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ABSTRACT We studied the type of cusps on the caustic in the optical model that the coplanar point
light source irradiates a singular planar curvilinear mirror in our last paper. In this paper, we give a one-
to-one correspondence between the wavefront (orthotomic) and the caustic. According to this one-to-
one correspondence, we can derive the property of one of them from that of the other one. To prove it,
we formulate the involutes of (n, m)-cusp curves and study their singular properties. Furthermore, we give a
duality theorem for evolute-involute pairs. This theorem plays a crucial role in the one-to-one correspondence
mentioned earlier.

INDEX TERMS Optical reflection, optical propagation, optical surface waves, optical imaging, geometry.

I. INTRODUCTION
Recently, optics is getting attention increasingly, especially
the wide application of the dual-comb spectroscopy (see [5]).
Many mathematical theories are used in optics. By selecting
appropriate variables, some optical objects could be con-
verted into simple mathematical formulas, such as caustics
and wavefronts in the optical system: a point light source irra-
diates the planar curvilinear mirror or the refringent sphere
in the same plane (see [2]–[4], [12]). Some problems about
caustics with symmetry could be studied by using the catas-
trophe theory in geometry and the paraxial approximation
(see [11], [13]). The method of differential equations are
usually applied to solve problems about Gaussian beams in
complex optical systems (see [6], [7]). The development of
mathematical theory promotes the research in optics.

In the present paper, what we are most interested in is the
property of caustics in the optical system that a point light
source irradiates a planar curvilinear mirror in the same plane
(see [1], [4]). Caustics in optics are closely related to evo-
lutes in geometry. In the language of differential geometry,
the original curve with respect to the evolute is called an
involute (see [8], [9]). For regular curves, their evolutes and
involutes have been studied comprehensively in the classical
differential geometry. But singular curves are unavoidable
in practice. As the typical singular maps, fronts have been
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studied in [14], [16]. More general, Fukui [10] defined the
multiplicity for smooth curves and studied the asymptotic
behavior of curvature functions. Later we studied curves
which allow (n, m)-cusps in 2-dimensional Euclidean space
and their evolutes in [17]. Among all plane curves with finite
multiplicities, curves which allow (n, m)-cusps are generic.
One typical example of the curve which allows (n, m)-cusps
is the non-planar spherical helix (see [15]).

In [17], we studied which type of cusps could occur on
caustics when the mirror is singular. We convert this prob-
lem to the correspondence between the wavefront and the
caustic. A natural problem we are facing now is that if this
correspondence is a one-to-one correspondence. If this is true,
we can directly derive the focal property of the mirror from
the analysis of its wavefront. There are rich results about
wavefronts in optics and geometry. This is our motivation of
the present paper.

The present paper is arranged as follows. We formu-
late involutes of curves which allow (n, m)-cusps and
study their singular properties in Section 2. In Section 3,
we research deeper geometric information about involutes
of curves which allow (n, m)-cusps. As the main result,
we give the duality theorem for the evolute-involute pairs.
As an application in optics, we show that there is a one-to-
one correspondence between the wavefront and the caustic in
the considering optical system in Section 4.

All maps considered in the present paper are of
class C∞.
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TABLE 1. Type of Inv (γ, t0)(t) at t = 0.

II. INVOLUTES OF CUSP CURVES
In [17], we say that the curve γ : (−ε, ε) → R2 has
an (n, m)-cusp at t = 0 if (γ (n)(0), γ (m)(0)) is a linearly
independent vector pair with the lowest order. The curve γ is
called an (n, m)-cusp curve. The two integers

ind(γ ) = m− n

and

ord(γ ) = n

are called the index and the multiplicity of γ respectively.
The index and the multiplicity are invariants in 2-dimensional
Euclidean space. We endow γ (t) with an orientation which
is the direction as the parameter t increases.
In order to apply the method of moving frames, we intro-

duced two unit orthogonal vectors in [17] as follows:t(t) =
γ ′(t)/tn−1

‖γ ′(t)/tn−1‖
,

n(t) = Jt(t),

where J is the counterclockwise rotation by π
2 onR2.We have

d
dt

(
t(t)
n(t)

)
=

(
0 f (t)
−f (t) 0

)(
t(t)
n(t)

)
.

We say that f (t) is the associate function. According to the
fundamental theorem, we have that the multiplicity and the
associate function determine a cusp curve up to a rigid motion
in R2.

As we all know, the orthogonal trajectories of all the
tangent lines to a curve are involutes of the given curve
in 2-dimensional Euclidean space. But the classical Frenet-
Serret type frame is not well defined for singular curves. It is
comparatively convenient to use the modified Frenet-Serret
type frame to formulate involutes of curves which admit
(n, m)-cusps and to investigate their properties.
Under above notations, we define the involute of γ (t) as

follows:

Inv(γ, t0)(t) = γ (t)−
(∫ t

t0
γ ′(t) · t(t)dt

)
t(t), t0 ∈ R.

When n = 1 and m = 2, this is the same as the classical
definition of involutes. We can see that involutes form a one-
parameter family of parallels depending on the parameter
t0 ∈ R.
By calculations, we conclude the singular properties of

involutes by Table 1.When t0 6= 0, the (m−n, 2(m−n))-cusp
on Inv(γ, t0) is the corresponding point of the (n, m)-cusp
on γ . When t0 = 0, the (m, 2m− n)-cusp on Inv(γ, 0) is the
corresponding point of the (n, m)-cusp on γ .

FIGURE 1. The red curve is γ (t) =

(
t3
3 ,

t4
4

)
, the blue curve is Inv (γ ) and

green curves are Inv (γ, t0) with t0 6= 0.

We mainly study Inv(γ, 0) in the present paper since
properties of other involutes could be induced by analysis of
parallels. In what follows, we use Inv(γ ) to denote Inv(γ, 0)
for simplicity. By calculations, we have that the modified
Frenet-Serret type frame of Inv(γ ) is

{Inv(γ )(t); −n(t), t(t)},

the associate function of Inv(γ ) is also f (t) and{
ord(Invk (γ )) = n+ k(m− n),
ind(Invk (γ )) = m− n.

Here Invk (γ ) is the k-th involute of γ .
Now we give some explicit examples of involutes in differ-

ent cases.
Example 1: Let the curve γ : (−2, 2) → R2 be parame-

terized by

γ (t) =
(
t3

3
,
t4

4

)
.

By calculations, we have that t = 0 is a (3, 4)-cusp of γ and

Inv(γ, t0)(t)

=

(
t3

3
−

∫ t
t0
t2(1+ t2)1/2dt

(1+ t2)1/2
,
t4

4
−
t
∫ t
t0
t2(1+ t2)1/2dt

(1+ t2)1/2

)
,

where t0 ∈ R. Then t = 0 is a (4, 5)-cusp of Inv(γ ) and t = 0
is a (1, 2)-cusp of Inv(γ, t0) when t0 6= 0 (see Figure 1).
Example 2: Let the curve γ : (−2, 2) → R2 be parame-

terized by

γ (t) =
(
t2

2
,
t5

5

)
.

By calculations, we have that t = 0 is a (2, 5)-cusp of γ and

Inv(γ, t0)(t)

=

(
t2

2
−

∫ t
t0
t(1+ t6)1/2dt

(1+ t6)1/2
,
t5

5
−
t3
∫ t
t0
t(1+ t6)1/2dt

(1+ t6)1/2

)
,

where t0 ∈ R. Then t = 0 is a (5, 8)-cusp of Inv(γ ) and t = 0
is a (3, 6)-cusp of Inv(γ, t0) when t0 6= 0 (see Figure 2).

In order to have an intuitive understanding of the evolute-
involute pairs, we give some typical examples of evolutes.
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FIGURE 2. The red curve is γ (t) =

(
t2
2 ,

t5
5

)
, the blue curve is Inv (γ ) and

green curves are Inv (γ, t0) with t0 6= 0.

FIGURE 3. The red curve is
(

t4
4 ,

t5
5

)
and Ev (γ ) is green.

FIGURE 4. The red curve is
(

t3
3 +

t4
4 ,

t6
6 +

t7
7

)
andEv (γ ) is green.

Example 3: Let the curve γ : (−2, 2) → R2 be parame-
terized by

γ (t) =
(
t4

4
,
t5

5

)
.

By calculations, we have t = 0 is a (3, 4)-cusp of Ev(γ ) (See
Figure 3).
Example 4: Let the curve γ : (−2, 2) → R2 be parame-

terized by

γ (t) =
(
t3

3
+
t4

4
,
t6

6
+
t7

7

)
.

By calculations, we have t = 0 is a (1, 4)-cusp of Ev(γ ) (See
Figure 4).
Example 5: Let the curve γ : (−2, 2) → R2 be parame-

terized by

γ (t) =
(
t3

3
,
t8

8

)
.

FIGURE 5. The red curve is
(

t3
3 ,

t8
8

)
and Ev (γ ) is green.

FIGURE 6. The red curve is
(

t3
3 ,

t7
7

)
and Ev (γ ) is green.

By calculations, we have that the normal line of γ is the
asymptote of the two parts of Ev(γ ). The two parts have the
same asymptotic direction (See Figure 5).
Example 6: Let the curve γ : (−2, 2) → R2 be parame-

terized by

γ (t) =
(
t3

3
,
t7

7

)
.

By calculations, we have that the normal line of γ is the
asymptote of the two parts of Ev(γ ). The two parts have the
opposite asymptotic direction (See Figure 6).

III. DUALITY THEOREM FOR THE EVOLUTE-INVOLUTE
PAIRS
We will give the main theorem in the present section.

Let γ : (−ε, ε) → R2 be a curve with an (n, m)-cusp
at t = 0. Suppose Inv(γ ) is an (ni, mi)-cusp curve at t = 0.
Then mi < 2ni. Therefore we can always define the evolute
of Inv(γ ). We easily have

Ev(Inv(γ ))(t) = γ (t).

Therefore every (n, m)-cusp curve can be regard as the
evolute of it involute.

Now we study the correspondence of their cusps. On the
one hand, if t = 0 is an (n, m)-cusp of γ (t). Then we have
that t = 0 is an (m, 2m− n)-cusp of Inv(γ )(t). On the other
hand, if t = 0 is an (m, 2m− n)-cusp of Inv(γ )(t). Since

Ev(Inv(γ ))(t) = γ (t).
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Then according to [17], we have that t = 0 on γ (t) is just an
(n, m)-cusp. In conclusion, we obtain the following duality
theorem for the evolute-involute pairs.
Theorem 1 (Duality theorem): Letγ : (−ε, ε) → R2 be

a smooth curve. Then t = 0 is an (n, m)-cusp of γ (t) if and
only if t = 0 is an (m, 2m− n)-cusp of its involute Inv(γ )(t).

IV. APPLICATION IN OPTICS
In [17], we know that the wavefront (orthotomic) is an
(n, n+ 1)-cusp curve for some integer n. According to
Table 1, we have
Case 1: If wavefront is an involute of the caustic C in the

form of Inv(C, t0) (t0 6= 0). We have n+1 = 2n, then n = 1.
It is a regular point on the wavefront.
Case 2: If wavefront is an involute of the caustic C in the

form of Inv(C, 0). We have n + 1 < 2n, then n > 1. It is a
singular point on the wavefront.

What we are more interested in is the property of singular
points in the present paper. Therefore we only consider the
case n > 1, that is, the case

W = Inv(C) = Inv(C, 0).

Therefore we obtain a one-to-one correspondence between
singular wavefronts and caustics.

V. CONCLUSION
In conclusion, we obtain a one-to-one correspondence
between singularities on the wavefront (orthotomic) and
cusps on the caustic in the optical system: a point light source
irradiates the planar curvilinear mirror placed in the same
plane. In explicit, the (n − 1, n)-cusp on the caustic one-
to-one corresponds with the (n, n+1)-cusp on the wavefront
(orthotomic) when n > 1. However, there also exist some
other issues to be studied for improving our work. Vertices on
the wavefront might induce singularities on caustics.We have
not verified this correspondence is one-to-one or not up to
now. Because this proof involves very complicated calcula-
tions. In future work, we will take vertices on the wavefront
into consideration in the correspondence between caustics
and wavefronts.
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