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ABSTRACT With the rapid development of intelligent health sensing in the Internet of Things (IoT), vital
sign monitoring (e.g., respiration) and abnormal respiration detection have attracted increasing attention.
Considering the challenging and the cost of collecting labeled training data from patients with breathing
related diseases, we develop the AutoTag system, an unsupervised recurrent variational autoencoder-based
method for respiration rate estimation and abnormal breathing detection with off-the-shelf RFID tags.
Moreover, for real-time breath monitoring, a novel method is proposed to cancel the distortion on measured
phase values caused by channel hopping for FCC-complaint RFID systems. The efficacy of the proposed
system is demonstrated by the extensive experiments conducted in two indoor environments, while the impact
of various design and environmental factors is also evaluated.

INDEX TERMS Apnea, deep learning, radio-frequency identification (RFID), recurrent variational autoen-
coder, respiration monitoring.

I. INTRODUCTION
The population is aging in many parts of the worlds.
Consequently, smart healthcare has attracted increasing con-
cerns [1]–[4]. Rather than going to hospital after getting sick,
people are intend to early detect and prevent diseases by
monitoring their vital sings on daily basis. For example, One
of the breathing disorders is obstructive sleep apnea, which
can imply serious health problems in human body includ-
ing high blood pressure, heart disease, and sudden infant
death syndrome (SIDS) for sleeping infants [5]. However,
in traditional healthcare systems, vital signs are measured by
dedicated equipment like capnography [6], which is not con-
venient for all-day monitoring, especially when the patient
is sleeping. Moreover, the breathing abnormality diagnosis
may consume considerable efforts and experience frommedi-
cal institution. Therefore, autonomous, low-cost, unobtrusive
vital sign monitoring methods that can detect abnormality are
desired for IoT based smart healthcare systems, which can
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benefit many people for monitoring health conditions in their
daily life.

Considering the mobility and flexibility of RF devices,
wireless signals are widely used on smart healthcare sys-
tems to monitor human vital signs. Since the movement of
human chest and heart can slightly affect the propagation
of RF signals, the signal of breathing and heartbeat can be
reconstructed by analyzing the change in received RF sig-
nals. Based on this basic idea, multiple existing techniques
incorporate a radar for respiration monitoring, including fre-
quency modulated continuous wave (FMCW) radar [7] and
Doppler radar [8], but at a relatively high cost due to the
special hardware. To achieve low cost RF system,WiFi based
techniques are developed for heath sensing with commodity
WiFi devices. Rather than directly analyzing received signals
from radar, WiFi based techniques leverage either Received
Signal Strength (RSS) [9] or Channel State Information (CSI)
[10]–[13] collected from the device driver. Although theWiFi
techniques are low-cost and flexible, the systems are sensitive
to the noise caused by surrounding environment, such as
moving objects or persons nearby. The accuracy of such
systems is relatively low in unstable environments.
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The low-cost and near-field features of passive RFID tags
have triggered great interest on apply them for health sens-
ing. Some RFID based systems are proposed to achieve low
cost as well as reducing the influence of unstable surround-
ings. Multiple RFID based techniques have been developed
for object tracking [14], orientation estimation [15], drones
[16]–[18], and especially, for respiration monitoring [19].
Such existing works mainly make use of the RFID phase
information collected from the RFID reader on different
channels. One such typical techniques for smart healthcare
is called TagBreathe, which monitors the respiration signal
of a patient by grouping the RFID responses collected from
the same channel and using a estimated displacement in
each channel [19]. This method may not be well suited for
operation with Ultra High Frequency (UHF) RFID devices
in the US, which all adopt frequency hopping over 50 chan-
nels, 200 ms per channel, according to FCC requirements.
When the reader and tag hop among 50 channels, it will
take 10 seconds for them to return to the same channel.
To collect a sufficient amount of readings from the same
channel, the delay will be considerable, making it hard for
real-time detection of abnormality (e.g., apnea).

To address this issue, we present the AutoTag system,
an unsupervised recurrent variational autoencoder method for
respiration rate estimation and abnormal breathing detection
with off-the-shelf RFID Tags. To mitigate the effect caused
by channel hopping, we propose a novel technique to map the
RFID phase values collected frommultiple different channels
to a single reference channel. Since FCC requires the RFID
system to hop to a different channel every 200 ms, a typical
RFID based sensing system can hardly be applied for real-
time monitoring of patients’ vital signs. Rather than offline
calibration employed in Tagyro [14], our method can enable
real-time phase calibration, which is amenable to dynamic
environments. Furthermore, compared with the method used
in TagBreathe, our method incurs much lower delay, because
grouping data for all channels is not needed with our
technique.

Furthermore, we develop an unsupervised deep learning
approach for apnea detection, which can autonomously detect
abnormality in human respiration. Recently, a recurrent vari-
ational autoencoder model has been successfully applied to
sequence modeling [20] and human motion synthesis [21].
Inspired by these works, we develop an enhanced recur-
rent variational autoencoder model for detection of breathing
abnormality, such as apnea. With the proposed approach,
abnormality can be detected by evaluating how similar
the sampled breathing signal and reconstructed signal using
the deep learning network are. Our method is superior to the
traditional energy-threshold based approach, since the testing
environment may not be absolutely stationary. Our proposed
method can easily distinguish non-periodic signals from nor-
mal periodic signal by learning the features of normal breath-
ing signals, while the energy based method only consider
apnea as a relative weak signal compared with normal cases.
Since the proposed scheme is an unsupervised learning, it has

the desirable advantage of not requiring labeled medical data,
which is usually costly and time-consuming to obtain.

Specifically, we present the AutoTag system, a recurrent
variational Autoencoder for respiration rate estimation and
unsupervised detection of apnea with commercial passive
UHF RFID Tags. The AutoTag system composes of three
main components, including (i) the signal extraction module,
(ii) the calibration module, and (iii) the breathing monitoring
module. The phase data is firstly collected from a commodity
RFID reader by the signal extraction module. The calibration
module is mainly used for calibration of the sampled breath-
ing data, while the respiration monitoring module is designed
for estimating the patient’s respiration rate and detecting
abnormalities such as apnea. We prototype the AutoTag sys-
tem using a platform of commercial RFID tags and reader,
and conduct extensive experiments in two different environ-
ments with four volunteers.We observe superior performance
achieved by the proposed AutoTag system in these experi-
ments. The impact of various design and environment factors
are also tested in corresponding experiments.

We summarize the three main contributions of this work as
follows.
• To our best knowledge, the AuTotag system is the
first apnea detection systems incorporating an enhanced
recurrent variational autoencoder model. The proposed
scheme is an unsupervised learning, with the desirable
advantage of not requiring costly labeled medical data.

• We also propose a novel technique to address the fre-
quency hopping offset, which is a real-time calibration.
The proposed scheme is simple but effective in miti-
gating the frequency hoping offset, thus enabling many
real-time sensing applications for FCC-compliant RFID
readers and tags.

• We design and prototype the AutoTag system, which is
composed with (i) signal extraction, (ii) data calibration,
and (iii) respiration monitoring modules, and evaluate
the system in two different representative healthcare
environments. We present our experimental results that
validate the efficacy of the proposed AutoTag system.

The mainder of this paper is organized as follows. The
related work is reviewed in Section II, and preliminaries of
RFID based sensing is discussed in Section III. The Auto-
Tag system design is presented in detail and analyzed in
Section IV. The experimental performance evaluation of the
proposed system is provided in Section V. We conclude this
paper in Section VI.

II. RELATED RESEARCH
The AutoTag system is mostly related to RF signal based vital
sign monitoring systems and RFID based sensing. We briefly
introduce these two classes of related work in this section.

Nowadays, many RF based systems have been proposed
to monitor vital signals of human, which are developed on
different types of platforms, including Radar systems, WiFi
systems, and RFID based systems. The Radar technique is a
straightforwardway to identify the fluctuation of human chest
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caused by respiration, because Radar can directly monitor the
distance variation between the human chest and the device
antenna. One of the representative works in this category
leverages an FMCW radar to monitor respiration rate and
heart rate for multiple users simultaneously [7]. Furthermore,
other Radar based systems have also been proposed to mea-
sure human respiration, including Doppler radar [8] and ultra
wideband (UWB) Radar [22]. These radar based systems can
accurately detect vital signs, and the influence caused by
surroundings is limited. However, since the special hardware
is essential to such systems, the cost of such systems are
usually high, hampering their wide deployment such as in
homes.

To achieve low cost and ease of deployment for vital
sign monitoring, WiFi based techniques have been utilized
to measure both human breathing rate and heart rate. The
human respiration and heartbeat can be extracted by ana-
lyzing variations in WiFi channels, for example, the RSS as
in Ubibreathe [9]. However, the Ubibreathe system requires
the patient to stand between the transmitter and the receiver,
while some other CSI based techniques have no such strict
requirements. Different from RSS based systems, CSI can
provide fine-grained channel inforamtion, and can achieve
higher resolution and sensitivity than RSS for monitoring
human vital signs. One of the CSI based techniques can
leverage amplitude of CSI to monitor breathing rate and heart
rate when the patient is sleeping [10]. In addition to the
amplitude, the CSI phase information can also carry human
respiration signal [11]. Furthermore, the TensorBeat system
can estimate respiration rates for multiple persons crowed in
a small space [12], by incorporating tensor decomposition
on the collected CSI phase data. Although WiFi based tech-
niques can measure human vital signs with off-the-shelf WiFi
devices, the accuracy is easily affected by the surrounding
environment, because of broadcasting nature and long range
of WiFi transmissions. To address this issue, some RFID
based systems like TagBreathe are developed to track human
respiration by analyzing the RFID response data collected at
an RFID reader [19]. Since the passive UHF RFID tags are
low-cost and are easily attachable to human body, the RFID
system can monitor human vital signs at a low cost and is
resilient to interference from the unstable environment.

Apart from RFID based vital sign monitoring systems,
various sensing systems are proposed by leveraging the data
extracted from the low level protocol in RFID systems, such
as RSS and phase values, which have been utilized for many
applications, e.g., indoor localization. For RSS based meth-
ods, one of the representative techniques estimates the tag
position by comparing the RSS from the target tag with
reference tags [23]. Moreover, another technique can obtain
the refined tag position by utilizing the characteristics of the
coupling effect on RSS [24]. However, due to the low reso-
lution of RSS, developing an RSS based localization scheme
with high accuracy is challenging. Thus, many phase based
localization techniques are proposed. One of the typical phase
based methods has been developed for estimating distance

with direction of arrival (DOA) [25], but the result has a rela-
tively large ambiguity because of the periodicity of measured
phase. To remove the ambiguity, some other techniques are
proposed to obtain the more accurate position than the typi-
cal method by leveraging the aperture radar technique [26]
and hologram technique [14], [27], [28]. Besides indoor
localization, RFID tags are also widely used for other sens-
ing techniques such as remote control of drones [16]–[18],
object orientation estimation [15], remote temperature
measurement [29], and gesture recognition [30].

III. PRELIMINARIES OF RFID SNSING
According to FCC regulations, UHF RFID readers should
use channel hopping to avoid co-channel interference. The
spectrum from 902.5 MHz to 927.5 MHz is partitioned into
50 non-overlapping channels, and the reader remains on each
channel for 200 ms. Usually such frequency hopping intro-
duces an additional phase offset in the RFID response signal,
causing large errors in RFID based sensing.

According to the manual of RFID reader, e.g., [31],
the phase φ of the received RFID response signal can be
expressed as

φ(fi, d) = mod
(
2π fid
c
+ δT + δR + δTag, 2π

)
, (1)

where d is the total distance from the reader’s antenna to the
tag and then back to the reader antenna, fi is the frequency
of channel i, c is a constant representing the speed of light,
and δT , δR, and δTag are the phase offsets caused by the
transmitter circuit, the receiver circuit, and the tag’s reflection
characteristics, respectively.

For Impinj R420, a commodity RFID reader, the phase
offset between two adjacent channels that it hops to is not
a constant, even though the distance d rmains the same,
as found in our experimental studies. Since the three offsets
in (1) are irrelevant to the distance d , we can lump the three
offsets into a single variable δi for each channel i. The phase
φ(fi, d) for channel fi under round-trip distance d can thus be
expressed as

φ(fi, d) = mod
(
2π fid
c
+ δi, 2π

)
. (2)

Themain challenge for extracting the breathing signal from
the RFID phase measurements is how to mitigate the discon-
tinuity in phase data, which is caused by channel hopping.
One way to eliminate the channel hopping influence, as pro-
posed for the TagBreathe system [19], is to group the signals
collected from the same channel and to use the estimated
displacement in each channel to track the breathing signal.
As discussed earlier, this methodmay not work well for RFID
systems in the US, since the reader must hop among 50 dif-
ferent frequencies, following the FCC requirement. Fig. 1
plots the change of channel index in a period of 30 seconds.
We can see that it takes about 10 seconds for the antenna to
hop through all the 50 channels. Thus, the TagBreathemethod
will take a very long time to collect and group multiple phase
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FIGURE 1. The channel indexes used by an FCC-compliant RFID reader
during a period of 30 seconds.

readings on the same channel, leading to extremely long delay
in respiration measurement with FCC-compliant readers.

To address the extremely long delay caused by channel
hopping among 50 different frequencies, the Tagyro system
calibrates phase values collected from all channels based on
one reference channel [15]. Specifically, the Tagyro tech-
nique first measures the phase offset δi for all the 50 channels.
Then, the phase offset introduced by channel hopping can be
removed by subtracting the phase offset δi in each channel.
This method is suitable for a static environment; but it may
not be effective for tracking human breathing signal and
apnea, where the tags are mounted on the human body and
moves as the patient breaths. This is because the wireless
channel will change if the patient moves (even slightly).
The movement causes an additional offset in δi, so that the
estimated phase offset δ̂i does not match the real-time δi after
the small movement.

FIGURE 2. Calibrated phase obtained using the Tagyro method [15].

Fig. 2 plots the calibrated phase data obtained with the
Tagyro method. It can be observed that the breathing signal
can be detected in the beginning (i.e., the first 15 seconds),
because the initial phase offset is correct. After the first
15 seconds, the breathing signal cannot be detected, because
the channel hopping effect cannot be perfectly mitigated.

To continuously eliminate the frequency hopping effect,
we propose a new method in the proposed AutoTag system,
to update and remove the phase offset δi in real-time for
breathing and apnea detection.

IV. DESIGN AND ANALYSIS OF THE AUTOTAG SYSTEM
A. DESIGN OF THE AUTOTAG SYSTEM
The AutoTag system aims to measure human respiration and
detect breathing abnormalities, such as apnea, with multi-
ple RFID tags attached to the patient’s body (i.e., clothes).
As given in (1), the collected phase information is indicative
of the round-trip distance d between the reader antenna and
the corresponding tag. When the patient breaths, the distance
d changes slightly with the chest movements. Thus, by ana-
lyzing the phase variations collected from the tags attached
to the human body, we can obtain the periodic signals caused
by chest movements. However, for accurately measuring the
human respiration rate and precisely detecting apnea, several
challenges should be addressed, such as mitigating the chan-
nel hopping effect, the sensitivity divergence for different
tags, and dealing with the interference from surroundings.
To address these issues, we incorporate three modules in
the AutoTag system, including (i) signal extraction, (ii) data
calibration, and (iii) respiration monitoring, as illustrated
in Fig. 3.

FIGURE 3. The AutoTag system architecture, which includes signal
extraction, data calibration, and respiration monitoring.

In the signal extraction module, we extract the phase data
from the received responses from three tags attached to
the human body, using a directional antenna at the reader.
In the following data calibration module, we firstly remove
the influence caused by channel hopping of the RFID reader.
Then we detect whether the monitored patient is moving
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or not based on a threshold based method, i.e., movement
detection. After that, we remove the DC component from the
selected signal to eliminate the impact of small movements of
the patient. Then, tag selection is implemented to choose the
tag with the strongest signal strength. Finally, we apply down-
sampling and filtering to obtain the final respiration signal.
In the respiration monitoring module, we adopt a recurrent
variational autoencoder for detection of abnormalities such
as apnea. Our approach is an unsupervised learning, which
has the great advantage of not requiring labeled medical data,
which is extremely costly to collect. The respiration rate can
also be estimated with a peak detection method when the
patient is breathing normally. We will introduce the detailed
design of each module in the remainder of this section.

B. SIGNAL EXTRACTION
As shown in Fig. 3, the first module is used for extracting
low-level phase readings from received tag responses. The
movements of the patient’s chest and abdomen induced by
breathing, cause the tag-reader antenna distance to vary with
human respiration. The time-varying distance translates to
the time-varying phase in the tag response signal, which is
indicative of the respiration signal. To increase the system’s
robustness, three passive UHF RFID tags are attached to the
upper body of the patient. The RFID reader uses a directional
antenna to transmit RF interrogating signals to the tags and
to read low-level data from the backscattered signals from
the tags, which includes time stamp, phase, received signal
strength indicator (RSSI), and Doppler shift.

For most RFID systems, the collected RSSI data usually
has a very low resolution, and the signal-to-noise ratio (SNR)
of Doppler shift is usually low. Thus these two types of
information are not very helpful for detecting the respiration
signal. In AutoTag, we focus on the collected phase informa-
tion from RFID responses for respiration rate estimation and
apnea detection.

C. DATA CALIBRATION
The captured phase information cannot be directly used for
detecting the respiration signal. In Fig. 4, we plot the uncal-
ibrated phase data received from one of the reader antennas
for a duration of 28 s. It can be observed that when the reader
hops around various channels (200 ms on each channel),
the measured phase data exhibits a wide range of variations.
Furthermore, there is a large offset incurred in the phase
data when the frequency hopping happens. It is thus highly
challenging to extract the weak respiration signal from such
uncalibrated data. The raw phase data should be calibrated
first to facility the extraction of the respiration signal.

1) MITIGATING THE FREQUENCY HOPPING OFFSET
We unwrap the captured phase signal to remove the offset
introduced by the modulo operation in (2). With the modulo
operation, a slight change in the real phase may lead to a
large jump in the received phase signal. For instance, a small
change of the real phase from 0.1π to −0.1π will cause

FIGURE 4. Uncalibrated phase data collected from a tag for a duration
of 28 s.

the received phase to change from 0.1π to 1.9π . Since the
sampling rate of the reader is usually higher than 100 Hz for
each tag in our system, the interarrival time of phase samples
is usually smaller than 0.01 s. Assuming that the phase value
change of two back-to-back readings is smaller than π under
such a small interarrival time, ±2π can be added to recover
the original phase valuewhen the change exceedsπ . Note that
frequency hopping can also cause big variations between two
back-to-back phase samples, and unwrapping will only be
used for consecutive phase samples collected from the same
channel. After the unwrapping operation, the phase samples
from each channel is smoothed.

FIGURE 5. Illustration of the proposed frequency hopping offset
mitigation scheme.

The second step is to splice the smoothed phase signals
from all the 50 channels into a single phase signal, by miti-
gating the frequency hopping offsets. The key is to translate
the phase signal from the next channel that the reader hops to,
to a transformed phase signal using the previous channel as a
reference with real-time calibration. As illustrated in Fig. 5,
the phase signal from the previous channel, e.g., channel i,
can be written as

φ(fi, d) = mod
(
2π fid
c
+ δi, 2π

)
. (3)
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Then the reader hops from channel i to channel (i + 1).
Similarly, for the next channel that the reader hops to, we have

φ(fi+1, d) = mod
(
2π fi+1d

c
+ δi+1, 2π

)
. (4)

For simplifying notation, ignore the modulo operation for
now. We then multiply the channel (i + 1) phase signal by
a factor of (fi/fi+1), to have

φ̂(fi+1, d) = φ(fi+1, d)×
fi
fi+1

=
2π fid
c
+ δi+1 ×

fi
fi+1

.
=

2π fid
c
+ δi +1δi, i = 1, 2, ..., 49. (5)

Therefore, we have

φ̂(fi+1, d) = φ(fi, d)+1δi, i = 1, 2, ..., 49, (6)

where

1δi
.
= δi+1 ×

fi
fi+1
− δi, (7)

represents the transformed phase offset, as illustrated
in Fig. 5, which can be easily estimated as follows.

Note that we already know the frequency for each chan-
nel. So we first multiply the phase φ(fi+1, d) collected from
channel (i + 1) with a ratio fi/fi+1. The next value we need
to calibrate is 1δi as in (7). In AutoTag, only three tags are
attached to the human body. The overall sampling frequency
of the reader is 600 Hz, and the sampling rate for each tag is
more than 100 Hz. It takes only less than 1 ms for the reader
to hop from one channel to another. Due to the high sampling
rate and the small channel hopping time, it is reasonable to
assume that the antenna-to-tag distance and the surrounding
environment remain the same during channel hopping. Under
this assumption, the difference between the phase data before
channel hopping and the transformed phase data after channel
hoping, is all caused by 1δi along with thermal noise.

To mitigate the influence of thermal noise, we apply a
Hampel filter to the signal read from each channel.We choose
a sliding window of 20 samples and a threshold of 0.01 for
the Hampel filter. Next, we compute the difference between
(i) the average of the last 6 phase readings in the previous
channel i (denoted as φ(fi, d, k)), and (ii) the average of the
first 6 transformed phase readings in the present channel
(i + 1) (denoted as φ̂(fi+1, d, k)), as an estimate for the
transformed phase offset 1δi. As shown in Fig. 5, and also
from (6), we have

1̂δi ≈
1
6

 Ni∑
k=Ni−5

φ(fi, d, k)−
5∑

k=0

φ̂(fi+1, d, k)

, (8)

where Ni is the total number of phase readings collected from
channel i.

After compensating for the frequency hopping offset, the
phase samples on the present channel (i+ 1) can be approxi-
mated as in (6). Fig. 6 plots the calibrated phase samples after

FIGURE 6. The resulting phase data after removing the frequency hopping
offset.

removing the frequency hopping offset. It can be seen that
after calibration, the collected phase data shows an visible
periodic respiration signal, which is completely missing in
the uncalibrated phase data in Fig. 4 (for the same period
of 28 seconds).

2) MOVEMENT DETECTION
After mitigating the frequency hopping offset, the next step
is to detect whether the patient is moving. Note that the
breathing signal is very weak comparing to other types of
body movement. Therefore, we should only use the signals
collected while patient if in a stationary state, to avoid the
interference introduced by large movements of human body.

FIGURE 7. A sliding window on phase readings from the tags.

Movement detection is accomplished with a threshold
basedmethod. In particular, a sliding window is applied to the
collected phase data, as showed in Fig. 7. For each window,
we calculate the total mean absolute deviation of the phase
samples from all tags, denoted by T , as

T =
1
|W |

N∑
j=1

∑
k∈W

|φj(k)− E(φj(k))|, (9)

where W represents the set of all the phase readings in the
sliding window, | · | is the cardinality, N is the number of
tags, and φj(k) is the kth phase sample obtained from tag j.
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If the patient is not stationary, the phase values will exhibit
big changes (due to the large changes in d caused by body
movements). Thus, by setting a threshold on T , we can detect
considerable movements of the patient. In AutoTag, we use a
threshold value of 0.9 and awindow size larger than 6 seconds
for movement detection, based on our extensive experiments
with various body movements.

3) DC REMOVAL
Although the frequency hopping offset can be effective miti-
gated using a reference channel, the initial offset on the refer-
ence channel is still a random value that introduces a random
DC component in the phase data. To remove the random DC
component, as well as interference from other movements
from the environment, we pass the phase signal through a
detrending operation. Specifically, another Hampel filter is
used, whose window size is 2000 and threshold is 0.001,
to obtain an estimate of the DC component (i.e., the trend).
Finally, the calibrated phase signal is obtained by subtracting
the trend from the filtered signal. The calibrated signal is
plotted in Fig. 8 for the same period of 28 s. It can be seen that
the calibrated signal is now centered at zero, like a periodic
AC signal.

FIGURE 8. The calibrated phase signal after removing the DC component
with a Hampel filter.

4) TAG SELECTION
When analyzing the experimental results, we find that each
tag has a different sensitivity to the human breathing signal
from other tags, which depends on the slightly different
tag parameters and the different propagation environment
(e.g., distance or angle) of each tag. In particular, the angle
between the tag and the reader antenna is a factor that causes
the difference in tag’s sensitivity. To obtain the most sensitive
signal, we measure the signal strength using the average
absolute deviation within a certain window size of 6 seconds
(see (9)). The tag with the largest signal strength will be
chosen for the remaining processing steps.

5) DOWNSAMPLING AND FILTERING
Due to the high sampling frequency, i.e., about 600 Hz with
one reader antenna, the signal need to be downsampled to
reduce the computational complexity. In AutoTag, the signal

is downsampled with a factor of 10 before feeding to the
respiration monitoring module. In addition, there are still
some false peaks introduced by thermal noises, which affect
the accuracy of peak detection for respiration rate estimation.
Note that the normal human respiration rate is usually much
lower than 0.5 Hz. Thus, we apply a low-pass filter and
choose a cutoff frequency of 0.5 Hz to the downsampled
signal, in order to remove the remaining high frequency noise.
In Fig. 9, we plot the downsample and filtered phase signal,
which is quite smooth now. It is then used as input to the next
module for the following apnea detection and respiration rate
estimation tasks.

FIGURE 9. The finally recovered respiration signal.

D. APNEA DETECTION AND RESPIRATION
RATE ESTIMATION
1) RECURRENT VARIATIONAL AUTOENCODER
FOR APNEA DETECTION
For the purpose of accurate respiration detection, we intro-
duce a recognition model as an approximation to the
intractable true posterior, where the parameters are not com-
puted from some closed-form expectation, but are learned
from the calibrated data. To detect apnea, the main idea
of AutoTag is to incorporate a variational autoencoder to
compute the difference between the sampled signal and the
reconstructed signal within a timewindow. Note that this is an
unsupervised learning [32], [33], with the desirable advantage
of not requiring labeled medical data that is hard or costly
to obtain. If the computed difference is smaller than a given
threshold, the sampled signal is regarded as a regular breath-
ing signal, from which the respiration rate can be estimated;
otherwise, the signal sequence is regarded to be abnormal,
and apnea is detected. Since the energy based threshold has
been applied for movement detection in the earlier stage
(see Section IV-C2), small breathing signals can be detected
now at this stage.

The proposed recurrent variational autoencoder for unsu-
pervised respiration abnormality detection is illustrated
in Fig. 10.We first apply the variational autoencoder model to
obtain a reconstructed version of the input signal. This model
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FIGURE 10. Architecture of the proposed recurrent variational
autoencoder for unsupervised apnea detection.

is to maximize the marginal likelihood given below.

pθ (x) =
∫
pθ (x|z)p(z)dz, (10)

where x, z, and θ are the observed variables, the latent random
variables, and the set of parameters, respectively; p(z) is the
prior over the latent random variables z; and pθ (x|z) is the
conditional probability, representing an observation model
under the parameter set. Usually pθ (x) is intractable due
to the integral operation. Although the Monte Carlo sam-
pling method can be used to solve the problem, it usually
incurs a considerable computational cost even for small-
sized datasets. The variational autoencoder model utilizes the
variational approximation qφ(z|x) instead of the true posterior
pθ (z|x). Specifically, the variational autoencoder model has
qφ(z|x) with parameter set φ as encoder and pθ (x|z) with
parameter set θ as decoder. According to Jensen’s inequality,
the variational autoencoder model can achieve the optimal
values for sets φ and θ . This is achieved by maximizing a
lower bound on the log-likelihood, given by [32]

maxL = −DKL(qφ(z|x)||p(z))+ Ez∈qφ (z|x) [pθ (x|z)] , (11)

where DKL represents the KL divergence. In (11),
−DKL(qφ(z|x)||p(z)) represents the regularization over the
latent variables z, whileEz∈qφ (z|x) [pθ (x|z)] is the autoencoder.
The latent variables z are sampled from qφ(z|x), and the
reconstructed signal x̂ can be sampled from pθ (x|z).

To reduce the training overhead, the variational autoen-
coder model utilizes the reparametrization technique. With
this technique, the latent vector z is computed from the mean
vector µφ(x) and the variance vector σ 2

φ (x), as

z = µφ(x)+ σφ(x)� ε, (12)

where ε ∈ N (0, 1) (i.e., a standard Gaussian distribu-
tion), and � represents the element-wise product operation.

The lower bound on the log-likelihood, i.e., L, can then be
approximated as follows.

L ≈
1
2

J∑
j=1

(
1+ log(σ 2

j (x))− µ
2
j (x)− σ

2
j (x)

)

+
1
M

M∑
l=1

log pθ (x|zl), (13)

where M is the number of samples in z, and J is the
cardinality of z.

Next, we consider the data samples within a time window,
to be processed by a long short-term memory (LSTM) net-
work. LSTMbelongs to the class of recurrent neural networks
(RNN) that can effectively handle time series data. It can
also deal with the problem of vanishing gradient in RNNs.
The long-range dependencies in the data can be effectively
captured by LSTM, because the data in a time series can be
stored or deleted by a non-linear gate in each unit. In the
proposed AutoTag system, LSTM is utilized to encode the
respiration signal sequence within a time window. Then its
outputs are used to obtain estimations for the mean vector
µφ(x) and the variance vector σ 2

φ (x) using two linear mod-
ules, respectively. The sampled z is fed to another LSTM net-
work for decoding the estimated mean and variance vectors.
Eventually we obtain a reconstructed respiration signal for
the same time window.

Once the reconstructed respiration signal is obtained,
we propose a KL divergence based method for apnea detec-
tion. Specifically, we first normalize both the original sig-
nal and the reconstructed signal in the same time window,
in order to ensure that both the apnea signal and the res-
piration signal are within the same amplitude range. The
similarity between the original signal and the reconstructed
signal is then calculated in the form of KL divergence. Since
the proposed neural network is well trained by a large amount
of normal breathing signal, the KL divergence between the
input signal and the reconstructed signal is very small when
the signal is sampled during normal breathing. In contrast,
the KL divergence will be very large when the input signal
includes abnormal respiration (apnea), because the network
does not know the features of the abnormalities. Finally,
we collect the values of KL divergence calculated for nor-
mal breathing and apnea, respectively, and a threshold λ is
properly chosen to determine whether the signal in this time
window is from apnea or normal respiration. Specifically,
if the KL divergence is greater than the threshold, apnea is
detected in this time window; otherwise, the signal is from
normal respiration.

The proposed deep learning based approach has two desir-
able features. First, the recurrent variational autoencoder is an
unsupervised learning. Therefore, there is no need to collect
labeled data for regular and abnormal respiration signals,
which could be costly and time consuming. Second, the pro-
posed method can learn the periodic features of respiration
signal in offline training, rather than simply detecting the
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strength of the breathing signal. Therefore, this method is
superior to the energy threshold based method, especially
when the patient moves.

2) PEAK DETECTION FOR BREATHING RATE ESTIMATION
Finally, the peak detection technique [11] is used to estimate
the interval between two neighboring peaks, when a regular
respiration signal is detected. Although most of the noise
coming from the environment have been removed at this
stage, some false peaksmay still exist. False peaks are usually
relatively smaller than the peaks of the respiration signal, but
they still could affect the accuracy of peaks detection.

To mitigate the influence of such false peaks, we execute
the peak detection algorithm with a small sliding window of
data points, instead of on the entire sampled signal sequence.
In AutoTag, a window size of 11 data points are used. Only if
the center data point of the sliding window is the maximum
among all the data points within the window, the center data
point will be identified as a peak. Then the mean value of all
the peak intervals is calculated to approximate the period of
the respiration signal τ . Finally, the respiration rate can be
computed as 60/τ breaths per minute (bpm).

V. PROTOTYPING, EXPERIMENTS, AND DISCUSSIONS
A. PROTOTYPING AND EXPERIMENTAL ENVIRONMENTS
To evaluate the proposed AutoTag system, we adopt Impinj
R420 as the RFID reader to collect phase information from
ALN-9740 tags. To be FCC-compliant, the circular polarized
antenna equipped in our system hops among 50 channels
ranging from 902.5 MHz to 927.5 MHz, and remains on
each channel for 200 ms. The user interface and the signal
processing is implemented with an MSI laptop equipped
with a Nvidia GTX1080 GPU and an Intel(R) Core(TM)
i7-6820HK CPU. A software is also implemented in our sys-
tem to collect data from the reader using the Low-level Reader
Protocol (LLRP), which can extract useful low-level data
from received tag responses, including time stamp, Doppler
shift, RSSI, and phase value.

We carry out extensive experiments that involve four vol-
unteers. The experimental results in two different environ-
ments are presented in this section. The test settings include
a 5.6 m × 7.5 m lab, which is cluttered with tables, chairs,
and computers, and a 2.4 m × 20.0 m empty corridor with
no moving persons in Broun Hall in the Auburn University
Campus. In the lab setting, the multipath effect is obviously
larger than that in the corridor setting. All the volunteers
are tested in three cases: (i) sitting in a chair and breathing
normally, (ii) sitting in the chair and holding breath, and
(iii) moving randomly while breathing normally.

For respiration rate estimation, we obtain the cumulative
distribution function (CDF) of estimation errors for perfor-
mance validation. For apnea detection, the following two
performance metrics are used:
• True Negative (TN) rate: this is the success rate when a
regular respiration signal is successfully detected;

FIGURE 11. Experimental environments for validating the performance of
AutoTag. (i) A cluttered computer laboratory. (ii) An empty corridor.

FIGURE 12. CDFs of estimated breathing rates in the computer lab and
corridor scenarios.

• True Positive (TP) rate: this is the success rate when
apnea is correctly detected.

B. EXPERIMENTAL RESULTS AND DISCUSSIONS
For the normal breathing scenario, we evaluate the accuracy
of respiration rate estimation under the two settings. We also
use the NEULOG Respiration Belt sensor wrapped on the
volunteer’s chest to measure the ground truth. The CDFs of
estimation errors are plotted in Fig. 12 for the lab and corridor
experiments. We find the maximum errors are 0.462 bpm
and 0.326 bpm, while the median errors are 0.105 bpm and
0.093 bpm, for the lab and corridor settings, respectively.
The maximum and median errors in the lab setting are both
larger than the corresponding error in the corridor setting.
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FIGURE 13. Evaluating the effect of the distance between two
neighboring RFID tags.

In addition, more than 50% estimation errors obtained in
the corridor setting are smaller than that obtained in the lab
setting. These indicate that the multipath effect does affect the
accuracy of respiration rate estimation. Furthermore, it can
be seen that the median error in the lab and corridor tests are
0.104 bpm and 0.0925 bpm, respectively. The close median
errors indicate that the effect of multipath is not substantial.
Since a directional antenna is used by the reader, the backscat-
tered tag response in the line-of-sight (LOS) path is the
dominant component. Thus, the respiration rate estimation in
the two settings are both accurate.

We also study the influence of various factors on the esti-
mation precision of our system. Fig. 13 plots the impact of
the distance between two adjacent tags. We test the system
with a tag array attached to the human chest with differ-
ent distances between adjacent tags. The figure shows that
when the distance between two tags is 1 cm, the estimation
error is 0.265 bpm, which is relatively large. This is because
when tags are too close to each other, they will suffer from
stronger mutual coupling effect. The measured phase will be
distorted by mutual coupling, and thus the estimated respi-
ration rate will also be affected. Fortunately, the figure also
reveal that when the tags are more than 2 cm apart, the error
will become smaller than 0.124 bpm, which indicates the
influence of mutual coupling is negligible in these cases.
Therefore, we deployed the tags with a 3 cm tag-interval in
the AutoTag system.

Fig. 14 presents the influence of the number of tags used
in AutoTag. We test the system with an increased number
of tags from 1 to 5, while the tag distance is set to 3 cm.
As can be seen in the figure, the estimation error is higher than
0.307 bpm when only one tag is used.When 3 or more tags
are used, the error becomes smaller than 0.134 bpm. This is
because the sensitivity of the single tag is more susceptible to
the propagation environment, such as different surroundings
and human postures. When multiple tags are used, we select
the most sensitive tag to measure the human respiration,

FIGURE 14. Evaluating the effect of the number of attached RFID tags.

which increases the sensitivity of the system. Based on the
results showed in Fig. 14, we adopt 3 tags on the volunteers
to increase the accuracy of our system.

FIGURE 15. Evaluating the effect of different measuring positions.

We also experiment by placing tags on different parts of
the human body. Fig. 15 shows that, the estimation error is
large when the tags are placed on the arms and neck of the
volunteers, which are 0.637 bpm and 0.304 bpm, respectively.
When the tags are placed on the chest and abdomen, the error
becomes lower than 0.119 bpm. This is because respiration
directly causes the chest and abdomen to move. When the
tags are placed on the neck and arms, the strength of the
movement, and thus the phase signal is not strong enough
for effectively extraction of respiration signal, although the
backscattered signal is also reflected from the chest. In addi-
tion, the arm movements generate a large noise, which also
affect the accuracy of the system. Therefore, all the tags
are attached to the human chest or abdomen in the AutoTag
system.
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FIGURE 16. Evaluating the effect of the distance between the patient
chest and reader antenna.

FIGURE 17. Evaluating the effect of the angle of the directional reader
antenna.

Next, the effective rage of our system is evaluated, and the
results are presented in Fig. 16 and Fig. 17. Fig. 16 presents
the estimation errors at different distances between the patient
and the antenna. We find that the respiration rate error is less
than 0.112 bpm when the distance is shorter than 3.5 m. The
error increases drastically when the distance becomes larger
than 4m. To evaluate the impact of the angle of the directional
antenna, we measure the respiration rate at a fixed distance
with various relative orientation angles between the patient
and the directional antenna: where 0◦ means the antenna
directly faces the patient. As show in Fig. 17, the estimation
error is smaller than 0.127 bpm when the angle is between
−20◦ and 20◦. The error increases to be larger than 0.678 bpm
when the angle is beyond ±60◦. This is because the received
power of the backscattered signal is different at different
radiation angles for the directional antenna. According to the
results presented in Figs. 16 and 17, we conclude that the
distance between the patient and the antenna should be less
than 3 m and the orientation angle of the antenna should be
within ±20◦.

FIGURE 18. True Negative rate and true Positive rate obtained in a stable
setting.

We also study the proposed AutoTag system by compar-
ing with an energy based baseline method [34] under two
different settings. In the first setting, the patient sits quietly
with no other movements than breathing; in the second set-
ting, the patient is allowed to move slightly, such as moving
legs and hands, and twisting neck. Fig. 18 provides the TN
and TP rates obtained with the proposed method and the
baseline method in the stationary setting. When there are no
body movements, the TN rates are both over 94% for the
proposed and baseline schemes. Furthermore, the TP rates
are 88% and 92% for the proposed and baseline schemes,
respectively. These results indicate that both AutoTag and the
energy based baseline method can achieve considerably high
TN and TP rates when the patient does not make slight moves.

FIGURE 19. True negative rate and true positive rate obtained when there
are small body movements.

When the patient moves slightly, however, the situation
becomes quite different. The results under slight body move-
ments are given in Fig. 19. We find the TP rate of the energy
based baseline scheme drops to 56%, but the TP rate of
AutoTag is still as high as 92%. Under the disturbance of
small body movements, the energy of the apnea signal can
be greatly increased. It is therefore challenging to choose
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a suitable threshold for apnea detection in the baseline
scheme. In contrast, AutoTag detects respiration abnormal-
ity by matching the shapes of the original and recon-
structed signals; it does not rely on the signal’s energy level.
Consequently, AutoTag is resilient to the energy disturbance
caused by small bodymovements in this setting. Furthermore,
as shown in Fig. 19, the TN rates achieved by AutoTag and
the baseline scheme are both above 91%, which are only
slightly less than the TN rates achieved in the stationary
setting (although the body movements also distort the shape
of the respiration signal). We conclude that AutoTag system
can accurately detect apnea and normal respiration signals in
the two settings.

VI. CONCLUSIONS
This paper presented the AutoTag system for unsupervised
respiration rate estimation and detection of apnea in real-time
with commodity RFID Tags. The AutoTag system incorpo-
rated a novel technique to effectively address the effect of fre-
quency hopping offset for RFID systems that comply to FCC
regulations, and thus can be used for many RFID applica-
tions with real-time requirements. The proposed system also
incorporated an unsupervised learning, thus has the desirable
advantage of not requiring labeled medical data, making it
low-cost and easy to deploy. The superior performance of the
AutoTag system is demonstrated by extensive experiments in
typical healthcare environments.
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