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ABSTRACT This paper studies a multi-attribute reverse auction in which one manufacturer/buyer purchases
multi-unit identical components/goods from a group of capacity-constrained suppliers considering the
procurement cost and delivery time. The unknown bidding preference and the discrete cost structure
are particularly investigated. Constructing a bi-level distributed decision-making model, a novel iterative
multi-attribute reverse auction mechanism embedding negotiation is proposed to improve the procurement
efficiency under the decision-making framework. Specifically, in the upper level, the buyer determines
the optimal allocation by solving the winner determination problem. To induce suppliers to adjust their
delivery times, three guiding strategies are proposed, i.e., the guiding strategy based on the deviation of
delivery time (GDD), the guiding strategy based on the deviation of objective function value (GDF), and the
guiding strategy randomly based on the deviation of objective function value (GRDF). In the lower level,
suppliers adopt the concession strategies for determining the bid price and delivery time in response to the
buyer’s feedback. The numerical experiments illustrate the effectiveness and applicability of the proposed
mechanism by comparing it with the centralized model. When the buyer places higher importance on the
procurement cost than on the delivery time, the GRDF achieves the best negotiation outcome; otherwise, the
GDF is the buyer’s best option. Also, the proposed mechanism is robust to the variance of suppliers’ decision
parameters and could be a useful procurement tool for the buyer.

INDEX TERMS Bidding preference, bi-level distributed decision making, discrete cost structure, negotia-
tion, multi-attribute reverse auction.

I. INTRODUCTION
With the development of the cyber-economy and infor-
mation technology, e-commerce has increasingly played a
key role in the national economy and people’s daily life.
As an important application area of e-commerce, elec-
tronic reverse auctions (ERAs) have been widely adopted by
large enterprises and government departments for centralized

The associate editor coordinating the review of this manuscript and
approving it for publication was Emanuele Crisostomi.

procurement [5], [43], [57]. In contrast to traditional auc-
tions, ERAs are in a reverse format that the buyer is the
auctioneer and suppliers are the bidders [16], [52]. Due to
the opportunity of obtaining new businesses for suppliers [5]
and the advantage of reducing procurement or transaction
costs for buyers [18], [52], ERA becomes a useful tool for
practical procurement activities. Yet price-oriented ERAs that
simply consider the price attribute and neglect other key
factors affecting the procurement outcome can result in seri-
ous consequences for buyers. For example, contracting with
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unqualified pet food suppliers reduced the market capitaliza-
tion of Menu Foods Company by half in 2007 [54].

To release the full potential of ERAs, multi-attribute
reverse auctions (MARAs) are introduced for procurement
of goods and services in recent years [6], [33], [39]. In gen-
eral, MARAs extend traditional ERAs by allowing the
buyer and potential suppliers to negotiate over price and
non-price attributes such as quality, lead time and service
level [21], [47], [56]. Adopting MARAs to purchase goods
and services becomes a new trend. For example, Chinese
buying organizations could source goods and services using
MARAs through the government procurement platform
(see http://www.ccgp.gov.cn/). Yet, introducing non-price
attributes into the traditional price-oriented ERAs makes
suppliers involve multi-dimensional private information that
can be observed by each supplier individually [6]. A big
challenge faced by the manufacturer/buyer is how to design a
mechanism for purchasing components/goods from multiple
suppliers under the multi-dimensional asymmetric informa-
tion in MARAs. In practice, suppliers generally have discrete
cost structures, since the discount policy is frequently adopted
to promote sales of goods [34]. In addition, the bounded ratio-
nality induced by risk aversion [10] or decision errors [50]
may cause suppliers to behave heterogeneously, and it may
not be reasonable for suppliers to reveal their bidding pref-
erences for strategic concerns. For example, some suppliers
might be able to have a greater quantity and a longer deliv-
ery time due to different cost structures [16]. The discrete
cost structure and unknown bidding preference of suppliers
would make the complex mechanism design problem more
intractable. Although reverse auction mechanisms have been
extensively investigated in theory [17], [41], [59], most of the
existing works assumed that the bidding preference is known
and the cost function is continuous. Hence, the mechanism
design problem that considers the discrete cost structure and
unknown bidding preference under asymmetric information
in MARAs forms the main focus of the paper.

In this paper, we model a sealed-bid iterative MARA in
which one manufacturer/buyer seeks to source multi-unit
identical components/goods frommultiple suppliers. Follow-
ing the literature [16], we assume that an individual supplier
is not allowed to see the offers submitted by the associated
competitors. In this case, bidders would not directly compete
with their rivals and attempt to affect the buyer’s decision
through their offers. Generally, the iterative MARA could
be consist of multiple rounds. In each round, the buyer can
infer the information of suppliers’ discrete cost and bidding
preference based on their bids, and suppliers can revise their
bid decisions in response to the feedback given by the buyer.
The outcome ofMARAwould not be determined until the ter-
mination rule is reached. Since procurement cost and delivery
time are the most important factors for firms to achieve the
goal of lean manufacturing [13], [32], we assume that each
supplier has a limited capacity of the goods and discrete cost
values associated with the supply quantity and delivery time.
Without loss of generality, the unit cost could be discounted

in terms of the supply quantity and delivery time [25]. Also,
we assume that the cost structure is common knowledge
but the cost values can only be privately observed by each
individual supplier. To select the best set of suppliers satis-
fying the buyer’s demand, constructing a bi-level distributed
decision-making model, a sealed-bid iterative MARA mech-
anism embedding negotiation strategies is proposed under
the decision-making framework. Specifically, in the upper
level model, based on goal programming, a winner deter-
mination model that minimizes the total deviation ratios of
the procurement cost and delivery time is established for
allocating the supply quantity. To induce suppliers to adjust
their delivery times, different guiding strategies of delivery
time are proposed for the buyer. In the lower level model,
adopting the concession strategies, each supplier could deter-
mine the bid price and delivery time according to the cost
structure and the guiding delivery time given by the buyer.
After simultaneously submitting bids to the buyer, the win-
ning suppliers could be determined according to the winner
determination formula. Simulation analysis shows that the
competition across potential suppliers could lead them to
reduce the bid price in order to obtain more supply quantity.
Numerical experiments illustrate the effectiveness of the pro-
posed mechanism.

Themain contribution of this paper is to model a sealed-bid
iterative MARA in which the buyer has little knowledge of
suppliers’ bidding preferences and the cost values of each
supplier are discrete in terms of the supply quantity and deliv-
ery time. Constructing a bi-level distributed decision-making
model, this paper contributes to the reverse auction literature
by investigating how the negation strategies can be integrated
with MARAs to design an effective procurement mecha-
nism for the buyer. Specifically, we propose three guiding
strategies for the negation process from the buyer’s point of
view, namely, the guiding strategy based on the deviation
of delivery time (GDD), the guiding strategy based on the
deviation of objective function value (GDF) and the guiding
strategy randomly based on the deviation of objective func-
tion value (GRDF). Through numerical analysis, we find that
the outcome of MARAs depends on the guiding strategies
of buyers and the trade-off between the procurement cost
and delivery time. When the procurement cost outweighs the
delivery time, GRDF achieves the best negotiation outcome;
otherwise, GDF is the buyer’s best option. We also find
that the guiding strategies are robust to the variance of sup-
plier’s decision parameters. The iterative MARA mechanism
embedding negotiation could be a useful procurement tool for
the buyer.

The rest of this paper is organized as follows. Section II
presents the relevant literature. Section III describes the
problem and assumptions. Section IV demonstrates the auc-
tion mechanism embedding negotiation strategies under a
bi-level distributed decision-making framework. The central-
ized decision model under full information is developed for
deriving the benchmarking solutions in Section V. Conduct-
ing numerical experiments, Section VI shows the bidding
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process in MARA and compares the guiding strategies under
different parameter settings. Conclusions and future research
directions are presented in Section VII.
II. LITERATURE REVIEW
This paper studies a sealed-bid iterativeMARA in which sup-
pliers’ cost values are discrete in terms of supply quantity and
delivery time. The literature related to our research could be
divided into two groups, i.e., MARAs and iterative auctions.

In the area of MARAs, Che’s work [11] was seminal.
It modeled a defense system procurement event to pro-
pose three auction schemes for the buyer considering the
cost and quality attributes. It showed that the traditional
revenue equivalent theorem still holds for the two dimen-
sional analysis. Yet, the cost parameters of bidders are
assumed to be independently drawn from a commonly
known distribution function. Branco [8] extended Che’s
work to allow correlated cost functions of potential sup-
pliers. It proposed a two-stage optimal auction mechanism,
in which the buyer determined the winning supplier in
the first stage and adjusted the quality level in the second
stage. Noting that non-price attributes could be exogenous,
Kostamis et al. [26] modeled the sealed-bid and open-bid
reverse auctions from the buyer’s point of view and showed
that the sealed-bid reverse auction would be the best option
when suppliers could anticipate intensified competition. Sub-
sequently, many works focused on the development of
scoring auctions [2], [3], [36], [38], [45], [46]. Most of such
mechanisms developed so far assumed that once the scoring
rules are given, the maximum social welfare produced by
each supplier could be computed for constructing equilib-
rium bidding strategies. To ensure the auction outcomes,
bidders shall be perfectly rational, and buyers shall com-
mit to the pre-specified scoring rule before auction [55].
In recent years, MARAs have been applied to many areas,
such as supply chain management [44], [45], [48], project
management [46] and quality management [12]. Assum-
ing that the buyer has dominating decision-making power,
the above studies adopted a principal-agent framework
to analyze the buyer’s procurement strategy. In practical
applications, the buyer and suppliers could have equal
decision-making power. For example, Apple Computers
would have more decision-making power for purchas-
ing flash memory from SigmaTel, but could have equal
decision-making power when facing Intel [37]. In circum-
stances of the equal decision-making power, adopting itera-
tive auctions to allowmultiple rounds of negotiations between
the buyer and suppliers becomes imperative.

In the area of iterative auctions, from the buyer’s point of
view, Beil and Wein [6] firstly modeled a procurement event
in which a buyer iteratively adopted the reverse auctionmech-
anism to solicit bids from a group of suppliers for maximizing
her expected revenue by using the inverse-optimization-based
method. Yet, it showed that the mechanism is too complex
to be implemented. Instead, Parkes and Kalagnanam [39]
proposed an efficient auction mechanism to maximize the
system expected profit for procurement of configurable

goods. It showed that the proposed mechanism actually gen-
erated the Vickrey-Clarke-Groves result. When the buyer
provided restricted information about her utility function,
Chen-Ritzo et al. [15] showed that the iterative reverse auc-
tion mechanism involving multiattributes could improve
the buyer’s utility by comparing it to the price-orientated
auction. For multiobject procurement, Hohner et al. [20]
modeled the winner determination problem under the basic
framework of iterative auctions considering complex busi-
ness constraints. It showed that both the buyer and sup-
pliers could benefit from the iterative auction mechanism.
Similarly, Cheng [16] modeled an iterative reverse auction
under the bi-level distributed programming framework for
the buyer who purchases multiple identical items from sup-
pliers with limited capacities. From the bidder’s perspective,
Adomavicius and Gupta [1] introduced bid evaluation met-
rics to give support to bidders for determining whether they
should revise the bid in a real-time iterative combinatorial
auctions or not. In parallel, Kwon et al. [28] proposed an
endogenous bidding mechanism for solving the bid determi-
nation problem by using the approximate single-item pricing.
According to the existing literature, the frequently adopted
methods include Lagrangian relaxation [35], heuristics [30]
and linear price approximation [7]. In practice, iterative auc-
tion has been applied to many areas, such as production
planning problem [19], inventory management [29], [42],
scheduling [25] and capacity allocation [4], [31], [58]. How-
ever, most of these works assumed that the buyer exactly
knows the bidder’s bidding preferences and the cost function
is continuous.

Identifying the research gap and noting that decision theory
could perform better than equilibrium analysis for model-
ing bidding strategies in real-world auctions [49], this paper
mainly focuses on a sealed-bid iterative MARA in which
suppliers’ bidding preferences and the discrete cost struc-
ture are particularly considered under the bi-level distributed
decision-making framework. Also, since combining nego-
tiation or bargaining strategies with auctions would gener-
ate more expected profit to the buyer [12], [14], [22], [53],
we integrate the negotiation process and guiding strategies
of delivery time with the bi-level distributed decision-making
model to propose an effective procurement mechanism for
the buyer to purchase multi-unit identical goods. Numerical
experiments illustrate the effectiveness of the proposedmech-
anism and its robustness to the variance of suppliers’ decision
parameters.

III. PROBLEM DESCRIPTION
In this section, we would firstly describe the problem
and assumptions. Then we will present the notations used
throughout the paper.

A. PROBLEM DESCRIPTION AND ASSUMPTIONS
We study a procurement problem that consists of one man-
ufacturer/buyer and multiple suppliers. For the sake of con-
venience, we use ‘‘she’’ and ‘‘he’’ to represent the ‘‘buyer’’

68542 VOLUME 7, 2019



X. Qian et al.: Mechanism Design of Unknown Bidding Preference and Discrete Cost Structure

and ‘‘supplier’’, respectively, in the following discussion. The
buyer would purchase multi-unit identical components/goods
from capacity constrained suppliers using a sealed-bid iter-
ative MARA. Because of suppliers’ strategic concerns and
decision behaviors, we assume that the buyer has little knowl-
edge of suppliers’ bidding preferences. Also, since suppliers
have limited capacity, a set of suppliers would be selected by
the buyer to fulfill the demand. Following the literature [9],
we consider the scenario that the buyer would focus on two
attributes, i.e., procurement cost and delivery time, since sup-
plier’s fast delivery can lower the buyer’s operating costs, e.g.,
inventory holding and back-order penalty costs. For practical
considerations, the cost structure of suppliers is assumed to
be discrete in terms of supply quantity and delivery time.
In specific, the unit cost of goods associated with each sup-
plier becomes lower as the supply quantity or delivery time
increases. Hence, the main challenge of the study is to face
the buyer’s pricing and allocation problem in the presence
of unknown bidding preferences and discrete cost structures.
In general, a buyer with a procurement budget will attempt
to narrow down the gap between the realized procurement
cost and the budget, in hopes that the realized delivery time
will be very close to the target delivery time. To better make
a trade-off of such two attributes, the buyer’s objective is
to derive a procurement strategy that could minimize the
total deviation ratios of procurement cost and delivery time
by comparing the realized attribute values with the corre-
sponding target levels. To simulate the bidding preference,
the objective of each supplier is assumed to sell more goods
with a higher bid price at an appropriate delivery time accord-
ing to the discrete cost structure and information feedback in
each round of the MARA. To make the problem clear, some
assumptions are given below:

(1)One buyer needs to purchase Q identical goods
to satisfy her demand in a sealed-bid itera-
tive MARA, in which an individual bidder is
not allowed to see the offers submitted by
his competitors [16]. In this case, bidders are
assumed to indirectly compete with their com-
petitors and attempt to affect the buyer’s deci-
sion through their offers.

(2)The target procurement cost and target delivery
time are assumed to be c0 and t0, respectively.
In goal programming, given the target levels
denoted by c0 and t0, the found solution shall
simultaneously satisfy all the targets as closely
as possible [24].

(3)n (n > 2) potential suppliers are willing to
submit bids to obtain the supply quantity. Each
supplier’s capacity is limited and the maxi-
mum capacity of supplier i is Qmax

i (Qmax
i <

Q). The unit cost of goods associated with
each supplier decreases as his supply quantity
or delivery time increases. Noting that suppli-
ers would involve bounded rationalities when
facing uncertainty, the bidding preference of

each supplier is unknown due to some decision
errors [27], [51]. In the lower level model, if the
supplier obtains some supply quantity, the bid
price will decrease with a small probability,
since it may still have competitive advantages
in the next round; otherwise, the bid price will
decrease with a large probability.

(4)The buyer’s objective is to minimize the total
deviation ratios of the realized procurement cost
to the target procurement cost and the realized
delivery time to the target delivery time.

(5)Each supplier’s objective is to obtain some sup-
ply quantity while keep the bid price higher than
his cost.

(6)The procurement quantity Q, each supplier’s
capacity Qmax

i and the set of possible delivery
time Di are assumed to be common knowledge.
The cost value and the bidding preference of
each supplier are assumed to be private infor-
mation that can only be observed by each indi-
vidual supplier.

In the iterative MARA embedding negotiation strategies,
constructing a bi-level distributed decision-making model,
the buyer determines the supply quantity qti and the guiding
delivery time d

t
i based on suppliers’ bids in round t , t =

0, 1, . . . ,T , and supplier i determines the bid price pti and
delivery time d ti based on his own cost structure and the feed-
back information given by the buyer. The MARA stops if the
buyer is satisfied with the auction outcome or the maximum
auction round is reached. The information exchange process
is illustrated in Figure 1.

FIGURE 1. The information exchange process between the buyer and
suppliers.

B. NOTATIONS
To formulate the problem, the notations used throughout the
paper are introduced below.
Parameters in the Upper Level Model

T number of auction rounds
t index of auction round, where t =

1, . . . ,T
n total number of suppliers
i index of supplier, where i = 1, . . . , n
c0 target procurement cost
d0 target delivery time
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ct+0 deviation between the realized procure-
ment cost and the target procurement cost
in round t

d t+0i deviation between the realized delivery
time and the target delivery time of sup-
plier i in round t

wc weight of the deviation ratio for procure-
ment cost, 0 < wc < 1

wd weight of the deviation ratio for delivery
time, wd = 1− wc

Q total supply quantity demand of the buyer
Qmax
i maximum supply quantity that can be pro-

vided by supplier i
Ti transaction fee between the buyer and

supplier i
pt−1i bid price of supplier i in round t − 1
d t−1i delivery time of supplier i in round t − 1

Decision Variables in the Upper Level Model
x ti binary variable, x ti = 1 if supplier i is

selected in round t; otherwise, x ti = 0
qti supply quantity allocated to supplier i in

round t
Parameters in the Lower Level Model

pti (q
t
i , d

t
i ) minimum bid price of supplier i for the

supply quantity qti and realized deliv-
ery time d ti ; without loss of generality,
the minimum bid price can be equal to
the supplier’s actual cost

d
t
i guiding delivery time for supplier i

given by the buyer in round t
qt−1i supply quantity provided by supplier i

in round t − 1
α coefficient that suppliers’ bid price may

decrease
$ coefficient that suppliers’ bid price is

above his lowest bid price
δ1 probability that the supplier’s realized

delivery time is equal to the buyer’s
guiding delivery time when the supply
quantity in round t is equal to or more
than that in round t − 1

δ2 probability that the supplier’s realized
delivery time is equal to the buyer’s
guiding delivery time when the supply
quantity in round t is less than that in
round t − 1

λ1 probability that the supplier will
decrease his bid price when the supply
quantity in round t is equal to or more
than that in round t − 1

λ1 probability that the supplier will
decrease his bid price when the supply
quantity in round t is less than that in
round t − 1

Decision Variables in the Lower Level Model

pti bid price determined by supplier i in
round t

d ti delivery time determined by supplier i in
round t

Before detailed analysis, the definitions of auction value
and transaction value are introduced below.
Definition 1: Given [x]+ = max{x, 0}, the buyer’s objec-

tive function value after the termination of the t-th round is
defined as

Gt , wc
ct+0
c0
+ wd

∑n
i=1 x

t
i d

t+
0i

d0
∑n

i=1 x
t
i
, t = 1, 2, . . . ,T (1)

where ct+0 =
[∑n

i=1 [q
t
ip
t
i + x

t
i Ti]− c0

]+ and d t+0i =[
x ti d

t
i − d0

]+. We call Gt the auction value.
Note that supplier iwould submit the bid price and delivery

time as pti and d
t
i , respectively, in round t . In other words,

supplier i is willing to have a trade with the buyer for pti
and d ti . Yet in the upper level model, the buyer would allocate
the supply quantity to potential suppliers based on their bids
of round t−1. To ensure that the buyer could have a trade with
the winning suppliers at the lowest bid price, we introduce the
transaction value below.
Definition 2: The transaction value is defined as Gtmin ,

min{Gt−1min ,G
t
}, which is the minimum auction value after the

termination of the t-th round.
In the auction process, the buyer keeps the lowest auction

value as the transaction value of round t and chooses the
corresponding supply quantity and delivery time as the final
value to trade with the winning suppliers. On one hand, if the
buyer is unsatisfied with the outcome of round t , i.e., Gt >
Gt−1min , then the buyer believes that the auction outcome of
round t is invalid and would trade with the suppliers that
generateGt−1min . On the other hand, if the buyer is satisfied with
the outcome of round t , i.e., Gt ≤ Gt−1min , then the buyer will
trade with the suppliers that generate Gt .

IV. THE MECHANISM OF MARA EMBEDDING
NEGOTIATION
We model a sealed-bid iterative MARA embedding negotia-
tion as a bi-level distributed decision-making process. To be
specific, the proposed mechanism includes four stages, that
is the initialization, buyer’s decision, suppliers’ decision and
termination stages. In the first stage, the buyer allocates the
initial supply quantity and guiding delivery time to each sup-
plier. Based on such information, suppliers would make their
bid decisions according the lower level model. After that,
the initial auction value could be calculated. In the second
stage, the buyer determines the supply quantity according
to goal programming (i.e., optimization process) and the
guiding delivery time according to the guiding strategies (i.e.,
concession process) using the upper level model. In the third
stage, suppliers determine the bid price and delivery time
according to their cost structures and concession strategies
in the lower level model. In the fourth stage, the buyer eval-
uates the auction outcome and records the transaction value.
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The reverse auction process will not stop until the buyer is
satisfied with the outcome or the maximum negation round
is reached. The details of the iterative MARA process are
presented as follows:
Step 1: Initialization

Step 1.1:Start the auction and set t = 1;
Step 1.2:The buyer assigns the supply quantity q0i

and delivery time d
0
i to each supplier.

If the initial quantity is more than the
maximum supply quantity, then the sup-
plier bids based on the maximum supply
quantity.

Step 1.3:Each supplier ascertains his lowest bid
price p0i (q

0
i , d

0
i ) based on the information

given by the buyer, determines the initial
bid price and delivery time, and then sub-
mits the bid to the buyer.

Step 1.4:Calculate the auction value G0 and set the
transaction value G0

min being equal to the
auction value.

Step 2: The buyer’s decision in the upper level model
Step 2.1:The buyer assigns the supply quantity to a

set of suppliers by solving the upper level
model (i.e., goal programming model)
according to the bid price and delivery
time submitted by each supplier in round
t − 1.← (The optimization process)

Step 2.2:The buyer determines the guiding delivery
time according to her guiding strategies
and gives the associated information of
the delivery time to each supplier.← (The
concession process)

Step 3: The suppliers’ decision in the lower level model
Step 3.1:Each supplier ascertains his lowest bid

price pti (q
t
i , d

t
i ) based on the information

given by the buyer in round t and t − 1.
Step 3.2:Each supplier determines his bid price and

delivery time according to the concession
strategies in the lower level model.

Step 4: The termination rule
Step 4.1:Calculate the auction value Gt after the

bidding prosess in round t .
Step 4.2:Compare the auction value in round t with

the transaction value in round t − 1. If the
buyer is satisfied with the current auction
outcome, then set Gtmin = Gt ; otherwise,
set Gtmin = Gt−1min .

Step 4.3:Checkwhether the termination rule is stat-
isfied. If it fails, then set t = t + 1 and go
to Step 2; otherwise, stop the auction and
make the deal.

A. INITIALIZATION
The buyer starts the iterative MARA by setting the sup-
ply quantity q0i and the delivery time d

0
i . For fairness

consideration, the buyer assigns the same initial supply quan-
tity and delivery time to all suppliers, i.e., q01 = q02 = · · · =

q0n = q and d
0
1 = d

0
2 = · · · = d

0
n = d . Then each supplier

sets the delivery time as d0i = d
0
i and determines the lowest

possible bid price pti (q
0
i , d

0
i ). Then the bid price denoted

by p0i = $pti (q
0
i , d

0
i ) would be submitted to the buyer by

supplier i through MARA, where$ > 1, i = 1, 2, . . . , n.

B. THE UPPER LEVEL MODEL (BUYER’S
DECISION MODEL)
Based on the assumptions and the notations in Section III,
we construct the upper level model that consists of two
processes, that is the optimization process and the conces-
sion process for determining the supply quantity and guiding
delivery time, respectively. In specific, the allocation of sup-
ply quantity is characterized by a goal programming model
in the optimization process, and three guiding strategies are
proposed in the concession process, namely, the guiding strat-
egy based on the deviation of delivery time (GDD), the guid-
ing strategy based on the deviation of objective function
value (GDF) and the guiding strategy randomly based on the
deviation of objective function value (GRDF). Next we will
present the supply quantity decision model and characterize
the guiding strategies from the buyer’s point of view.

Based on the bids submitted by potential suppliers, the for-
mulation of the supply quantity decision is described below:

min wc
ct+0
c0
+ wd

∑n
i=1 x

t
i d

t+
0i

d0
∑n

i=1 x
t
i

(2)

subject to:
n∑
i=1

qti = Q, i = 1, 2, . . . , n (3)

qti ≤ x
t
iQ

max
i , i = 1, 2, . . . , n;

t = 1, 2, . . . ,T (4)
n∑
i=1

[
qtip

t−1
i + x ti Ti

]
− ct+0 ≤ c0,

t = 1, 2, . . . ,T (5)

d t−1i − d t+0i ≤ d0, i = 1, 2, . . . , n;

t = 1, 2, . . . ,T (6)

x ti ∈ {0, 1}, i = 1, 2, . . . , n;

t = 1, 2, . . . ,T (7)

qti , d
t+
0i ∈ Z+, i = 1, 2, . . . , n;

t = 1, 2, . . . ,T (8)

ct+0 ≥ 0, i = 1, 2, . . . , n;

t = 1, 2, . . . ,T (9)

Eq. (2) is the objective function that minimizes the total
deviation ratios of the realized procurement cost to the target
procurement cost and the realized delivery time to the target
delivery time. Eq. (3) is the constraint that satisfies the buyer’s
demand. Eq. (4) constrains the supply quantity capacity of
each supplier. Eq. (5) constrains the deviation between the
realized procurement cost and the target procurement cost.
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Eq. (6) constrains the deviation between the realized delivery
time and the target delivery time. Eq. (7) represents that
xi is a 0-1 decision variable. Eq. (8) means that qti and
d t+0i are non-negative integers. Eq. (9) ensures that ct+0 is a
non-negative real number.

Since the sealed-bid iterative MARA involves multiple
rounds, the buyer’s supply quantity allocation in the current
round will affect the supplier’s bid decision in the next round,
and will in turn be affected by the supplier’s bid. In this
case, suppliers who want to obtain more supply quantity
will decrease their bid prices. Yet the supply quantity deci-
sion model is NP-hard [24], we propose that the small-scale
problem can be solved by an enumeration algorithm and the
large-scale problem can be solved by the heuristic algorithm
such as Genetic Algorithm (GA) [23]. In parallel the buyer
also needs to determine the guiding delivery time. From the
buyer’s point of view, if the realized delivery time submitted
by the supplier in the current round is higher than the buyer’s
target delivery time in the previous round, then the buyer
will suggest the supplier to reduce the realized delivery time;
otherwise, the buyer will suggest the supplier to increase the
realized delivery time. The details of the guiding strategies
are illustrated below.

1) THE GUIDING STRATEGY BASED ON THE DEVIATION
OF DELIVERY TIME
To reduce the deviation between the target delivery time and
the realized delivery time, the guiding strategy based on the
deviation of delivery time (GDD) is proposed. The main idea
of GDD is that on one hand, if the realized delivery time is
larger than the target delivery time, then the deviation ratio
of delivery time can be reduced by decreasing the realized
delivery time; on the other hand, if the realized delivery time
is smaller than the target delivery time, then the deviation
ratio of procurement cost can be reduced by increasing the
realized delivery time. Let Di denote the set of supplier i’s
possible delivery time, then define the direction or length that
supplier i’s delivery time may change in round t as

S ti =
{
−1, if d t−1i − d0 > 0
1, if d t−1i − d0 ≤ 0,

i = 1, 2, . . . , n; t = 1, 2, . . . ,T , (10)

then GDD can be defined as

d
t
i =

{
d t−1i + S ti , if d t−1i + S ti ∈ Di and d

t−1
i + S ti ≥ d0

d t−1i , if d t−1i + S ti /∈ Di or d
t−1
i + S ti < d0,

i = 1, 2, . . . , n, t = 1, 2, . . . ,T , (11)

Eq. (10) represents that if the realized delivery time is larger
than the target delivery time in round t − 1, then the buyer
can reduce the deviation ratio of delivery time by guiding
supplier i to decrease the realized delivery time, thus S ti =
−1; otherwise, the buyer can reduce the deviation ratio of
procurement cost by guiding supplier i to increase the realized
delivery time, thus S ti = 1. Eq. (11) represents that if the
delivery time calculated in round t belongs toDi and is larger

than the target delivery time, then the guiding delivery time
is equal to the delivery time calculated in round t; otherwise,
the guiding delivery time is equal to the realized delivery time
in round t − 1.

2) THE GUIDING STRATEGY BASED ON THE DEVIATION OF
OBJECTIVE FUNCTION VALUE
GDD only considers part of the objective function, i.e., the
deviation of delivery time. However, reducing the deviation
ratio of delivery time may increase the deviation ratio of pro-
curement cost, and the objective function value may increase.
Thus we proposed an improved strategy, i.e., the guiding
strategy based on the deviation of objective function value
(GDF). The main idea of GDF is that if the objective function
value decreases, then the changing direction of supplier i’s
delivery time in round t is the same as that in round t − 1;
otherwise, the changing direction of supplier i’s delivery time
in round t is the negative direction of that in round t − 1. The
details of GDF are described below.

For the first round (t = 1), the guiding delivery time is
determined by Eqs. (10)-(11). After that, i.e., t ≥ 2, based on
the auction value, we defined a new direction that supplier i’s
delivery time may change in round t as

S ti =
{
−S t−1i , if Gt−1 ≥ Gt−2

S t−1i , if Gt−1 < Gt−2,
i = 1, 2, . . . , n, ; t = 2, 3, . . . ,T , (12)

where Gt−1 is the auction value in round t − 1. Also the
guiding delivery time can be calculated by Eq. (11).

Eq. (12) represents that if the objective function value in
round t − 1 is less than that in round t − 2, the changing
direction of supplier i’s delivery time in round t − 1 is a
good direction, thus the guiding delivery time keeps moving
as the good direction; otherwise, the changing direction in
round t − 1 is a bad one, and the guiding delivery time moves
as the negative direction in round t − 1.

3) THE GUIDING STRATEGY RANDOMLY BASED ON THE
DEVIATION OF OBJECTIVE FUNCTION VALUE
GDF is based on the buyer’s objective function value, it can
help suppliers make a trade-off between the delivery time and
the procurement cost. However, the changing direction of the
total deviation ratio of the delivery time and procurement cost
may be inconsistent with that of each supplier’s deviation
ratio. Thus, the guiding strategy randomly based on the devi-
ation of objective function value (GRDF) is proposed. The
main idea of GRDF is that if the supply quantity in the current
round is higher than that in the previous round or equal to
the maximum supply quantity, then the guiding delivery time
keeps the same as that in the previous round with a higher
probability and changes with a lower probability; otherwise,
the guiding delivery time keeps the same as that in the previ-
ous round with a lower probability and changes with a higher
probability. The details of GRDF are described below.

For the first round (t = 1), the guiding delivery time
is determined by Eqs. (10)-(11). After that, i.e., t ≥ 2,
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d
t
i =



d t−1i , with probability γ1
d t−1i + S ti , with probability υ1, if d t−1i + S ti ∈ Di
d t−1i − S ti , with probability 1− υ1, if d t−1i − S ti ≥ d0
d t−1i , otherwise

 with probability 1− γ1

 , qti > qt−1i or qti = Qmax
i

d t−1i , with probability γ2
d t−1i + S ti , with probability υ2, if d t−1i + S ti ∈ Di
d t−1i − S ti , with probability 1− υ2, if d t−1i − S ti ≥ d0
d t−1i , otherwise

 with probability 1− γ2

 , qti ≤ q
t−1
i and qti 6= Qmax

i ,

i = 1, 2, . . . n; t = 2, 3, . . . ,T , (13)

the direction that supplier i’s delivery time may change is
calculated by Eq. (12) and the guiding delivery time is deter-
mined by Eq. (13), as shown at the top of this page, as follows.
where γ1, γ2, υ1 and υ2 are parameters. Eq. (13) represents
that if the supply quantity in round t is higher than that
in round t − 1 or equal to the maximum supply quantity
(indicating that the delivery time in round t − 1 is good),
then the guiding delivery time is equal to the realized delivery
time in round t − 1 with a higher probability γ1 or will be
changed with a lower probability 1 − γ1. To be specific,
the guiding delivery time is determined by the changing
direction that the objective function value decreases with a
higher probability υ1 or by the changing direction that the
objective function value increases with a lower probability
1 − υ1. If the supply quantity in round t is lower than that
in round t − 1, the guiding delivery time is equal to the
realized delivery time in round t − 1 with a lower probability
γ2 or will be changed with a higher probability 1 − γ2.
In specific, the guiding delivery time is determined by the
changing direction that the objective function value decreases
with a higher probability υ2 or by the changing direction that
the objective function value increases with a lower probability
1− υ2. If d

t
i /∈ Di or d

t
i < d0, then the guiding delivery time

is set to be equal to the realized delivery time in round t − 1.

C. THE LOWER LEVEL MODEL (SUPPLIERS’
DECISION MODEL)
After deriving the supply quantity and the guiding delivery
time, each supplier will determine the delivery time and bid
price according to the lower level model. Actually, the lower
level model is characterized as a concession strategy model.
The formula of the lower level model is constructed as
follows:

Eq. (14), as shown at the bottom of the next page, is the
concession strategy of the supplier’s delivery time. If the
supply quantity in round t is more than that in round t − 1
or equal to the maximum supply quantity, then suppliers
make the delivery time be equal to the guiding delivery time
suggested by the buyer with a lower probability δ1 and keep
the delivery time unchanged with a higher probability 1− δ1.
If the supply quantity in round t is less than that in round
t − 1, then suppliers make the delivery time be equal to the
guiding delivery time suggested by the buyer with a higher

probability δ2 and keep the delivery time unchanged with a
lower probability 1− δ2. Eq. (15), as shown at the bottom of
the next page, is the concession strategy of bid price. If the
bid price in round t is higher than that in round t − 1, then
the bid price is set as pti . If the bid price in round t is lower
than that in round t − 1 and the supply quantity in round t
is more than that in round t − 1 or equal to the maximum
supply quantity, then the bid price is set as pti (i.e., cutting
the bid price) with a lower probability λ1 or set as p

t−1
i (i.e.,

adopting the bid price in round t−1) with a higher probability
1− λ1. If the bid price in round t is lower than that in round
t − 1 and the supply quantity in round t is less than that in
round t − 1 and unequal to the maximum supply quantity,
then the bid price is set as pti (i.e., cutting the bid price) with a
higher probability λ2 or set as p

t−1
i (i.e., adopting the bid price

in round t − 1) with a lower probability 1 − λ2. Eq. (16), as
shown at the bottom of the next page, represents the strategy
of cutting the bid price, where suppliers will set the bid price
as pt−1i multiplied by a coefficient α if αpt−1i is higher than
the true cost (i.e., the lowest bid price pti (q

t
i , d

t
i )); otherwise,

set the bid price being equal to the true cost.
As the lower level model describes the suppliers’ conces-

sion strategies, it can be solved directly. Specifically, each
supplier firstly determines his delivery time by Eq. (14)
and then ascertains his lowest bid price based on his own
cost structure. Finally, the bid price can be determined by
Eqs. (15)-(16).

D. THE TERMINATION RULE
The auction terminates if the auction value keeps the same
for 5 successive rounds or the maximum auction round
is reached, i.e., T = 50. Check whether the termination
condition is satisfied. If it fails, then the auction process
will be continued; otherwise, the auction stops and the
buyer’s demand could be satisfied by selecting the winning
suppliers.

In summary, the sealed-bid iterative MARA mechanism
embedding negotiation strategies can be described by the
flowchart as shown in Figure 2.

V. THE CENTRALIZED DECISION MODEL
To illustrate the effectiveness of the proposed mecha-
nism, we construct a centralized decision model where
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FIGURE 2. Flowchart of the sealed-bid iterative MARA mechanism embedding negotiation
strategies.

the buyer has full information about the cost value in
terms of the delivery time and supply quantity of each
supplier. In this case, the buyer only needs to solve

the centralized decision model for selecting the winning
suppliers and set the supply quantity and delivery time
accordingly. The centralized decision model is described as

d ti =


d
t
i , with probability δ1
d t−1i , with probability 1− δ1

}
qti > qt−1i or qti = Qmax

i

d
t
i , with probability δ2
d t−1i , with probability 1− δ2

}
qti ≤ q

t−1
i and qti 6= Qmax

i

, i = 1, 2, . . . , n; t = 1, 2, . . . ,T (14)

pti =


pti , with probability λ1
pt−1i , with probability 1− λ1

}
pti < pt−1i , qti > qt−1i or qti = Qmax

i

pti , pti ≥ p
t−1
i

pti , with probability λ2
pt−1i , with probability 1− λ2

}
pti < pt−1i , qti ≤ q

t−1
i and qti 6= Qmax

i

, i = 1, 2, . . . , n; t = 1, 2, . . . ,T (15)

subject to: pti = max
{
αpt−1i , pti (q

t
i , d

t
i )
}
, i = 1, 2, . . . , n; t = 1, 2, . . . ,T (16)

68548 VOLUME 7, 2019



X. Qian et al.: Mechanism Design of Unknown Bidding Preference and Discrete Cost Structure

FIGURE 3. The comparison of auction value and transaction value based on GDD.

follows.

min wc
c+0
c0
+ wd

∑n
i=1 xid

+

0i

d0
∑n

i=1 xi
(17)

subject to:
n∑
i=1

qi = Q (18)

qi ≤ xiQmax
i , i = 1, 2, . . . , n (19)

n∑
i=1

[qipi(qi, di)+ xiTi]− c
+

0 ≤ c0 (20)

di − d
+

0i ≤ d0, i = 1, 2, . . . , n (21)

xi ∈ {0, 1}, i = 1, 2, . . . , n (22)

di ∈ Di, i = 1, 2, . . . , n (23)

qi, d
+

0i ∈ Z+, i = 1, 2, . . . , n (24)

c+0 ≥ 0, i = 1, 2, . . . , n (25)

where xi is a binary decision variable that xi = 1 if supplier i is
selected, otherwise xi = 0. qi is the integer decision variable
that denotes the supply quantity assigned to supplier i. di is
the integer decision variable that represents the delivery time
of supplier i. c+0 represents the deviation between the realized
procurement cost and the target procurement cost, c+0 ≥ 0.
d+0i denotes the deviation between the realized delivery time
and the target delivery time, d+0i ≥ 0. pi(qi, di) is the lowest
bid price of supplier i and can be assumed to be supplier i’s
true cost.

Eq. (17) is the buyer’s objective function that minimizes
the total deviation ratios of the procurement cost and the
delivery time. Eq. (18) ensures that the buyer’s demand is
satisfied. Eq. (19) represents that each supplier is limited by
his maximum capacity. Eqs. (20) and (21) are the constraints
of the deviation of the procurement cost and delivery time,
respectively. Eqs. (22) and (23) are the constraints of the
binary variable and the delivery time. Eq. (24) ensures that the
supply quantity and the deviation of delivery time are positive
integers. Eq. (25) ensures that the deviation of procurement
cost is positive.

VI. NUMERICAL EXPERIMENTS
In this section, numerical experiments are conducted to inves-
tigate the performance of the proposed iterative MARA

mechanism embedding negotiation under the bi-level dis-
tributed decision-making framework. Firstly, a given exam-
ple is used to illustrate the convergence process and the
effectiveness of the proposed mechanism by comparing the
auction value and the transaction value under the different
guiding strategies (i.e., GDD, GDF, GRDF). Then, we ran-
domly generate 50 groups of numerical examples. The best
guiding strategy is examined by comparing the transaction
values found by the decentralized model using three guid-
ing strategies with that under the centralized model. Finally,
the impact of the buyer’s decision weights and suppliers’
decision parameters on the proposed mechanism under dif-
ferent guiding strategies is discussed.

A. EFFECTIVENESS ANALYSIS OF THE PROPOSED
MECHANISM
In this subsection, to illustrate the feasibility and effectiveness
of the proposed mechanism, a given example is presented to
show the auction process under different guiding strategies in
a MARA.
Example 1:One buyer wants to purchaseQ identical goods

in a MARA, where Q = 1500. The auction format is an
iterative low price sealed bid auction. The target procurement
cost and target delivery time are assumed to be c0 = 7500 and
d0 = 2, respectively. The weights of procurement cost and
delivery time are assumed to be wc = 0.7 and wd = 0.3,
respectively. The initial supply quantity and delivery time
assigned to each supplier are assumed to be q = 200 and
d = 2. The number of potential suppliers is assumed to
be n = 10. Since the cost or the lowest bid price is each
supplier’s private information, to obtainmore profit, suppliers
will not submit their lowest bid price in the first round. When
the supplier wants to obtain more supply quantity, he would
decrease his bid price with some probability. The parameters
of suppliers’ concession strategy associated with delivery
time are assumed to be δ1 = 0.3 and δ2 = 0.7, respectively.
The parameters of suppliers’ concession strategy associated
with bid price are assumed to be λ1 = 0.3 and λ2 = 0.7,
respectively. The cost information of each supplier is pre-
sented in Appendix A.

The simulation result of Example 1 based on GDD is
shown in Figure 3. We see that the auction value decreases
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FIGURE 4. The comparison of auction value and transaction value based on GDF.

FIGURE 5. The comparison of auction value and transaction value based on GRDF.

in the first 8 rounds, and could be minimized in the 11th
round. Indeed, the buyer has to make a trade-off between the
procurement cost and the delivery time. In the first 8 rounds,
since the bid price keeps decreasing with some probability,
the impact of the procurement cost on the auction value is
higher than that of the delivery time. However, when the bid
price is close to the actual cost, the impact of the delivery time
on the auction value is higher than the procurement cost, and
the auction value fluctuates after the 8th round. Noting that
the buyer would choose the lowest auction value to make a
deal with these suppliers, the final transaction value based on
GDD is 0.741253. This example illustrates the feasibility and
effectiveness of the proposed mechanism integrating GDD.
Yet, the final transaction value based on GDD under the
decentralized model is higher than the optimal value under
the centralized model by 40.3%.

The simulation result of Example 1 based onGDF is shown
in Figure 4. We can see that the auction value decreases in the
first 11 rounds since the impact of the procurement cost on
the auction value is higher than that of the delivery time, and
could be minimized in the 35th round. The final transaction
value based on GDF is 0.690792, which is lower than that
of GDD, since the auction mechanism based on GDF may
have a larger searching space of the delivery time and a better
direction to decrease the objective function value compared
with GDD. Hence, the auction mechanism based on GDF is
effective. Yet, the final transaction value based on GDF under
the decentralizedmodel is higher than the optimal value under
the centralized model by 30.8%.

The simulation result of Example 1 based on GRDF is
shown in Figure 5. We find that the auction value decreases in
the first 6 rounds, and could be minimized in the 17th round.
In addition, the termination rule is satisfied in the 22nd round
such that the reverse auction stops. The final transaction value
based on GRDF is 0.65733, which is lower than GDD and
GDF, since GRDF may have a larger searching space of the
delivery time than GDF. Hence we see that the proposed
mechanism integrating GRDF is effective. However, the final
transaction value based on GRDF under the decentralized
model is still higher than the optimal value under the cen-
tralized model. This is mainly because of the asymmetric
information between the buyer and potential suppliers.

From the above analysis, we find that the proposed iterative
MARA mechanism embedding negotiation is feasible and
effective. In next subsection, we will do some comparison
analysis between these guiding strategies using randomly
generated examples to further show the performance of the
proposed mechanism.

B. COMPARISON ANALYSIS OF THE PROPOSED
MECHANISM
In this subsection, 50 groups of numerical examples are
randomly generated to find the best guiding strategies for the
buyer in the iterative MARA. One buyer wants to purchase
1500 identical goods and 10 potential suppliers are willing
to provide the goods by competitive bidding. The parameters
are assumed to be c0 = 7500, d0 = 2, wc = 0.7, wd = 0.3,
δ1 = 0.3, δ2 = 0.7, λ1 = 0.3, λ2 = 0.7.
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FIGURE 6. The comparison of final transaction value and the optimal value.

The cost information of each supplier is randomly gen-
erated. In specific, each supplier’s cost information can be
described by a matrix, where the rows represent the supply
quantity, and the columns indicate the delivery time. The
element of the matrix represents the cost value or the lowest
bid price of each supplier in terms of the supply quantity and
delivery time. The cost structure is similar to Example 1. Let
cmax
i , Qmax

i and dmax
i be the maximum cost, supply quantity

and delivery time of supplier i, respectively. Let ε and ξ
denote the discount factors of the supply quantity and delivery
time, respectively. Firstly, given the first element of thematrix
cmax
i , the rest elements of the first row are randomly generated
by a uniform distribution on the support [εcmax

i , cmax
i ) and

would be placed in a descending order in that row. Then
the elements in the first column are generated. Specifically,
the second element equals to cmax

i multiplied by a randomly
generated number following a uniform distribution on the

support [ξ
1

dmax
i −1 , 1); the third element equals to cmax

i mul-
tiplied by a randomly generated number following a uniform

distribution on the support [ξ
1

dmax
i −2 , ξ

1
dmax
i −1 ); and the rest

elements in the other columns can be generated in a similar
way. Finally, the rest elements in the matrix are generated by
rows. Specifically, the rest elements in each row are equal to
the first element in that rowmultiplied by randomly generated
numbers following a uniform distribution on the support
[ε, 1] and then wound be placed in a descending order in that
row. The parameters used to generate the suppliers’ costs are
presented in Appendix B.
Definition 3: Let πjk denote the final transaction value of

the j-th guiding strategy for example k , and πk denote the
optimal value of the centralized decision model for the k-th
example, where j = 1, 2, 3 corresponds to the strategy of
GDD, GDF and GRDF, respectively, and k = 1, 2, . . . , 50
denotes the serial number of an example. Then the evaluation
criterion of each guiding strategy is defined as the average
deviation ratio, that is,

Gj =
1
50

50∑
k=1

πjk − πk

πk
, j = 1, 2, 3. (26)

Definition 3 is used to compare the guiding strategy of
GDD, GDF and GRDF. Eq. (26) measures the average

deviation difference between the final transaction value
obtained by each guiding strategy and the optimal value under
the centralized model for 50 randomly generated examples.
A lower Gj means that the j-th guiding strategy performs bet-
ter, since the final transaction value under the decentralized
model is closer to the optimal value under the centralized
model.

To obtain the best parameter combination of each guiding
strategy, some tests are required. The major steps of parame-
ter tests can be summarized below. Firstly, the initial delivery
time is fixed and the initial supply quantity varies. Then,
the initial supply quantity is fixed and the initial delivery time
changes. Finally, both the initial delivery time and supply
quantity are fixed, and other parameters are tested for the
strategy of GRDF. The best parameter combination of each
guiding strategy could be derived, that is, q = 200, d = 5
for GDD, q = 400, d = 5 for GDF, and q = 300, d = 4,
γ1 = 0.6, γ2 = 0.2, υ1 = 0.6, υ2 = 0.6 for GRDF.
Based on the above parameter combinations, the final

transaction values under different guiding strategies based on
50 randomly generated examples can be calculated as shown
in Figure 6. We see that GRDF is the best option for the
buyer, and GDF performs better than GDD, which means
that to enlarge the searching space of delivery time under the
decentralized model could result in a better auction outcome.
In addition, the average deviation ratios of GDD, GDF and
GRDF are 0.255875, 0.191141 and 0.102091, respectively.
Moreover, given 50 randomly generated examples, GRDF
performs better than GDD for 45 times and than GDF for
40 times. Also, GDF performs better than GDD for 35 times.
Hence, GRDF performs best compared to the other two guid-
ing strategies.

C. ROBUSTNESS ANALYSIS OF SUPPLIERS’ DECISION
PARAMETERS FOR THE PROPOSED MECHANISM
To illustrate the robustness of suppliers’ decision parameters
α, λ1, λ2, δ1 and δ2 for the proposedmechanism, 50 randomly
generated examples are used to conduct the simulation anal-
ysis. Given wc = 0.7, wd = 0.3, α ∈ {0.9, 0.8, 0.7}, λ1 ∈
{0.5, 0.3, 0.7}, λ2 ∈ {0.5, 0.7, 0.3}, δ1 ∈ {0.5, 0.3, 0.7}
and δ2 ∈ {0.5, 0.7, 0.3}, we would compute the aver-
age deviation ratio for each guiding strategy. In this case,
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λ1 = λ2 = 0.5 means that suppliers determine the bid
price randomly; λ1 = 0.7, λ2 = 0.3 means that suppliers
determine the bid price abnormally; δ1 = δ2 = 0.5 means
that suppliers determine the delivery time randomly; δ1 =
0.7, δ2 = 0.3 means that suppliers determine the delivery
time abnormally. The average deviation ratio between the
final transaction value of the each strategy and the optimal
value of the centralized model is shown in Table 1.

TABLE 1. The average deviation ratio as supplier’s decision parameters
vary.

From Table 1, we see that the coefficient that describes
the decreasing intensity of suppliers’ bid prices, i.e., α, has
a significant impact on the guiding strategies. Given other
parameters being equal, the average deviation ratio between
the final transaction value of each strategy and the optimal
value of the centralized model decreases as α decreases. The
decrease of α indicates the intensified competition across
suppliers, which could benefit the buyer. In contrast, the prob-
abilities that suppliers’ bid price decreases, i.e., λ1, λ2, have
no significant impact on the guiding strategies. Yet, given
other things being equal, if suppliers determine the delivery
time abnormally or randomly, the buyer will get a worse
outcome compared to the case that suppliers determine the
delivery time normally.More importantly, we find that GRDF
performs the best compared to the other two and GDF is
better than GDD under different combinations of parameter
values. This analysis implies that the guiding strategies are
robust to suppliers’ decision parameters. Hence, the iterative
MARA mechanism embedding negotiation could be a useful
procurement tool for the buyer.

D. THE IMPACT OF THE BUYER’S WEIGHT PARAMETERS
To illustrate the impact of the buyer’s weight parameters wc
and wd , the comparison between the final transaction value
based on each guiding strategy and the optimal value of the
centralized decision model, the comparison of the average
deviation ratio and the statistical analysis are discussed below.
We set α = 0.9, λ1 = 0.3, λ2 = 0.7, δ1 = 0.3, δ2 = 0.7 for
further analysis.

TABLE 2. The average deviation ratio as the weight parameters vary.

1) COMPARISON OF THE FINAL TRANSACTION VALUE OF
DIFFERENT STRATEGIES
For 50 randomly generated examples, the final transaction
values based on each guiding strategy are calculated under
different weight parameters. Given wc = 0.7 and wd = 0.3,
the procurement cost outweighs the delivery time for the
buyer. For wc = 0.5 and wd = 0.5, the procurement cost
and the delivery time are equally important for the buyer.
When wc = 0.3 and wd = 0.7, the procurement cost is less
important than the delivery time for the buyer. Given such
parameter values, the results are illustrated in Figure 7.

From Figure 7, we see that GRDF performs the best if
the weight of procurement cost is higher than the weight
of delivery time (wc = 0.7 and wd = 0.3). In contrast,
GDF is the best option if the weight of procurement cost is
lower than or equal to the weight of delivery time (wc = 0.3
and wd = 0.7, or wc = 0.5 and wd = 0.5). This is
because on one hand, GRDF has a larger searching space
for the delivery time than GDF, and the suppliers with a
higher delivery time and lower procurement cost are more
likely to be selected. Thus, if the weight of procurement
cost is higher than the weight of delivery time, GRDF would
be better than GDF. However, if the weight of procurement
cost is lower than or equal to the weight of delivery time,
the impact of the deviation of delivery time becomes more
important than that of procurement cost, thus suppliers with
a lower delivery time and higher procurement cost are more
likely to be selected. In this case, GDF could be better than
GRDF. In addition, from Section VI-Awe see that theMARA
process stops faster under GRDF compared to GDF and
GDD, which means that the convergence rate of GRDF is
faster than the other two. Since GRDF has a larger searching
space such that theMARAwould stop with fewer negotiation
rounds, it is possible that the deep search of GRDF is not
enough such that only local minimum could be found when
the weight of procurement cost is lower than or equal to
the weight of delivery time. In this case, GDF could be
better.

2) COMPARISON ANALYSIS OF THE AVERAGE DEVIATION
RATIO FOR DIFFERENT STRATEGIES
For 50 randomly generated examples, the average deviation
ratio between the final transaction value based on each guid-
ing strategy and the optimal value of the centralized decision
model is calculated under different weight parameters. The
results are presented in Table 2.

From Table 2, we find that GRDF is better than the other
two guiding strategies if the weight of procurement cost is
higher than that of the delivery time, and GDF is better than
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FIGURE 7. The comparison of the final transaction value under different weights.

TABLE 3. The test results for different strategies with Statcrunch.

the other two guiding strategies if the weight of procurement
cost is lower than or equal to the weight of delivery time.

3) SIGNIFICANCE OF DIFFERENT STRATEGIES
To further investigate the performance of the proposed strate-
gies (i.e., GDD, GDF and GRDF) under different weights
assigned by the buyer, significance tests are conducted based
on 50 randomly generated examples. Let µ1, µ2 and µ3
denote the mean of the transaction value using GDD, GDF,
and GRDF, respectively. Let µi − µj denote the difference
between the two means, where i, j ∈ {1, 2, 3} and i 6= j. H0
is the null hypothesis. i.e., there is no difference between the
two strategies. HA is the alternative hypothesis. We assume
that the significance level are at least 0.05, i.e., if p-value is
less than 0.05, then rejectH0; otherwise, acceptH0. Using the
Statcrunch solver for statistical analysis, we could derive the
results of t-test as shown in Table 3.

From Table 3, we see that when wc = 0.7,wd = 0.3,
i.e., the buyer places a higher weight on the procurement cost,
GDF is better than GDD, and GRDF is better than the other
two. When wc = 0.5,wd = 0.5, i.e., the buyer places equal
weights on the procurement cost and delivery time, GDD is
better thanGRDF, andGDF is better than the other two.When
wc = 0.3,wd = 0.7, i.e., the buyer places a higher weight on

the delivery time, both GDD and GDF perform better than
GRDF, and there is no significant difference between GDD
and GDF. Therefore, we conclude that GRDF performs best
when the weight of procurement cost is higher; otherwise,
GDF is the best option for the buyer.

VII. CONCLUSION
For practical procurement applications, the buyer views
MARA as a pricing discovery tool to solicit bids from mul-
tiple suppliers and could generally adopt it to purchase dif-
ferent kinds of goods or services. In this paper, we consider a
procurement scenario in which the manufacturer/buyer pur-
chases multiple identical components/goods and cares about
the procurement cost and delivery time. Capacity-constrained
suppliers are assumed to have discrete cost structures and
private bidding preferences. Based on the theory of decision
making, a sealed-bid iterativeMARAmechanism embedding
negotiations under a bi-level distributed decision-making
framework is proposed. The upper level model describes
the buyer’s decision of allocating the supply quantity to
potential suppliers and three guiding strategies to help sup-
pliers determine the delivery time. The lower level model
describes each supplier’s concession strategy to determine the
bid price and delivery time. Numerical experiments illustrate
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TABLE 4. Suppliers’ cost information.

the effectiveness and applicability of the proposed mecha-
nism by comparing it with the centralized model. In par-
ticular, if the procurement cost is more important than the
delivery time for the buyer, then the guiding strategy ran-
domly based on the deviation of objective function value
performs better than the other two; otherwise, the guiding
strategy based on the deviation of objective function value
is the buyer’s best option. We also find that the proposed
mechanism is robust to the variance of suppliers’ decision
parameters.

It is interesting to further investigate some extensions
of this study. First, the buyer may need to consider more
attributes like quality, supplier reputation and warranty time
in practice. In this case, our work provides a general frame-
work for designing the more complicated MARA mecha-
nism. Second, the behavior of the decision maker can be
involved. For example, we may consider that the suppliers are
risk averse or have fairness concerns. However, simulating
the bid decisions of suppliers becomes more complex in the
bounded rationality scenario.

APPENDIX
A. SUPPLIERS’ COST INFORMATION
Let S denote suppliers, DT denote delivery time, TF denote
transaction fee, MSQ denote maximum supply quantity, and
Si denote supplier i, i = 1, · · · , 10, then the cost information
of each supplier is presented in Table 4.

TABLE 5. Parameters used to generate random examples.

B. PARAMETERS USED TO GENERATE RANDOM
EXAMPLES
The parameters adopted to generate random cost information
for potential suppliers are presented in Table 5.
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