoS-based optimization phase consists of two
different decision strategies:

1) WBPS: As shown in Figs. 4 and 5, at each ses-
sion (instance), when the SU wants to access to the
spectrum, the associated CR BS asks the RATs around
the SU for future traffic load predictions. Then, the CR
BS prepares an RAT list by ranking the RAT's from min-
imum to maximum according to their relative predicted
traffic loads (percentage occupancy). Then, it directs
the SU to the first RAT, whose traffic load is the mini-
mum, to sense. If the SU cannot find a vacant channel in
the selected RAT, it starts sensing the next RAT in the
list, and this process continues until there is no RAT
left to sense. If the SU cannot find a vacant channel in
any available RAT, then it counts the session as a fail
and waits for the next session. This method targets only
the latency minimization using virtual WB sensing by
making the bandwidth to be sensed narrower.

2) QWBPS: As a main contribution of this study, all the
user requirements are taken into account in order to
boost the satisfaction level of the SUs. We consider
coverage and bandwidth requirements in addition to
latency, but the proposed method is not limited to any
specific requirement; any other requirement can easily
be appended to the framework. As seen in Figs. 4 and 5,
the CR BS receives the coverage and bandwidth
requirements of the SU along with the QoS weights as
inputs, and executes Q-learning accordingly in order
to determine the optimum RAT to sense. However,
as Fig. 5 reveals, QWBPS switches to WBPS in case
there is no frequency channel available in the deter-
mined optimum RAT.

After including the QoS requirements, there are four different
KPIs to be investigated: coverage-satisfaction, bandwidth-
satisfaction, full-satisfaction, and sensing latency.

A. CLUSTERING FOR MILAN CITY DATA SET

Training a cell in Milan city data set individually is very prone
to have an over-fitting problem, as there is a limited number
of samples for each cell. Therefore, it is a better approach
to train the cells together for a better generalization that can
lead to better prediction performance, since many samples
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FIGURE 4. Sequence diagram showing the messaging among SU, CR BS,
and RATs for the proposed methodology. Steps a-d (dashed) take place in
case of new CR BS and/or RAT BS installment. Steps 1-16 happen when
the SU requests to initiate a connection. Steps 10-15 (bold) are executed
only for QWBPS, while steps 1-9 and step 16 are executed for both WBPS
and QWBPS.

from various cells will be digested during the training. On the
other hand, training only one machine learning algorithm for
all the cells decreases the prediction accuracy while keeping
the algorithm well-generalized. In other words, the algorithm
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FIGURE 5. Flowchart for the two proposed methods. Py, P,, P3, P, are the future traffic load predictions for
RAT-1, RAT-1I, RAT-1lI, and RAT-1V, respectively. Rc and Ry, are the coverage and bandwidth requirements,
respectively. ya, . and yc are prioritization coefficients for QoS parameters: Latency, bandwidth, and coverage,
respectively. In case the optimum RAT determined by QWBPS does not have any available frequency channel,

the process switches to WBPS.

will try to obtain a model that somehow fits all the cells.
Nonetheless, the model will be very unlikely to fit all the
cells perfectly, as their characteristics are quite different from
each other; for example, while some are located at the city
center, some are at more rural areas. Thus, there exist a
trade-off between having a good generalization and a good
prediction accuracy. In this regard, clustering the cells based
on their traffic loads can be an intelligent solution; the cells
are clustered with their similar peers; hence, generalization
can be provided by compromising less from the prediction
accuracy, since there will be different model for each cluster,
whose elements have similar characteristics.

In this study, k-means clustering is employed in order to
cluster 5,000 cells according to their average traffic loads.
k-means is an algorithm attempting to discover k different
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clusters in a data set with various samples iteratively. For
each cluster there is a dedicated centroid [28], and the basic
idea behind this algorithm is to place these centroids and
associate the closest data points to them. In the learning
phase, the places of the clusters are altered by the average
value of the associated data points in order to find an optimum
clustering. Determining the number of clusters is one of
the main issues for clustering problems. Intuitively, small
number of clusters give huge errors, while smaller errors can
be obtained with larger number of clusters [29]. Note that
the error for k-means clustering is defined as the Euclidean
distance between the centroid and its associated data points:

T =Y llxi — will%, (16)

Xi€Cj
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where c¢; is centroid of the cluster j, j = 1,2,..,k; x;,
i = 1,2,...,m, is the data points in the cluster j; u; is
the mean of the cluster j. In extreme cases, for example,
if the number of clusters equals to 1, then all the samples
will belong to the same cluster, making the error enormous.
On the other hand, if the number of clusters equals to the
number of samples, there will be no error at all as all the
samples will be associated to a cluster [29].

Thus, the elbow method [30] is used to find the optimum
number of clusters by taking the percentage variation in the
errors into consideration. Moreover, the stopping criteria for
the employed elbow method is a 95% decrease in the error.
In other words, first the initial error is calculated when the
centroids are placed in a random manner, then the algorithm
terminates whenever the 95% variation occurs in the obtained
error. As such, the optimum number of clusters is found
as 8 for the RAT-I, while it is 9 for RAT-II. The resulting
clusters are shown in Fig. 6.

B. FUTURE TRAFFIC LOAD PREDICTION

In order to predict the future traffic loads of each RAT, historic
data is required to train the machine learning algorithms.
For RAT-1 and RAT-II, real telecom data set provided by
Telecom Italia [26] for Milan city is used. For RAT-III and
RAT-1V, the synthetic data set generation is inspired by [27],
in which real Wi-Fi traffic was collected for 2-month period
from 196 residential gateways.

1) ARTIFICIAL NEURAL NETWORKS (ANN)
ANN is selected as a supervised learning method due to its
easy implementation and high performances [31]. Moreover,
with being independent of information about the underlying
distribution of the available data set in order to obtain a model,
ANN outclasses statistical models [14].

Mean Squared Error (MSE) is used as a cost function for
all the developed ANN models, in which the error is given by

1 & )
Cp = MSE = ~ 21:@,- — )2, 17)
1=

where m is the number of samples, y is the target value, and
y' is the predicted value.

The aim of the training phase is to minimize Cp in (17)
by properly arranging weights and bias values. The Bayesian
regularization [32] is employed as a training algorithm, since
it is one of the strong BP training methods, preventing the
network from over-fitting. More particularly, the Bayesian
regularization introduces an extra parameter to the cost func-
tion in (17):

C =alp + BCw, (18)

where Cy is the cost implied by the ANN network weights,
and o and B are the parameters to be determined. More
specifically, Cy is given by

1
Cw = Y W2, (19)
vl &

where w is the neural network weight vector.
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FIGURE 6. Results of clustering the first 5,000 grids of the Milan city data
set according to their average traffic load. (a) is for RAT-I, while (b) is
RAT-11. Note that different colors represent different clusters, and the
colors in (a) and (b) are independent from each other. Values in x and y
axes are for indexing purposes, and use (y — 1)50 + x to find the index of
a particular grid. (a) Milan city map with clustering for RAT-1 (k = 8
clusters). (b) Milan city map with clustering for RAT-1I (k = 9 clusters).

In case ¢« >> g, the training phase will prioritize the
error reduction and will be prone to over-fitting. On the other
hand, the training response will be well-generalized, but the
obtained error will be higher in case of ¢ << g [33].
Therefore, the trade-off in o and § arises, and these param-
eters need to be carefully tuned in order to minimize Cp as
well as having a good level of generalization. In that regard,
the Bayesian regularization with Lavenberg-Marquardt opti-
mization, introduced in [33], is utilized in this work.

As there are four different RATs included in the proposed
system model, the future traffic load predictions have been
performed separately due to their distinctive characteristics.
First, a fully-connected feed-forward ANN with input, hid-
den, and output layers is employed for all the RATs as a
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TABLE 3. Hyper-Parametrization for the different ANN models.

# HL Neurons  Data Split (%) (Train-Validation-Test)
RAT-I 7 50-25-25
RAT-II 14 50-25-25
RAT-III 7 50-25-25
RAT-1V 3 50-25-25

generic model. Then, the created generic model is customized
individually for each RAT.

Determining the number of hidden layer (HL) neurons is
an important issue in ANN, and some methods are recom-
mended in [34] for this issue; however, they did not work well
in our data sets, as all the methods suggest a small number
of neurons which leads to under-fitting. Instead, an empir-
ical approach is used to determine the optimal number of
HL neurons. This approach considers gradually increasing
the number of HL neurons starting from 1 to 20 in steps of 1
and evaluating the performance in terms of a cost function
reflecting the obtained error.

Similarly, an empirical method is followed in determining
the data set split in terms of training, validation, and testing
data. Basically, three different data splitting approaches are
tested: 1) 50% training, 25% validation, 25% testing; 2) 60%
training, 20% validation, 20% testing; and 3) 70% training,
15% validation, 15% testing. Then, based on the obtained
hyper-parameterization results, different ANN models are
developed for each RAT, as given in Table 3.

After detailed hyper-parameterization analyses, number
of HL neurons and data splitting, as in Table 3, are deter-
mined for each RAT by considering the MSE performances
of the ANN models. Significant MSE drop is investigated
(mainly at least 95% drop is targeted) to select the number of
HL neurons. After achieving at least 95% MSE drop, number
of HL neurons are not increased even if it causes better
MSE performance by considering the generalization of the
model, since the more neurons included in the network,
the model is more prone to over-fitting [35].

Similarly, 50-25-25 splitting is selected for all the ANN
models, as there is no significant difference in terms of per-
formance for the three data splitting approaches. The over-
fitting problem is taken into account for this decision, since
one of the reasons of over-fitting is over-training, leading to
a lack of generalization of the developed ANN model [35].

a: ANN MODELS FOR RAT-I AND RAT-II

The input layer consists of 3 nodes: 1) indices of the grids;
2) days of the week; and 3) time of the day. In order to convert
days of the week and time of the day into numeric values, they
are encoded to linearly separated numbers between vi = 0

. . V2 — Vi
and vo = 1 with a spacing of

, where p is the number

of points. For the days of a week, linearly separated p = 7
numbers generated between 0 and 1, and the days from Mon-
day to Sunday are encoded to them respectively. Similarly, for
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the time of a day, linearly separated p = 144 numbers” are
generated between 0 and 1, and times of a day are encoded to
them accordingly. Only 1 output node, representing the data
traffic loads, is included in the developed model for RAT-I
and RAT-IIL.

b: ANN MODELS FOR RAT-Ill AND RAT-1V

Two neurons, which are days of a week and time of a day,
are employed in the input layer. Moreover, the data encoding
procedure conducted for RAT-I and RAT-II is adopted for
RAT-IIT and RAT-1V, where days of a week are encoded
to 7 linearly separated numbers between O and 1, and time of
a day is encoded to linearly separated 144 numbers between
0 and 1. Similarly, there is only 1 neuron at the output for the
data traffic loads of RAT-IIT and RAT-IV.

C. PROPOSED Q-LEARNING FRAMEWORK

As seen in Fig. 1b, the proposed method includes a pre-
decision process where the portion of the spectrum (each RAT
allocates different portions) to be sensed is determined based
on either only the traffic load conditions (WBPS) or both
the traffic load conditions and SU’s requirements (QWBPS).
WBPS relies on the predicted availability of all the portions,
and ranks them in terms of their relative traffic loads to select
the most available one. In QWBPS, however, the pre-decision
phase takes the requirements and associated weights from
SUs into account in addition to the predicted traffic loads.

In order to accomplish this task, Q-learning [36] is
employed. To solve this kind of optimum policy-seeking
problems, Q-learning, which is one of the most outstanding
reinforcement learning methods, is an important aspirant,
since it is a model-free learning technique [37]-[39], which
learns the environment by interacting with it.

There are six main components in Q-learning: (i) agent,
(i1) environment, (iii) action, (iv) state, (v) reward/penalty,
and (vi) action-value table. Agent takes actions by inter-
acting with a given environment in order to maximize
the reward or minimize the penalty. After each action
that the agent takes, resulting state and reward/penalty are
evaluated. Then, the action-value table, which stores the
rewards/penalties for all the possible actions and states, are
updated according to following rule:

OCst, ar) :== Q(st, ar)
AA[Pri1 + gmin(Q(si1, @) — Qs an)],  (20)

where s; and s;41 are the current and next states, respectively.
P41 is the expected penalty for the next step and a; is the
action taken, where a is the set of all possible actions. X is a
learning rate while ¢ is a discount factor. min function in (20)
should be converted to max function to make the update pol-
icy suitable for the reward-based framework, which includes
a reward function instead of P.

2The resolution of the data is 10 minutes, and there are 1440 minutes in a
day. Therefore, 144 time slots are available in a day.

VOLUME 7, 2019



M. Ozturk et al.: Novel QoS-Aware Proactive Spectrum Access Techniques for CR Using Machine Learning

IEEE Access

TABLE 4. List of possible states and associated costs.

State Description Penalty Function (P)

g GC=1AG=1 G+ Wl + 7€ + s,
02 GC=0V&H=0 G+l + Yac + Péso
3 G=0A¢=0 Va€

Q-learning is an off-policy method, meaning that it follows
different policies in determining the next action and updating
the action-value table. Although e-greedy is the base policy,
7 policy, where € > 0, is followed in selecting the next action,
while p policy, where € = 0, is followed in updating the
action-value table.

Three different states are designed in this work based on the
satisfaction conditions of the user requirements. The states
and associated costs to be incurred for being in the states
are shown in Table 4. y., y, and y, in Table 4 are the
prioritization weights for coverage, bandwidth, and latency,
respectively, and the SU can tune them according to its pref-
erences. ¢ is the predicted occupancy level of the taken action.
@s, and @s, are the costs of being in §; and &,, respectively,
where @5, > ¢s,, encouraging the agent to move to the
best possible state. Hence, there is no such cost in &3 as it
is the best possible state. ¢ is a cost function for the coverage
requirement, where its value becomes 0 when the requirement
is satisfied, and 1 otherwise

0, O. =R,
te = , c c 1)
1, ©:. <R,

where O, is the coverage capability of the taken action and
R is the coverage requirement of the SU.

Similarly, &, is a cost function for the bandwidth require-
ment, where its value becomes 0 when the requirement is
satisfied, and 1 otherwise

%=F’%>&’ 22)
1, Op <Ry,

where ®y, is the available bandwidth in the action taken and
Ry, is the bandwidth requirement of the SU.

Furthermore, the action list is provided in Table 5 where
Ob.1, Ob,2, Op 3, and Op 4 and O 1, O 2, O¢ 3, and O¢ 4
are the available bandwidth and coverage capabilities of
RAT-I, RAT-1I, RAT-III, and RAT-1V, respectively, where
Oc1 > Oc2 > Oca > O 3. As seen from Table 5, there are
basically four different actions that the agent can perform,
which correspond to the RATs that the agent can choose to
sense.

In order to develop an optimization problem, we first define
a global cost function as follows:

CR, W) = yelec + vlo + vad, (23)

where d is the sensing latency, which can be modeled as
d = g, since (14) implies that the probability of finding
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TABLE 5. Q-Learning Action List.

Action  Description  Tuple ({O¢, ©})
0 Sense W1 {6¢,1,6p,1}
H Sense Uy {6¢,2,6p,2}
5 Sense U3 {6¢,3,6p,3}
0, Sense Uy {O¢,4,6p,4}

a vacant frequency channel is directly proportional to the
occupancy level of the spectrum. The lesser probability of
finding a vacant frequency channel, the more sensing latency
it causes.

Then, the optimization model becomes:

min C(R, V) (24a)
n

st O, <O, (24b)

@ < O, (240)

n <z, (24d)

where O and ;" are the maximum coverage and bandwidth
supplies with the available RAT options.

Algorithm 1 Proposed Q-Learning Algorithm
Data: Predicted RAT traffic loads, SU requirements
Result: RAT to be selected
1 for every instance do
Initialize Q(s, a) := 0;
for episodes do
for iterations do
Determine the current state using Table 4;
Take an action from Table 5;
Calculate penalties through Table 4;
Go to the next state;
Update the Q-table with (20).
end

o e N B B W N

—
=)

end

—
=

end

—
(5]

Algorithm 1 summarizes the proposed Q-learning
approach. In our implementation, SUSs run this algorithm for
each session and determine the best action to take.

The Q-learning algorithm allows the SUs to prioritize
QoS components, which are coverage-satisfaction, bandwidth-
satisfaction, full-satisfaction, and sensing latency. If, for
example, the SU prioritize latency the most (e.g., running a
real time application), then the algorithm attempts to mini-
mize the number of unsuccessful sensing attempts, as it is
the main reason for the delay in the spectrum sensing phase.
In case the SU is mostly mobile, for instance, it would prior-
itize the coverage requirement above all other components,
as the RAT with the widest coverage area can keep the
SU connected for a much longer time. Thus, the proposed
QWBPS process is very strong and capable of dealing with
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FIGURE 7. Future traffic load predictions for (a) RAT-I, (b) RAT-I, (c) RAT-1II, and (d) RAT-IV. For (a) and
(b), two weeks out of three weeks available data are used for training and one week is used for testing.
For (c) and (d), seven out of eight weeks data are utilized for training purposes, while one week is used
for testing. Note that the results are for a randomly selected cell. (a) Future traffic load prediction for
RAT-. (b) Future traffic load prediction for RAT-II. (c) Future traffic load prediction for RAT-III. (d) Future

traffic load prediction for RAT-IV.

various requirements. In other words, the algorithm is able to
adjust itself according to the preferences of SUs.

VI. PERFORMANCE EVALUATION
The model shown in Fig. 2 is used in this study to evaluate
the proposed method. The network is monitored for a week
with 10 minutes resolution. All the parameters utilized in the
simulations are provided in Table 6.

In the evaluations, the proposed WBPS and QWBPS meth-
ods are compared with random RAT selection approach,
where SUs first select a random RAT to sense, and then
channels in the frequency spectrum of the selected RAT are
sensed in a random manner in order to find an available
channel to occupy.

The comparison is performed with the following metrics:
(i) aggregated sensing latency, (ii) coverage satisfaction rate,
(iii) bandwidth satisfaction rate, and (iv) full-satisfaction rate.
The aggregated sensing latency represents the total latency
incurred during the sensing phase in a week. Note that as
the sensing latency has a strong correlation with the num-
ber of unsuccessful sensing attempts, it is assumed that an
unsuccessful sensing attempt causes a unit time (ut) of delay.
The coverage and bandwidth satisfaction rates imply the
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percentage of instances in one week® that the coverage and
bandwidth requirements are satisfied, respectively. The full-
satisfaction rate, on the other hand, represents the percentage
of instances that both coverage and bandwidth requirements
are satisfied simultaneously.

Since the existing predictive sensing methods, where the
occupancy states of individual frequency channels are pre-
dicted, are conceptually different from the proposed meth-
ods, it is impossible to use them for comparison purposes.
As aforementioned, the proposed WBPS and QWBPS are
more realistic and implementable for WB sensing. Moreover,
the QoS requirements of SUs are also taken into consideration
with QWBPS.

Fig. 7 shows sample traffic load predictions for RAT-I,
RAT-II, RAT-III, and RAT-IV, respectively, for a random cell
from a random cluster with 70-100 cells. The reason for
putting this limitation to the cluster selection is just to make
sure the cluster has sufficient number of elements for training
while keeping it reasonable in order to avoid huge computa-
tional cost. Results reveal that the proposed ANN manage to
fit the data well, making the further phases implementable,

3an instance represents a 10 minute slot in a week simulation period. There
is 1008 instances in total.
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TABLE 6. Simulation parameters.

Parameter Value

Data rate of RAT-I 270.9 kbps
Number of channels for RAT-I 12

Data rate of RAT-II 2.85 Mbps
Number of channels for RAT-II 6

Data rate of RAT-III 100 Mbps
Number of channels for RAT-IIT 5

Data rate of RAT-IV 51.85 Mbps
Number of channels for RAT-IV 3

Grid indices used from Milan data set |1, 5000]
Unit bandwidth () 200 kHz
Number of unit bandwidth (w) U ~ [1,20]

Days used from Milan data set

November, first 3 weeks

Yas Vb Ve [07 5}
Psas Ps1 53
Number of iterations 100
Number of episodes 10

-10*

Aggregated sensing latency (ut)

102 ‘ ‘ “‘H i()“
Data traffic level (%)

FIGURE 8. For various traffic levels, sensing latency performances of
WBPS and random search for finding one frequency channel. The sensing
latency is directly correlated to the number of unsuccessful sensing
attempts, and it is assumed that an unsuccessful sensing attempt takes
one unit time (ut) of delay. Note that the results are the average

of 100 runs.

since both pre-decision strategies (WBPS and QWBPS) use
this predicted data as an input. Thus, any significant error that
occurs in this prediction phase can lead to massive errors at
the output.

Fig. 8 demonstrates the obtained sensing latencies for
WBPS and the random search for various data traffic levels.
The purpose of this result is to reveal the behaviors of the
random search and WBPS under different congestion lev-
els, which is modeled by the data traffic loads; the more
data traffic load an RAT experiences, the more congested
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it becomes. In particular, the data traffic load for each RAT
is varied from 10% to 1000% — by assuming the available
traffic is 100% — in order to obtain various data traffic loads
(or congestion levels). As shown in Fig. 8, for the random
search case, the obtained sensing latency increases tremen-
dously when the congestion level becomes higher. Referring
to the analytic model given in (15), the reason behind this
result is that it is less likely to find a frequency hole to utilize
when the network is more congested, leading to increasing
number of unsuccessful attempts that causes increasing sens-
ing latency. On the other hand, the sensing latency gradually
grows for various congestion levels if WBPS is used as a
search strategy. Furthermore, WBPS decreases the latency
significantly (up to 85.25% when traffic load is 500%) by
always choosing the RAT whose relative traffic load is the
minimum to sense. As such, it can clearly be seen that the
probability of finding a vacant frequency channel is enhanced
by WBPS, as it focuses its sensing on the least utilized portion
of the available spectrum.

Fig. 9 shows the percentage satisfaction rate of the SU’s
coverage requirement. The QWBPS strategy managed to sat-
isfy the SU at almost all the instances (99% success), while
WBPS and random search satisfied the SU for around 546.7
(54.24% success) and 631.9 (62.69% success) times on aver-
age, respectively. These results also prove the superiority of
QWBPS; it can focus on the SU’s requirements and produce
the output accordingly. The reason why QWBPS could not
give 100% success in satisfying the coverage requirement
is that there are cases where there is no vacant channel in
the RAT that is selected by QWBPS. As seen in Fig. 5 that
QWBPS switches to WBPS in these cases, meaning that it
starts focusing on the sensing latency instead of any require-
ment. Random search has no intention to satisfy the require-
ments, thus the obtained results are, not surprisingly, the out-
come of the random process. Appendix A demonstrates the
calculations for coverage satisfaction of the random search
using the model presented in Section III-A. As seen from the
calculations in Appendix A and Fig. 9, the analytic model in
Section III-A and the simulations are in line with each other,
since the obtained results are very close.

Besides, the WBPS strategy does not have any aim of
satisfying the user requirements as well. However, the reason
why it produced worse results than the random search is
that it always focuses on the option which relatively has the
most available resources. As the RAT-III and RAT-1V, whose
coverage capabilities are weak, mostly happened to offer the
most relative resources, WBPS tends to select these options.

Fig. 10 demonstrates the results for the satisfaction
level in terms of bandwidth requirements. As seen from
Fig. 10, QWBPS (97.27% success) outperformed both ran-
dom search (65.1% success) and WBPS (77.83%) by 49%
and 25%, respectively. Note that the bandwidth requirement
is prioritized for the QWBPS case; hence, it is able to increase
the satisfaction level of the SU to a high level. There could
be two different reasons explaining why QWBPS could not
give a 100% success rate: 1) Once QWBPS switches to WBPS
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FIGURE 9. Percentage of coverage satisfaction for three different
methods. The network is monitored for one week with 10-minute

resolution. For the Q-learning part, ya = y;, = 0 and y¢ = 5. Note
that the obtained results are the averages of 100 runs.

when there is no available channel in the first selected RAT,
the only focus becomes the sensing latency rather than spe-
cific requirements. 2) The RAT determination is performed
based on the predicted values, and there are some improper
predictions, as seen in Fig. 7, affecting the performance in a
negative way. However, given that QWBPS performed quite
well (97.27% success), these two issues are not problem-
atic for the proposed methodology. On the other hand, it is
interesting that WBPS gives better results than the random
search, since there is no specific intention for that in the
WBPS strategy. The main reason behind this outcome is that
there is a strong correlation between minimizing the number
of unsuccessful sensing attempts and the bandwidth require-
ments, as the RAT option, which has the least occupancy
level, is likely to have sufficient bandwidth.

Furthermore, the result for the random search case
(65.1% success) is not surprising, and it is the outcome of the
random process similar to the results in Fig. 9. Appendix B
provides the calculations for bandwidth satisfaction of the
random search using the model presented in Section III-A.

The full-satisfaction levels for three different strategies are
shown in Fig. 9, where coverage and bandwidth require-
ments are equally prioritized for the QWBPS case. The results
shown in Fig. 11areveal that QWBPS was able to enhance the
full-satisfaction of WBPS and the random search by 95.7%
and 83.8%, respectively, when sensing latency was not prior-
itized along with the coverage and bandwidth requirements.
On the other hand, QWBPS did not perform well in terms
of the sensing latency, as it reduced the sensing latency of
the random search only by 8.96%, while WBPS decreased it
by 60.2%. Given that coverage and bandwidth requirements
were prioritized equally and no priority was given to the
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FIGURE 10. Percentage of bandwidth satisfaction for three different

methods. The network is monitored for one week with 10-minute

resolution. For the Q-learning part, ya = yc = 0 and y}, = 5. Note
that the obtained results are the averages of 100 runs.

sensing latency, these results also prove that QWBPS works
very well according to the priority inputs, since it gave quite
good results in terms of the full-satisfaction and performed
poorly in the sensing latency.

In Fig. 11b, where the sensing latency, coverage and band-
width requirements were all equally prioritized, it is demon-
strated that the full-satisfaction level of QWBPS decayed
by 16.3%, while the sensing latency performance was
improved by 47.8%. Compared to the results in Fig. 11a,
when all the parameters (sensing latency, coverage and
bandwidth requirements) were equally prioritized, QWBPS
needed to compromise on the full-satisfaction to some extent
in order to decrease the sensing latency. On one hand, QWBPS
boosted the full-satisfaction of WBPS and the random search
by 54.1% and 64.1%, respectively, while on the other hand,
it managed to decrease the sensing latency of the random
search by 52%. Furthermore, the difference between QWBPS
and WBPS in terms of the sensing latency declined from
56.3% to 17.3%. These results affirm the superiority of
QWBPS over the other methods, since it is capable of finding
a good trade-off between the full-satisfaction and the sensing
latency.

The full-satisfaction results of the random search is again
the outcome of the random process, as in Figs. 9 and 10.
If (1) and (13) are used with (27) and (28), the expected
value for the random search to satisfy both the requirements
simultaneously becomes 0.3287. The results also prove that
Theorem 1 works properly.

Note that although the results in Figs. 8, 9, 10, and 11
would be different for various simulation setups, such as
different number of channels, different data rates, differ-
ent RAT types, etc., they simply demonstrate the proof of
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FIGURE 11. Results for sensing latency and the number of fully satisfied
instances, which occurs when both coverage and bandwidth
requirements are satisfied simultaneously. The sensing latency is directly
correlated to the number of unsuccessful sensing attempts, and it is
assumed that an unsuccessful sensing attempt takes one unit time (ut).
The network is monitored for one week with 10-minute resolution. Note
that the results are the average of 100 runs. (a) Full-satisfaction and
sensing latency when ), = yc = 5 and ya = 0. (b) Full-satisfaction and
sensing latency when ya = p, = yc = 5.

concept for WBPS and QWBPS. All these results reveal that
the QWBPS strategy is more versatile than WBPS, since it
is capable of adjusting itself to the user requirements. Put
it another way, QWBPS can be similar to WBPS when only
the sensing latency is prioritized. However, it has much more
capabilities than WBPS. In other words, WBPS can be said to
be a subset of QWBPS, since it is only one task that QWBPS
can do. In this regard, QWBPS approach is very strong,
dynamic, and versatile, as it can easily adapt itself to different
scenarios.

However, the power of QWBPS is at the expense of
computational complexity, as it includes Q-learning in
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addition to the processes performed in WBPS. Therefore, it is
quite important to select either WBPS or QWBPS, and the
selection should be application-specific. If the application is
latency-intolerant and does not give importance to other
QoS parameters, then there is no sense to use QWBPS,
which is computationally more demanding. More particu-
larly, QWBPS should be an option if the SU has multiple
requirements.

VIi. CONCLUSION

In this paper, we proposed a novel and comprehensive vir-
tual predictive WB sensing approach with QoS-optimization
phase. The proposed virtual WB sensing approach introduces
an intelligent interface between WB and NB sensing methods
by benefiting from both. Moreover, it does not suffer from
huge memory and energy consumption problems as the exist-
ing predictive sensing methods, since it treats the bandwidth
of an RAT as a whole, which in turn reduces the amount of
data to be handled.

In the QoS-optimization phase, two different decision
strategies are proposed: the first one, WBPS, focuses only
on minimizing the sensing latency, while the second strategy,
QWBPS, also considers user satisfaction. Both strategies have
different purposes and they managed to fulfill their tasks
successfully. Particularly, if the latency is the only concern
for a given application, WBPS should be selected as a strat-
egy, since it merely focuses on reducing the sensing latency.
Moreover, it is computationally less expensive than QWBPS,
as there is no Q-learning included in its process. Nonetheless,
if the user has multiple requirements, then the choice should
be QWBPS due to its strong intelligent multi-objective opti-
mization capabilities, which come at the expense of compu-
tational complexity.

In future, we plan to extend this current work further
by considering the cases where no historic dataset is avail-
able, since this work relies on the assumption that there is
already a historic data set that enables the proposed ANN,
k-means, and Q-learning algorithms to work. However, it is
quite unlikely to have a data set for all locations and times.
Furthermore, we also plan to add mobility to this current
work by introducing a predictive mobility management,
where the future locations of the users can be predicted in
advance.

APPENDIX A
RANDOM SEARCH IN COVERAGE SATISFACTION
Since there are four RAT options considered, (2) becomes

O = (W1, Wy, W3, Wy} (25)

In addition, it is assumed that SU’s coverage requirement is
within the range of ®¢, such that

R. < max(®.). (26)
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Therefore, E[p.] for this scenario becomes 0.625 using (10),
where

100 i=1,
075 i=2

. ’ 27

Pei=1050 i=3, @7)
025 i=4.

If the SU chooses RAT-], its coverage requirement will
definitely be satisfied, as RAT-I's coverage capability is the
greatest of all the options in (25) and the assumption in (26)
ensures that the SU cannot require more than available
in ®.. Furthermore, as the process follows the discrete uni-
form distribution, ps ; = 0.25, i = {1, 2, 3, 4}.

APPENDIX B

RANDOM SEARCH IN BANDWIDTH SATISFACTION

Using (25), and (28), the expected value in (12) is calculated
as 0.655, which is in line with the result of 0.651 in Fig. 10.
In our implementations, R, = tw, where T represents
200 kHz bandwidth, and w is a coefficient determining the
number of 200 kHz bandwidth that the user requires. w
follows the discrete uniform distribution between 1 and 20,
U ~ [1,20], and the average probabilities of satisfying
Ry, for RAT-I, RAT-II, RAT-III, and RAT-IV are evaluated
through (11) as follows by calculating the average number
of available t values for each:

04 i=1,
022 i=2
= : 28
Poi= Y100 i=3, (28)
1.00 i=4.
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