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ABSTRACT The number of applications (apps) available for smart devices or Android based IoT (Internet of
Things) has surged dramatically over the past few years. Meanwhile, the volume of ill-designed or malicious
apps (malapps) has been growing explosively. To ensure the quality and security of the apps in the markets,
many approaches have been proposed in recent years to discriminate malapps from benign ones. Machine
learning is usually utilized in classification process. Accurately characterizing apps’ behaviors, or so-called
features, directly affects the detection results with machine learning algorithms. Android apps evolve very
fast. The size of current apps has become increasingly large and the behaviors of apps have become
increasingly complicated. The extracting effective and representative features from apps is thus an ongoing
challenge. Although many types of features have been extracted in existing work, to the best of our
knowledge, no work has systematically surveyed the features constructed for detecting Android malapps.
In this paper, we are motivated to provide a clear and comprehensive survey of the state-of-the-art work that
detects malapps by characterizing behaviors of apps with various types of features. Through the designed
criteria, we collect a total of 1947 papers in which 236 papers are used for the survey with four dimensions:
the features extracted, the feature selection methods employed if any, the detection methods used, and the
scale of evaluation performed. Based on our in-depth survey, we highlight the issues of exploring effective
features from apps, provide the taxonomy of these features and indicate the future directions.

INDEX TERMS Android system, IoT, security and privacy, machine learning, malware analysis,
malapp detection, survey.

I. INTRODUCTION
In recent years, Android has become the most popular mobile
operating system. Millions of applications (apps) have been
developed forAndroid smart devices.Meanwhile, the number
of malicious applications (malapps) explosively increases.
According to the 2018 Android Malware Special Report [1]
given by 360 Internet Security Center, a total of 4.34 million
new malware samples on Android platform, an average
of 12 thousand per day, have been intercepted by 360 Internet

The associate editor coordinating the review of this manuscript and
approving it for publication was Kuo-Hui Yeh.

Security Center in 2018. Many malwares were developed for
smart devices or in IoT (Internet of Things). AppBrain [2]
indicated that at the end of February 2019 the number of
available apps on Google Play has reached over 2.5 millions,
12% of which are seen as low quality or potentially unwanted
apps.

In order to keep malapps and massive low quality apps out
of the markets, a number of malapp analysis and detection
systems have been developed by analyzing the behaviors of
apps. These behaviors are depicted by the apps’ characteris-
tics, a.k.a. features. The process of Android malapp detection
is shown in Fig. 1. Clearly, machine learning is widely used
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FIGURE 1. The process of Android malapp detection.

in classification process and constructing features is the most
important step for Android malapp detection. The quality
of the selected features determines the performance of the
detection. Existing features can be classified into 3 categories,
i.e., features extracted with static analysis (ab. static features),
features extracted with dynamic analysis (ab. dynamic fea-
ture) and meta-data based features. Although the effort on
the detection of malapps with extracted features from apps
has made rapid progress, there still exists a number of issues.

A. ISSUES
1) COMMON ISSUES OF EXTRACTING THE THREE
CATEGORIES OF FEATURES
We itemize the common and critical issues of extracting the
three categories of features.
• The extraction of features may be time-consuming due
to the increasing size and highly complicated behaviors
of an Android Package (APK), resulting in the noneffec-
tive detection. For example, it often requires 15 minutes
to extract function call graphs for an apk from Google
Play with 15MB with static analysis. Clearly this is not
acceptable for real-time detection for end-users.

• The number of features extracted from an app can be up
to a million. However, many features are zero [3]. How
to efficiently process the sparse vectors is an important
issue.

2) ISSUES OF EXTRACTING STATIC FEATURES
Static analysis is widely used for vetting apps. However, there
exist several key challenges that static analysis is facing.
• It is difficult to extract well-discriminated static features
as the behaviors of Android apps have been increasingly
polymorphic and sophisticated.

• The number of features rapidly increases with the
increasing number of apps. Effective and efficient pro-
cessing of the fast growing number of features is an

important issue. In our previous work [3], we have cat-
egorized all the static features into two types: platform-
defined features and app-specific features, according to
the generality and specificity of feature sets. In terms of
quantity, the app-specific features growwith the increase
of app set, while the amount of platform-defined fea-
tures keeps stable instead. The platform-defined features
are more persistent than app-specific features, and thus
they can be generally used for automated detection of
malapps. Basically the number of app-specific features
are quite large for processing, resulting in possible non-
effective detection.

• Many malapps evade the detection based on static fea-
tures through obfuscation techniques like dynamical
loading code or code encryption. According to a large
scale investigation [4], roughly 25% of apps in Google
Play are obfuscated, and this number rises to 50% for
the most popular apps with more than 10 million down-
loads. In general, static analysis techniques are easier
to conduct and more effective than dynamic analysis;
unfortunately, many static analysis techniques are easily
thwarted by obfuscation.

3) ISSUES OF EXTRACTING DYNAMIC FEATURES
Dynamic analysis can extract inconspicuous behaviors of
malapps. By monitoring and recording the behaviors of an
app, the information observed may reflect the app’s exact
intention. However, there still remains some issues on extract-
ing dynamic features.
• Dynamic analysis cannot traverse all possible execution
paths, thus the malapp detection based on the dynamic
feature may result in false negatives.

• Dynamic features may not be extracted if an
app is protected by runtime security mechanisms
(e.g., DexGuard).

Meta-data features have contributory values in judging the
malicious behaviors of apps. However, the detection results
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on malapps based on meta-data features only are far from
accurate. In addition, the meta-data information of apps is
easily out of date.

B. CONTRIBUTIONS
Definition and extraction of well-discriminated features is
one of the most important components in effective detec-
tion of malapps. Although many types of features have
been extracted in existing work, to the best of our knowl-
edge, no work has systematically surveyed on the features
constructed for the detection of malapps. In this work,
we are motivated to provide a clear and comprehensive
view of the state-of-the-art work that detects malapps by
characterizing behaviors of apps with various features, from
which we highlight the issues of exploring effective features,
provide the taxonomy of features and indicate the future
directions.

We make the following contributions.
• To the best of our knowledge, this is the first compre-
hensive and exhaustive survey on Android apps’ fea-
tures constructed for malapp detection in smart devices.
We review thousands of published papers and finally
select 236 of them, to form a survey of features
extracted in existing work on Android malapp detection.
We provide mainstream features that can be used for
malapp detection, and accordingly summarize a taxon-
omy of all these features.

• We provide a clear view of the state-of-the-art work
that vets Android apps. Based on our in-depth survey,
we highlight the issues of defining and exploring well-
discriminated features.

• We exhibit and describe the most used static features,
dynamic features and meta-data features. We further
summarize the feature selection methods used in exist-
ing work. We carry out a comparison among the related
work, and point out the unique contribution of these
work. We then classify the existing work according to
the taxonomies of their employed features.

• We point out what should be focused on in future work.
We conclude the trends of this research field and provide
directions for future research.

The rest of this survey is organized as follows. we give
a brief introduction to the characteristics of Android in
Section II. Section III introduces the methodology of this
survey. In Section IV, we survey the types of features used
in malapp detection. Section V summarizes the feature selec-
tion methods used in existing research on malapp detection.
Section VI provides related surveys and Section VII gives
some discussions about reviewed papers and some promising
directions for future research. The last section concludes this
paper.

II. OVERVIEW OF ANDROID SYSTEM AND SECURITY
Before presenting our survey, we first provide a brief
introduction to the Android platform and its incorporated
security mechanisms. The fundamental information will

help to understand the challenges and threats in Android
platform. It’s vital information for solving new problems
raised by Android application security analysis methods and
technologies.

A. ANDROID PLATFORM
Android is an open-source mobile operating system based
on Linux kernel and designed primarily for smart devices.
Android system has a hierarchical structure that consists
of Linux kernel layer, library layer, application framework
layer and application layer. Linux kernel layer provides
some basic functions such as memory management, process
management, and network protocols. This layer contains
the core drivers for all underlying devices of the hardware
components. Library layer provides the core library that
includes the original library and third-party library for apps in
order to assist application framework layer. The application
framework layer is equivalent to an intermediate layer that
intelligently coordinates the components, which enhances
the flexibility of the entire system. To complete this work,
application framework contains many system services such
as Activity Manager, Window Manager, Resource Manager,
Location Manager, Content Provider and so on. The applica-
tion layer, the only layer that can interact with users, consists
of all apps running on Android devices. There exist solutions
with secure protocols for IoT security [5], [6]. However,
in this work, we focus on application security in Android
system deployed in smart devices.

B. ANDROID APPLICATIONS
An Android app is written in Java programming language
using APIs provided by the Android Software Development
Kit (SDK). Besides the Java code, an app may also con-
tain some native libraries that are provided by Android sys-
tem or implemented by developers. An app’s compiled code
alongside data and resources are packed into an archive file,
known as an Android Application Package (APK). Once an
APK is installed on an Android device, it runs by using the
Android runtime environment.

Android apps contain four main components: Activity,
Broadcast Receivers, Service and Content Provider. Activity
dictates the User Interface and handles the user interaction
with the smart phone screen. Broadcast Receivers deal with
communication between operating system and apps. Service
manages background processing of an app to perform long-
running operations. Content Provider provides the data shar-
ing across apps.

C. INCORPORATED SECURITY MECHANISMS
Developers introduce various security mechanisms when
they design the Android platform. Android system has
a hierarchical structure, and each layer has its own
security mechanism, namely, traditional access control mech-
anism, mechanism based on inspection of permission, sand-
box mechanism, digital signature mechanism and encryption
mechanism.
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1) TRADITIONAL ACCESS CONTROL MECHANISM
Traditional access control mechanism is equivalent to
Android’s Linux kernel security mechanism. Access control
restricts the subject (such as users or services) to access the
object (such as resources). It is a primary approach to pro-
tect the confidentiality and integrity of data. Access control
includes two kinds of methods, mandatory access control
(MAC) and discretionary access control (DAC). MAC is
implemented by the Linux security module. DAC is imple-
mented by file access control.

2) MECHANISM BASED ON INSPECTION OF PERMISSION
Android uses a permission-based security model to restrict
apps access some resources. If apps want to use restricted
resources, they have to apply for permissions through
XML files. Apps cannot use restricted resources until
Android system approves. Android permissions have four
levels, namely Normal, Dangerous, Signature, and Signature/
System. Low-level permissions, including normal and dan-
gerous levels, are authorized as soon as an app applies
for. Signature level and signature/system level permissions
are known as advanced permissions. Before an app can
apply these permissions, it needs to achieve platform-level
authentication. However, there are many shortcomings in this
mechanism. Users need to decide if the permissions that
an app applies should be authorized, yet users do not have
enough knowledge to judge it. Moreover, if the device is
running on Android 5.1.1 (API level 22) or lower, or the
app’s target Sdk Version is lower than 23, the system auto-
matically asks the user to grant all dangerous permissions for
the app at install-time. once the permissions are authorized,
they will remain valid for the duration of the app, unless users
change.

3) SANDBOX MECHANISM
Sandbox is used to separate running apps in Android system.
A sandbox provides a tightly controlled set of resources for
apps to run in. During the run-time of the Android apps,
each app runs in its own Dalvik virtual machine and has its
own process space and resources. Therefore, different apps
cannot interact with each other and cannot access each others’
resources and memory space.

4) DIGITAL SIGNATURE MECHANISM
Digital signature mechanism plays a very important role in
the security of application layer. Android app developers have
to give their apps digital signatures, since the apps without
digital signatures are not allowed to be installed. If an attacker
deliberately changes the internal file of APK, he has to re-
sign the app. Not until the attacker gets the private key of
original publisher will he generate the signature that is con-
sistent to the original signature. In addition, the signatures
of apps will also be checked when apps need to be updated.
Digital signature ensures the integrity and reliability of
apps.

5) ENCRYPTION MECHANISM
Android system can support encryption mechanism that is to
protect some important data from being accessed by unautho-
rized users or apps. Android system implements encryption
mechanism in version 3.0 and above. Because users pay
more and more attention to protecting private data, such as
phone event, SMS and some payment information, encryp-
tion mechanism becomes increasingly important to Android
system.

III. METHODS OF THE SURVEY
Our survey follows the general guidelines for Sys-
tematic Literature Review (SLR) process proposed by
Sadeghi et al. [7].We also apply SLR to static analysis, taking
into account the lessons from Li et al. [8]. The whole pro-
cess includes three main phases: planning, conducting, and
reporting the reviews. Based on the guidelines, we formulate
the following research questions that serve as the basis for
the SLR.
RQ1: How can existing research work on Android

app security analysis be classified?
RQ2: What features have been used for Android

malapp detection?
RQ3:What methods have been used for feature selection?

A. RESEARCH TASKS
To answer the research questions introduced above, we orga-
nize our tasks into three-phase SLR process, as mentioned,
including: planning the review, conducting the review, and
reporting the review.

In the planning phase, we define the review protocols that
include selection of the search engines, the initial selection
of the keywords related to Android malapp detection, and the
selection standard for the candidate papers. The protocols are
described in detail in part B.

The literature selection is an iterative process that includes
selecting candidate papers as well as applying the pre-defined
inclusion/exclusion standards. In this process, the keyword
search expressions and the inclusion/exclusion standardsmay
also need to be adjusted, which would trigger new searches.
Once the review protocols and the paper collection were
finished, we read literature carefully to validate the selections.

For RQ1, in order to define a comprehensive categorization
that is suitable for Android app security analysis, we first start
with a quick survey on related reviews to summarize rough
definitions of categorization. We then focus on abstract,
introduction, contribution, and conclusion sections of papers
to identify new concepts and approaches to augment and
refine the categorization. The final categorization is presented
in Section IV.

For the second research question (RQ2), we use the vali-
dated papers and the categorization of Android app security
analysis to conduct a more detailed review of these papers.
We conduct peer-reviews on papers in order to identify the
features for malapp detection. The definition of features and
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TABLE 1. Research domain and their keywords.

the reason why they are applied in malapp detection are also
the content we explore. We judge which categorization the
features belong to according to the papers. The analysis and
findings are documented in Section V.

To answer the third research question (RQ3), we attempt
to identify the feature selection approaches that some work
applies in order to improve the efficiency and accuracy. The
principle of the methods is also the content we explore.
Section VI concludes the analysis and findings.

B. LITERATURE REVIEW METHODS
1) SEARCH METHOD
We use well-known literature search engines and databases
to prepare our survey. Our goal is to find high-quality and
high-correlation refereed papers, including journal articles
and conference papers. The selected search engines consist
of IEEE Explore, ACM Digital Library, Springer, Elsevier
and DBLP. The journals and conferences are related to soft-
ware engineering (including software testing and analysis),
programming language and systems, security, and mobile
computing and systems.

According to the topic of this survey, we focus on the
keywords to perform the literature search, which are given
in Table 1. Besides, we extend them with regular expressions
and part-of-speech conversion to obtain more keywords.

2) SELECTION STANDARD
Not all the candidate papers based on the search method fit
within the scope of this paper. Therefore, we use the following
inclusion and exclusion standard to further filter the candidate
papers.

a: INCLUSION STANDARD
As shown in Table 1, there are three domains that are com-
posed of keywords. The topic of this survey falls at the inter-
section of three domains. Papers that fall at the intersection
of these three domains can be included in our review.

1) Program Analysis domain covers the approaches and
tools that are used for conducting Android app security
analysis.

2) Security Assessment domain includes the expected tar-
gets that can be achieved through a series of experiments.

3) Android Platform domain focuses on the platform that
the malapp detection conducts on.

FIGURE 2. Word cloud of all venue names of the collected papers.

b: EXCLUSION STANDARD
Moreover, we excluded:

1) Papers focus on platforms other than Android, such as
iOS, Windows Mobile, BlackBerry, and Symbian. However,
papers that cover multiple platforms, including Android, are
included.

2) Papers focus only on techniques for mitigation of secu-
rity threats, but not on any security analysis technique. Such
techniques attempt to enhance security mechanisms either
at the application-level or the level of the Android platform
through different approaches.

3) Papers perform a particular attack on the Android frame-
work or apps, without describing detection techniques or spe-
cific features used in detection.

4) Papers focus on app security analysis, without mention-
ing any type of features.

C. SELECTED PAPERS
We firstly collect 1947 research papers through the search
method. Based on the selection standards and reviews on
these papers, we finally select 236 papers. We perform some
statistical analysis on these papers to figure out the distri-
butions of them in the publication venues and the prevailing
trend of each year. Fig. 2 and Fig. 3 describe the distribution
of selected papers in each journal/conference, indicating that
most selected papers are published in the top-tier conferences
and journals. Fig. 4 shows the number of selected papers
in each year from 2011 to 2019. In order to achieve more
advanced review results, we mainly collect published papers
up to date. From this figure, we can see that the number of
papers about security analysis of Android apps is in general
on the rise in recent years.

IV. TAXONOMY OF FEATURES CONSTRUCTED FOR
ANDROID MALAPP DETECTION
As mentioned above, the number of malapps on Android
smart devices has surged dramatically over the past years.
In order to ensure the quality and security of apps in the
markets, a number of systems have been developed to detect
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FIGURE 3. Statistic of types of the collected papers’ publications.

FIGURE 4. The numbers of selected papers in each year.

malapps. Malapp detection refers to separate malapps from
benign ones through analyzing the behaviors of Android
apps. Currently, malapp detection can be implemented
through static analysis, dynamic analysis, hybrid analysis and
meta-data analysis. Correspondingly, there are three types of
features: static features, dynamic features, as well as meta-
data features. The various types of features and sub-types of
each category are presented in Fig. 5.

In this section, we present our taxonomy of features con-
structed for Android malapp detection. We first describe the
analysis methods of detecting Android malapps. Then we
exhibit and describe the most used static features, dynamic
features and meta-data features. We further carry out a com-
parison among the related work, and point out the unique
contributions of these work.

A. METHODS OF DETECTING ANDROID APPS
Existing analysis methods for detecting Android apps mainly
consist of static, dynamic, hybrid and meta-data analysis.
We introduce these analysis methods briefly and classify
the surveyed papers according to the taxonomies of their
employed features. Table 2 shows the number of these papers
in each group.

1) STATIC ANALYSIS (124/236)
Because Android app has surged dramatically, Android
platform becomes the target of attackers and suffers from

TABLE 2. the number of reviewed papers in each group.

increasingly serious malapp threats. In response, much
research work aims to detect malapps via static analysis.
In static analysis, apps are firstly unpacked and decom-
piled into files that present essential information about the
apps. Then these files are inspected that if there are mali-
cious codes. Static analysis is well known in traditional
malapp detection, gaining popularity as efficient mechanisms
for market protection. It is useful for resource constrained
Android devices as the analysis is performed without exe-
cuting the app. Static analysis consumes much less resources
and time. It is thus a relatively fast method. However, this
approach can be thwarted by malapps that use reverse engi-
neering techniques, such as obfuscation and repackaging.

2) DYNAMIC ANALYSIS (60/236)
In contrast, dynamic analysis seeks to identify malicious
behaviors after deploying and executing the apps on the
emulators or real devices. It generates snapshots of processor
execution, network activity, system calls, SMS sent, phone
calls, etc. to discriminate malapps from normal ones. This
technique requires some human or automated interactionwith
apps, as malicious behaviors are sometimes triggered only
after certain events occur. The information observed through
dynamic analysis correctly reflects the app’s actual execution.
However, the dynamic analysis execution leads to excessive
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FIGURE 5. Various types of features and subtypes of each category.

consumption of Android operating system (OS) and time.
Moreover, dynamic analysis method may not detect malapps
that prevent themselves from running on the emulators.

3) HYBRID ANALYSIS (46/236)
We define hybrid analysis as using both static analysis,
dynamic analysis and sometimes meta-data analysis in detec-
tion system. Hence, it combines the advantages and disad-
vantages of static analysis and dynamic analysis. It can be
seen as the most comprehensive analysis because it analyzes
both Android application installation files and behaviors of
the app at runtime. The disadvantage of hybrid analysis is that
it leads to excessive consumption of Android OS as well as
wastes a lot of time.

4) META-DATA ANALYSIS (6/236)
We define meta-data as the information users see before
downloading or installing apps. Meta-data analysis is a kind
of indirect app analysis to identify information that is often
observed in malapps. Meta-data analysis cannot be classified
as static analysis or dynamic analysis since it has nothing to
do with apps themselves. Some related work detects malapps
through meta-data analysis, such as the category information
of apps, the version of apps and the serial numbers of apps’
certificates.

As illustrated in Table 2, the research on Android
malapp detection still focuses on static analysis in recent
years. The use of dynamic analysis method is in the

rising period. Although the hybrid analysis is more compre-
hensive, they constitute only 18.8% of the literature. The
obvious reason is that the hybrid analysis requires collect-
ing both static and dynamic and even meta-data features.
Using two or three types of features is a complicated process
and costs excessive Android OS and time. In the next sec-
tions, we exhibit and describe the most used static features,
dynamic features and meta-data features in detail. Addition-
ally, we point out the unique contribution of the related work.

B. STATIC FEATURES
Static features can be extracted by analyzing the disassembly
code of apps without executing them. Static features include
features available in the apk files such as AndroidMani-
fest.xml file and Java code file. Out of 234 papers reviewed,
168 papers use static features to conduct their experiments.
The number of papers that uses various of static features are
shown in Fig. 6. Among the static features, Android permis-
sions are used in 71 papers, more than the use frequency
of other static features. The accuracy of permissions-based
detection achieves around 90% [11], [29], [37], [41], which
is improved with additional features [3], [216], [233]. The
following sections discuss these static features in details.

1) PERMISSION
In order to protect users’ information security, Android uses
a permission-based security model to restrict apps from
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FIGURE 6. The numbers of papers using various of static features.

accessing users’ sensitive information. An app provides a list
of requested permissions to the users before it is installed.
After these permissions are granted by users, the app installs
itself on the device. In Android system, there are many kinds
of permissions can be queried through the SDK documents.
The combination of multiple permissions may reflect some
harmful behaviors. For example, if an app applies for network
connecting permission as well as SMS accessing permission,
the app may acquire users’ SMS information and then spread
it out through the Internet.

There exist many approaches for detecting Android
malapps by extracting permissions. Wang et al. [11] analyzed
the risks of individual permissions and collaborative permis-
sions. They ranked the individual permissions with respect to
their risks. Sarma et al. [22] used both the permissions that
ap app requested and permissions requested by other apps in
the same category. The purpose of this method was to verify
whether the app’s benefits outweighed its expected risks.
Some studies [3], [29], [37]–[39], [41], [44], [46], [77], [83],
[196], [214], [216], [233], [235], [238] extracted permissions
as well as some other features and utilized machine learning
to detect malapps. This approach usually achieved accuracy
as more than 94%. Liu and Liu [27] employed the requested
permission for malapp detection. While Lindorfer et al. [235]
and Wang et al. [3] chose not only the requested permissions,
but also permissions based on the app’s API calls, which
was so-called used permissions. Kang et al. [230] excluded
some permissions. For instance, permission INTERNET was
excluded since it was required for most apps. On the contrary,
INSTALL PACKAGES, a permission usually used to install
a new package, was included instead. Some studies [43],
[62], [67] considered permission combinations as the feature.
Chen et al. [88] explored the security of machine learning
in Android malapp detection. They integrated their proposed
feature selection method (named SecCLS) and ensemble
learning approach (named SecENS) to enhance security of
machine learning-based Android malapp detection.

FIGURE 7. The frequency of each component used in malapp detection.

Android permission is the most used and effective static
feature. It is because applying for permission is crucial for
attackers to achieve their malicious goals. Although the Java
code contains the implementation of malicious methods,
some API calls requires permissions’ permits. For example,
before sending a SMS, Android system will check if the cor-
responding permissions are granted. Based on such scenario,
existing work thus pays more attention to permissions than
other static features in malapp detection.

2) APP COMPONENT
App components are the basic building blocks of an Android
app. They are the entry points for system to access apps.
Each component exists as a distinct entity and plays a specific
role. These components are linked by the app’s manifest file
AndroidManifest.xml, which describes every component and
how they interact. There are four main components within
an Android app: Activity, Service, Broadcast Receiver, and
Content Provider.

An activity dictates the User Interface (UI) and handles the
user interaction with the smart phone screen. If an app has
more than one activity, then one of them should be marked as
the activity that is presented when the app launched. A ser-
vice manages app’s background process to perform long-
running operations. For instance, a service might play music
in the background while the user is in another app. Broadcast
Receiver deals with communication between operating sys-
tem and apps. For example, apps can inform other apps using
broadcasts that some data has been downloaded and is avail-
able for them. A content provider resolves data and database
management issues. The data can be stored in the file system,
database or somewhere else. There are additional components
that are used in the construction of above mentioned entities,
such as Fragments, Views, Layouts, Resources, Manifest and
so on.

There exists much work utilizing app components for
Android malapp detection. Fig. 7 shows the frequency of
each component used in malapp detection. Some studies [19],
[34], [69], [184], [195] considered activity as features in
malapp detection. Shao et al. [19] extracted the number of
activities and other features to detect malapps. Studies [34],
[69], [195] further applied service and broadcast receiver
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as features in malapp detection. Feldman et al. [231] chose
the frequency of high priority receivers and abused services
to detect malapps. The accuracy was up to 90%, while the
FPR and FNR were both around 10%. Mohsen et al. [92]
analyzed the Java code and investigated the usage patterns of
the Broadcast receiver components of malicious and benign
Android apps. The experiments showed that using the Broad-
cast receivers with permissions increased the malapps’ pre-
diction accuracy to 97%. Studies [15], [18], [69] extracted
content provider and other features and utilized machine
learning for malapp detection. Varsha et al. [69] achieved
accuracy of 98.14% with F-measure of 0.976 using Random
Forest (RF) classifier. Shen et al. [26] studied topology graph
based on app components. This method could model mali-
cious payloads properly and resist against common obfusca-
tion used by hackers. The evaluation result was that 86.36%of
obfuscated malapps were caught with tolerable false positive.
Different from previous work, Bosu et al. [95] developed
a scalable and accurate tool DIALDroid for inter-app Inter-
Component Communication (ICC) analysis. They performed
the first large-scale detection for collusive and vulnerable
apps based on inter-app ICC data flows. Liu et al. [213]
presentedMR-Droid, aMap Reduce-based computing frame-
work for accurate and scalable inter-app ICC analysis on
Android. Alatwi et al. [83] proposed category-based machine
learning classifier to enhance the performance of classifica-
tion models under a certain category. They utilized broad-
cast receivers as one of the features for malapp detection,
and compared them with the Android broadcast events.
Rehman et al. [217] proposed framework considering both
signature and heuristic-based analysis for detecting Android
apps. During static analysis, they extracted some representa-
tive features including providers’ and receivers’ information.
And then, they evaluated the effectiveness of this framework
utilizing multiple machine learning algorithms.

3) FILTERED INTENT
Intent message handles the communication between com-
ponents of the same or different apps by sending intent
objects. In order to inform Android system which intents
can be received by the app component, each of them has
one or more intent filters. Intent filters help app components
reject the unwanted intents and leave the desired intents. They
are described in the manifest files and have been used in
malapp detection.

Lindorfer et al. [235] extracted the intents that app
responded to through the broadcast receiver. Arp et al. [33]
collected static features from Android installation file includ-
ing filtered intents. They used SVM for detection purpose and
the experimental results showed that DREBIN detected 94%
of malapps with low false alarm. Xu et al. [87] developed a
static analysis tool named AppHolmes for detecting app col-
lusion by examining the app binaries. They extracted many
static features including explicit and implicit intents. They
presented an in-depth study of app collusion. Xu et al. [10]
used explicit intents and implicit intents to conduct

experiments and got the TPR of 93.1% with FPR of 0.67%.
Feizollah et al. [76] also evaluated the effectiveness of
Android Intents (explicit and implicit). They considered it
as a distinguishing feature for identifying malapps. They also
conducted experiments using Android Intent in conjunction
with permission, resulting in detection rate of 95.5%. Besides
permission combination, Song et al. [43] extracted 15 types
of dangerous intents. They detected 4,006 real malapps and
their accuracy rates were nearly 99%. Idrees et al. [78] used
a combination of permissions and intents for identifying
Android malapps. They optimized the results with ensemble
methods furthermore, resulting in 99.8% accuracy.

4) API
API calls present how an app interacts with the Android
framework. Every Android app needs API calls to interact
with the device. Thus some work employs API calls as
features for malapp detection. It is essential to capture the
API calls and the dependencies among these calls. These
information can be acquired through both static analysis and
dynamic analysis.

There are different approaches for Android malapp detec-
tion by analyzing apps’ API. Some studies [3], [14], [19],
[35], [42], [51], [55], [66], [67], [83], [96], [150], [194],
[197], [198], [204], [230], [231], [233] extracted APIs as
well as some other features and utilized machine learning
to detect malapps. Some studies employed the APIs under
certain conditions. Lindorfer et al. [235] andYerima et al. [55]
used cryptographic API and reflection API as features.
Besides, Yerima et al. utilized the APIs for SMS, telephony,
JNI usage, dynamic class loading, the creation of new pro-
cesses and the runtime execution of processes. Studies [3],
[33], [46], [194] all considered restricted API calls and
suspicious API calls as features to detect malapps. Instead
of using API calls directly, Hou et al. [82] further cat-
egorized the API calls belonging to the same method in
the smali code into a block, namely API call block. Their
experimental results showed that the API call block outper-
formed using API calls directly in Android malapp detection.
Wu et al. [49] chose the dataflow-related APIs as features.
Saracino et al. [184] extracted operational APIs that might
be critical for Android app security analysis, such as the
APIs for installing a new app, requesting administrator priv-
ileges, generating too many processes and constantly mon-
itoring the app. Maiorca et al. [94] leveraged information
extracted from system API packages for detecting malapps.
Shabtai et al. [57] extracted APIs for accessing data and
APIs related to network.

There is a certain sequence for the API calls in a method.
It’s a strategy for attackers to change the API sequence in
order to bypass the detection process, called code obfusca-
tion. Therefore, some work considers API sequence as the
app’s unique feature to detect malapps. Studies [42], [47],
[53], [81], [192], [196], [236] applied API sequence to detect
malapps. Studies [53], [196] employed both API and API
sequence as features. Meng et al. [53] used the bigram of
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API sequence, i.e. 147 APIs related to Java reflection and
2 APIs used to invoke native code. Then they performed a
series of experiments with different machine learning meth-
ods, achieving the highest accuracy of 97%with RF classifier.

API call graph can also reflect the dependencies among
these API calls. In API call graph, each node represents
an API and each edge (f, g) indicates that procedure f calls
procedure g. Some work employs API call graph as the
app’s characteristic feature for malapp detection. Fig. 6 shows
the usage frequency of API and API call graph in malapp
detection.

Studies [17], [24], [32], [48], [84], [192], [202] employed
API call graph in malapp detection. Dam et al. [84]
applied well-known learning techniques based on Random
Walk Graph Kernel combined with SVM, achieving a high
detection rate as 98.76% with only 0.24% false alarms.
Zhang et al. [17] introduced graph similarity metrics to
uncover homogeneous apps’ behaviors while tolerating
minor implementation differences. The Experiments showed
that this method correctly labeled 93% of malware instances.
It was capable of detecting zero-day malapps with a low false
negative rate (FNR) (2%) and an acceptable false positive rate
(FPR) (5.15%). Because the connections between the injected
malicious code and legitimate apps were expected to be weak,
Hu et al. [24] used method invocation graph based on static
analysis to detect repackaged Android malapps. It reflected
the ‘interaction’ connections between different methods. The
experimental results showed that the proposedmethod got the
detection accuracy as 95.94%. Zhou et al. [192] employed
API, API sequence, API call graph and other features for
malapp detection.

5) NETWORK ADDRESS
Attackers need to contact malapps to report their status and
send users’ personal data. Therefore, attackers often add
network address of the server, namely command & con-
trol (C&C) server, in malicious code. In malapp detection,
some work looks for network address or IP address of the
C&C server in app’s installation files.

Studies [38], [59], [130] chose the URLs as one of the static
features in their systems. Besides, Zhao et al. [38] extracted
IP address as features. They used SVM and KNN for detec-
tion purpose and found that KNN was much faster than SVM
with only 1%-2% decrease of accuracy. The results showed
that FEST got nearly 98% accuracy and recall, with only 2%
false alarms and high efficiency.

6) OPCODE
An opcode, standing for ‘Operation Code’, is a single instruc-
tion that can be executed by the CPU. The frequency of single
opcode or opcode sequence from the apps can be seen as
features in malapp detection. Some work focuses on opcodes
because they are closely related to the app code.

Several studies showed that opcode could discrimi-
nate malapps from benign ones. In order to detect vari-
ants of known malapps, Hang et al. [71] extracted

a simplified-instruction-set by static analysis on 218 Dalvik
instructions. The experimental results showed that the pro-
posed method can achieve a high hit rate with low FPR,
and was more efficient than ordinary anti-virus software.
Canfora et al. [40] investigated if n-grams frequencies of
opcodes were effective in detecting Android malapps. Using
both SVM and RF classifier, they evaluated it on a dataset
that consist of 11,120 apps, 5560 of which were malapps
from different families. The method achieved the highest
accuracy when n equals 2. Puerta et al. [61] used the fre-
quency of opcodes as features and found some particular
opcodes. For example, an opcode called RSUB_INT was
found only on benign apps. Hahn et al. [59] collected 14 types
of static features including both frequency of opcodes and
opcode sequences. They used RF, Bayesian Network, and
KNN for detection purpose. The experimental results showed
that, detection based on frequency of opcodes achieved accu-
racy as 94.82% with FPR of 1.25%. Detection based on
opcode sequence got the same accuracy but with lower FPR,
0.65%. Mclaughlin et al. [80] proposed a malapp detec-
tion method that used a deep convolutional neural network
(CNN). This system extracted opcode sequence from apps’
Dalvik bytecode for static analysis. Its experiments were
carried out on three different datasets. The results showed
that this system was more efficient on a large scale dataset
than n-gram based system. Ali et al. [85] scored similarity
of opcode sequence found in sensitive functional modules,
and used requested permissions to improve detection accu-
racy. The empirical results showed that their method can
detect known malapps correctly with an F-Score of 98%.
Martinelli et al. [237] proposed BRIDEMAID which com-
bined static and dynamic analysis to detect Android malapps.
This framework exploited the frequency of opcode and uti-
lized SVM for detection.

7) HARDWARE COMPONENT
An app requestsmultiple hardware components tomake app’s
function comprehensive. To some extent, the combination of
requested hardware components can reflect harmful behav-
iors. For instance, if an app accesses 4G and GPS, this may
imply that it can report user’s location to the attacker.

Some work [33], [46], [194] showed that the combination
of hardware components could discriminate malapps from
benign ones. Shabtai et al. [191] collected both static features
and dynamic features including hardware components. They
focused on the camera hardware and the state of USB. They
applied machine learning methods to classify the collected
apps.

8) CFG
The control flow graph (CFG) is essential to static analysis.
A CFG is a representation, using graph notation, of all paths
that might be traversed through a program during its execu-
tion. Each node in a CFG corresponds to a basic block in the
method. A basic block is a straight-line piece of code without
any jumps or jump targets. Jump targets start a module, and
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jumps end a module. Directed edges are used to represent
jumps in the CFG. The code could be source code like
JAVA, assembling code like SMALI, machine code like arm
instructions or bytecode like DEX (Dalvik Executable). It’s
an approach for code obfuscation detection to analyze the
control flow of Java code. Although attackers can change the
sequence of API calls or rename API calls to evade detection,
the flow of the Java code does not change.

Chen et al. [20] used CFG to measure the similarity of
two apps. Then they synthesized the method-level similarities
and predicted a conclusion on app cloning. Allix et al. [28]
took static analysis on Android apps’ bytecode to extract a
representation of the program CFG. The extracted CFG is
expressed as character strings. They used a dataset of over
50,000 Android apps. The system exhibited a very high pre-
cision rate with a median value of 0.94. Annamalai et al. [73]
extracted the inter-procedural control flow sub-graph features
for malapp detection. This system used online passive aggres-
sive classifier and achieved 84.29% accuracy. Alam et al. [79]
used control flow with patterns, and implemented and
adapted two techniques including Annotated Control Flow
Graph (ACFG) to reduce the effect of obfuscation.
Dam et al. [84] constructed API call graph from the
CFG by applying a kind of control point reachability
analysis on the CFG, to carry out further experiments.
Rehman et al. [217] utilized malware evolution attack and
malware confusion attack to enhance feasibility of the
attacks. They applied these two strategies for their pre-
sented Malware Recomposition Variation (MRV). They con-
structed inter-procedure control-flow graph (ICFG) to extract
some features. They evaluated MRV on a dataset consisting
of 1935 benign apps and 1917 malapps. The experimental
results showed that MRV can have high likelihood to evade
detection.

9) STATIC TAINT ANALYSIS
Taint analysis can be seen as a form of Information Flow
analysis. Data flows from untrusted sources could cause secu-
rity vulnerabilities in programs. Therefore, taint analysis can
decide whether a leak actually constitutes a policy violation
and it analyzes apps and presents potentially malicious data
flows to human analysts or to automated malware-detection
tools. Taint analysis includes static analysis and dynamic
analysis. Static taint analysis keeps track of information flows
by examining the source code (i.e. white-box testing). Static
taint analysis provides better code coverage than dynamic
analysis.

In 2014, Steven et al. [89] proposed a novel and highly pre-
cise static taint-analysis system, FlowDroid. It preciselymod-
eled the complete Android lifecycle, including the correct
handling of callbacks and user-defined UI widgets within the
apps. Meanwhile Steven et al. developed an Android-specific
test suite called DROIDBENCH. DROIDBENCH can be
used to assess both static and dynamic taint analyses. Sev-
eral research groups already used it to measure and improve
the effectiveness of their Android analytics tools. In 2015,

Chen et al. [90] extended Soot [239], Heros [240] and Flow-
Droid based on DroidJust to provide inter-procedural data
flow analysis. They took a slightly different angle to tackle
this privacy leakage detection problem. They proposed a
novel idea that the information an app grep was reason-
able and safe when the information was used to change the
state of the Android device. DROIDJust used various static
taint analyses to automate the whole analysis process. Their
method can effectively and efficiently analyze both benign
apps and malapps. In 2017, Mumtaz et al. [91] presented a
rigorous literature review on most recent studies on static
taint analysis. They mentioned that the most widely used
techniques for performing taint analysis were Call Graph and
Control Flow Graph. They then selected FlowDroid to con-
duct their experiments. The results showed that FlowDroid
can successfully perform inter-component taint analysis with
a marginally lower precision rate than intra-component
communications.

10) DATA FLOW
Data flow analysis is to track the data across apps. It relies on
an underlying abstract semantics of Android apps. Data Flow
shows the data dependencies between functions. Based on
data flow, security-relevant can decision automatically. Data
Flow Graph (DFG) is a graphical representation of the ‘flow’
of data through an information system, modelling its process
aspects. A DFG can present what kind of information will be
input to and output from the system, where the data comes
and goes, and where the data will be stored.

Zhou et al. [192] extracted many static features includ-
ing data flow. They utilized data flow analysis algo-
rithm to detect function parameters with static or fixed
inputs. Based on the collected 204,040 apps, the system
detected 211 infected apps and uncovered two zero-day
malware, including one from the official Android Market.
Amandroid [23] used inter-component DFG and inter-
procedural CFG to conduct the flow-sensitive and context-
sensitive data flow analysis. Such integrated control and data
flow analyses approach was proved to be both practical and
effective to address security problems. Yang et al. [232]
proposed a topic-specific approach to generate sensitive data
flow signatures. This method had much less patterns and was
much better to characterize malapps than the overall data flow
signatures.

11) FILE PROPERTY
File properties refer to features found in apps’ important files,
such as the ‘.so’ and ‘.zip’ files, the smali files, the suspicious
files and so on.

Android apps are distributed as .apk compressed files.
Compressed files can reduce the number of download files
when installing an app. However, because the compressed
files don’t contain restrictions of data type, sometimes they
are used to carry malicious payloads as .zip files and .so files.
As a result, some work utilizes presence or absence of .zip
files and .so files as features. For example, Roy et al. [29]
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selected the presence of ‘.so’ or ‘.zip’ files as features
for Android malapp detection. While Chakradeo et al. [14]
detected malapps based on the presence and absence of
zip files inside the main app archive. They trained over
15,000 apps from Google Play and 732 known malapps.
The experiments showed that their method can find 95% of
malapps, and cost 13% of the non-malicious apps on average
across multiple markets.

Besides the features mentioned above, Varsha et al. [69]
chose the number of smali files as features.
Lindorfer et al. [235] collected static features including the
presence suspicious files, such as native (shared) libraries,
native executables and shell scripts embedded in the apk’s
resources.

12) SYSTEM COMMAND
System command is a directive of a program to perform
a specific task. Since system commands can perform some
special task, attackers always help themselves by writ-
ing system commands in malapps. For example, when the
malapp gets these commands, such as ‘chmod’, ‘chown’,
‘mount’, ‘insmod’, ‘su’, and ‘bash’, it can escalate privi-
lege, root devices or execute malicious shell scripts after
obtaining the admin privilege of the mobile devices. There-
fore, some work takes system command as a kind of
features.

Some researches showed that the system commands
can discriminate a malicious app from a benign one.
Kate et al. [31] extracted API calls and Android com-
mands from .smali files. They used 190 benign sam-
ples and 190 malapps to conduct experiments. The results
showed that the accuracy achieved 89% with high efficiency.
Kang et al. [230] used malicious commands and other
static features to characterize apps’ behaviors. Their method
finally showed detection performance with accuracy of 98%.
Yerima et al. [55] combined advantages of static analysis
with the efficient ensemble of machine learning to detect
Android malapps. They selected command sets, API calls and
permissions as features. They extracted the commands that
enabled malapps to escalate privilege, root devices or exe-
cute malicious shell scripts at run time and the commands
used for stealthily installing additional malicious packages.
The experimental results showed that the detection accu-
racy reached as 97.3%–99% with very low FPR. Yer-
ima et al. [65] chose API calls, Linux system commands
and permissions as features. They searched for Java Real-
time.exec commands, through which persistent background
child processes that contained malicious payload can be
launched.

13) NATIVE CODE
Native code refers to the programming code configured to
run on a specific processor. Native code used on a processor
generally doesn’t run on an emulator unless it’s allowed.
It might be hard to analyze native code, because it is not
supported by many analysis tools. Hence, attackers may try

to hide parts of their apps’ functionality in the native code.
Moreover, native code may be used to exploit vulnerabili-
ties of the Android system. Therefore, some work believes
that native code can discriminate a malapp from a benign
one.

Chakradeo et al. [14] believed that it was likely to be
malicious that an app spent lots of resources. They utilized
permissions, intents and native code to complete market-
scale triage. Lindorfer et al. [235] collected many types of
static features including native code via the Java Native
Interface and Dalvik bytecode. Hahn et al. [59] added
native code as a feature to detect malapps. The experiments
results didn’t prove the effectiveness of native code on itself.
DroidNative [79] was a malapp detection system that oper-
ated at the native code level. It can detect malapps embedded
in bytecode or native code, and achieved a detection rate
of 93.57% with FPR as 2.7%. DroidSieve [233] extracted
static features derived from resources including native code.
DroidSieve consisted of two parts: malapp detection, achiev-
ing up to 99.82% accuracy with zero FPR, and family iden-
tification of obfuscated malapps, which achieved 99.26%
accuracy.

14) OTHER STRINGS
One of the widely used techniques in classic malapp detec-
tion is analyzing strings available in the file. Some work
extracts printable strings in Android files, such as menus
in the apps. Sayfullina et al. [39] presented a scalable
and high accurate method for malapps classification. They
extracted features from Android application package (APK)
files including strings. They used Normalized Bernoulli (NB)
for detection. The method achieved overall accuracy of 91%
with 0.1% FPR. Chen et al. [50] extracted nouns of strings,
defined in apps’ resources files, as keywords. These key-
words were more precise than those extracted from the apps’
descriptions for malapp detection. Sanz et al. [64] extracted
the strings contained in the disassembled code, constructing a
bag of words model to generate an anomaly detection model.
The system obtained the best accuracy of 83.51%, with an
FPR of 27% and a TPR of 94%. Rapoport et al. [211] pre-
sented a static analysis tool, Stringoid, which analyzed string
concatenations in Android apps to estimate constructed URL
strings. They observed that a significant fraction of URLswas
only detected by the static analysis. Wang et al. [3] extracted
some string features including URLs, IP addresses, file paths
and numbers form the disassembled code. They compared the
detection results of four kinds of machine learning algorithm,
among which the LR classifier yielded the best TPR as 96%
with a FPR as 0.06%. In consideration of the requirements
for Android malapp detection systems in the real world,
Palumbo et al. [234] designed an ensemble approach based
on multiple atomic classifiers. The approach extracted lots of
string information from Android manifest file, Dalvik exe-
cutable file (DEX), and resource file. This method was suit-
able for detecting new, previously unseen malicious Android
apps.
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FIGURE 8. The numbers of papers using various of dynamic features.

C. DYNAMIC FEATURE
Dynamic features are the behaviors of the app in interac-
tion with operating system or network connectivity. Dynamic
features can be achieved by observing the app’s behaviors
through its actual execution on real devices. Although the
execution may lead to excessive consumption of Android OS,
the information observed correctly reflects the app’s exact
intention. Based on our analysis, out of 234 papers reviewed,
104 papers used dynamic features to conduct their exper-
iments. The numbers of papers using various of dynamic
features are shown in Fig. 8. Among the dynamic features,
system call is used in 32 papers, more than other dynamic
features. The following sections discuss the dynamic features
in details.

1) SYSTEM CALL
A user’s interaction with Android system through an app gen-
erates events in the OS, which are so-called system calls.
There are more than 250 system calls in a Linux kernel that
are also available in Android. System calls provide useful
functions to apps such as network, file, and other related
operations. Therefore, analyzing the system calls can obtain
accurate information of the apps’ behaviors.

There are different approaches for analyzing Android sys-
tem calls. Studies [127], [160] proposed the suitable system
call features used in machine learning for classifying the
benign and malicious apps. The system calls generated by
each app were captured in a log file using a tool called strace.
Burguera et al. [128] considered that monitoring system calls
was one of the most accurate methods to understand the
behavior of apps, since they provided more detailed low
level information. They found that open(), read(), access(),
chmod() and chown() were the most used system calls by
malapps. With the help of system calls, they obtained the
traces of apps’ behaviors that can be used to discriminate the
malapps from benign ones. The experimental results showed
that the system was capable of detecting every malapp execu-
tion in self-written malapp, getting a 100% of detection rate

for the particular malapp. Wu et al. [193] proposed a method
of Android malapp detection using both system call fre-
quency and system call dependency as features. They exper-
imented with several machine learning classifiers: SVM, RF,
LASSO and ridge regularization. The results showed that
the approach achieved an overall detection accuracy of 93%
with 5% benign app classification error. Tong et al. [135]
collected known malapps and benign apps to generate pat-
terns of individual system calls and sequential system calls
with different calling depth. Then they built up a malicious
pattern set and a normal pattern set for malapp detection.
The experiment results showed that the integrated detection
accuracy rate was above 90%. Jang et al. [143] exploited sys-
tem calls and system logs as feature vectors. These features
performedwell in detecting and classifyingmalware families,
reaching 99% accuracy on average. In 2017, Cai et al. [161]
firstly presented a systematic dynamic characterization study
of Android apps that targeted a broad understanding of the
app’s behaviors in Android. Moreover, they revealed many
meaningful experiments’ conclusions for our consideration.
Different with existing work, Zhang et al. [164] didn’t use all
System Calls (SCs) to construct feature vectors for analyzing
apps. They first introduced a concept named contribution to
quantitatively evaluated SCs relevance for malware identi-
fication. They then utilized Markov chains and determinate
SCs instead of all SCs to identify malapps. The experimen-
tal results demonstrated that their approach possessed the
malapp detection ability with high accuracy. Leeds et al. [214]
compared static and dynamic analysis of Android apps. They
extracted permissions requested at install-time as static fea-
tures for static analysis. Furthermore, they extracted system
calls made at run-time as dynamic features for comparison.
Martinelli et al. [168] proposed a method to detect Android
malapps. This method was based on convolutional neural net-
work and acquired system calls occurrences through dynamic
analysis. They tested the method on a recent dataset com-
posed of 7100 real-world mobile apps, obtaining an accuracy
ranging between 0.85 and 0.95. Based on the extracted sys-
tem calls, Hou et al. [82] constructed the weighted directed
graphs and then applied a deep learning framework for newly
unknown Android malapp detection. They evaluated the per-
formance of their proposed Deep4MalDroid. They thought
that it can be integrated into a commercial Android anti-
malware software.

As Shown in Fig. 8, system call is the most selected feature
among dynamic features. This is because apps cannot directly
interact with the Android OS. System calls provide an essen-
tial interface between the OS and apps, so they are always
used in malapp detection.

2) NETWORK FEATURE
Network operation is another kind of dynamic feature fre-
quently used. Majority of apps need to connect to network
to send and receive data, receive updates, etc. Malwares
may send users’ personal data to attackers through network.
Since network operations offer various types of information,
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monitoring network operations of apps on mobile devices is
an effective way of catching malicious behaviors of apps.

There are different approaches for analyzing Android net-
work features. Amin et al. [130] leveraged two types of
dynamic features for malapp detection: system calls and
URLs of all remote locations that were connected by apps
in specific period. Results showed that the approach based
on system calls was able to detect malapps with an accuracy
of 87%. Rapoport M et al. [211] firstly collected dynamic
data by running 20 randomly selected Android apps, then
observed their network activity for the next static analy-
sis of URL strings. Ham et al. [134] collected many types
of dynamic features including network features, such as
RxBytes, TxBytes, RxPacket, TxPacket. They used SVM and
RF for detection and the results of the experiment showed
that the system achieved TPR of 94.4% with FPR of 0.4%.
AMAL et al. [199] extracted both static features and dynamic
features including 65 network features. The network fea-
tures they chose consisted of 3 groups. Raw network fea-
tures included counts of unique IP addresses, counts of
connections, quartile counts of request size and types of
protocols. HTTP features included counts of POST, GET,
and HEAD request and the distribution of the size of
replied packets. Domain Name Server (DNS) features con-
tained counts of PTR, CNAME, and MX record lookups.
Studies [136], [152], [203], [205], [207] extracted network
traffic as features. Malik et al. [203] proposed a method
that detected malapps on the basis of their DNS queries and
the analysis of network traffic logs. Feizollah et al. [152]
adopted six kinds of network traffic features, namely frame
length, frame number, connection duration, relative duration,
source port and destination port. The experimental results
showed that using mini batch k-means algorithm performed
better than using k-means algorithm for these features in the
Android malapp detection.

Despite analyzing network operation is an effectivemethod
for Android malapp detection, it has not attracted attention as
much as system call features have. Using network operations
as feature needs to deal with massive number of network
records, which may contain millions of records. Furthermore,
analyzing collected network operations requires to deeply
understand network architecture.

3) SYSTEM COMPONENTS
Mobile devices have similar components like personal com-
puters, such as CPU, memory and storage. They together
make the operating system and mobile device function cor-
rectly and efficiently. System components can also provide
accurate information about the behaviors of the apps. For
instance, since some malapps send users’ personal informa-
tion to attackers, they may take up a lot of CPU.

Some work conducted detection of Android malapp using
system components. Bhandari et al. [194] considered mem-
ory consumption, CPU consumption and numbers of file
operations of each app as features. The proposed method
detected 98.4% of the malapps with few false alerts.

Canfora et al. [132] selected several types of dynamic fea-
tures related to the system components: CPU, memory, stor-
age and network features. The system achieved the results
of accuracy greater than 99% by using RF classifiers.
Zhuo et al. [212] performed dynamic fuzz test for the com-
ponents and permissions of the app. Their purpose was to
judge whether the app existed permission bypass vulnerabil-
ities or denial of service vulnerabilities. Ahmad et al. [241]
proposed an approach that automatically targeted trigger-
ing the method of interest (MOI). MOI used Inter Com-
ponent Communications (ICC) for passing data between
components.

4) BATTERY FEATURE
This kind of feature gives information regarding to current
state of devices’ batteries. The battery characteristic can
reflect some behaviors of the apps like system components
do. Monitoring battery power consumption and battery tem-
perature is the key for malapp detection.

Kurniawan et al. [142] detected malapps through power
consumption, battery temperature and network traffic data
using three classification algorithms, i.e., SVM, RF and
Logistic Model Tree (LMT). The experimental results
showed that the best algorithm to work with these three fea-
tures’ combination was RF classifier, achieving 85.6% accu-
racy. Yang et al. [153] proposed a malapp detection method
based on power consumption. They used Gaussian mixture
model (GMM) to analyze power consumption. The experi-
mental results showed that the system can achieve accuracy as
79.7%. Michalevsky et al. [155] showed that the information
about a user’s location can be acquired through reading the
phone’s aggregate power consumption during minutes. They
collected various features including signal strength, voltage,
temperature, state of discharge (battery level) and cell iden-
tifier. The experiments showed that this approach can reveal
much information about the phone’s location.

5) PHONE EVENT
Some malapps always send or receive phone calls that
threaten users’ property security. Therefore, some work takes
phone event as another kind of feature. Lindorfer et al. [235]
extracted static features and dynamic features including
phone events that were represented by the corresponding
phone number. Their method correctly classified 98.24% of
malapps with less than 0.04% FPR. Ham et al. [134] extracted
32 dynamic features including phone event feature and SMS
features. They monitored the apps’ behaviors such as send-
ing or receiving phone calls and SMS. The experimental
results showed that the system can achieve TPR as 94.4%
with FPR of 0.4% based on SVM classifier.

6) SMS EVENT
There exists a kind of malapp that always sends or receives
SMS messages. Some SMS messages contain virus links
that may harm users’ property or information security. Many
malapps found in the wild are related to the improper usages
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of the SMS functionality. These malapps impose a direct
financial cost on the user. Hence, some work take SMS event
as a kind of feature. Saracino et al. [184] hijacked the Send-
TextMessage() and SendDataMessage() methods to extract
the information of SMS messages. For example, the phone
number corresponding to the sent SMS. During the dynamic
analysis, Wang et al. [201] monitored a series of behaviors
including SMS and phone events. They extracted 1493 fea-
tures belonging to these two types. Experiments showed that
the anomaly detection with dynamic analysis was capable of
detecting zero-daymalappswith 1.16%FNR and 1.30%FPR.
Wang et al. [207] developed a malapp detection system using
SVM classifier based on behavioral features. They extracted
7 types of static features and 12 types of dynamic features
including SMS. The experimental results revealed that the
overall detection accuracy of the SVC was more than 85%
for unspecific mobile malapps.

7) USER INTERACTION
Because users are potential victims of malapps, users’ activ-
ities form a part of the app’s behaviors, such as tapping
the screen, long pressing dragging and so on. It’s one of
the possible solutions for malapp detection to analyze users’
interaction with apps.

Some work investigated detection of Android malapps
using user interaction. Shabtai et al. [191] extracted both
static features and dynamic features including features of
user’s interaction, such as keyboard/touchscreen pressing
and app’s start-up. Spreitzenbarth et al. [205] employed
the same user interaction features except app’s start-up.
Their system was able to detect about 94% of the malapps
with only 1% FPR. Besides the features mentioned above,
Saracino et al. [184] extracted interactive contents on
the screen and received inputs from users. The experi-
ments showed that their method effectively detected more
than 96.9% of malapps. Alzaylaee et al. [165] implemented a
hybrid system by integrating Monkey tool based on random
with Droid Bot tool based on state, and it improved code
coverage and uncovered more potential malicious behav-
iors. The results showed that the hybrid approach improved
dynamic analysis code coverage and impacted the detection
of Android malapps.Some studies employed user interactions
for malapp detection. For instance, Martinelli et al. [237]
generated a number of user interactions and system events
during the app execution.

8) FILE OPERATION
The same as personal computers, mobile devices have file
operations such as open, read and write. The operations of
some important files can reflect some behaviors of the apps.
Therefore, it’s an effective way for catching apps’ malicious
behaviors to monitor apps’ file operations.

Some work investigated detection of Android malapps
using file operations. Lindorfer et al. [235] extracted file
operations as a combined feature. It contained the type
(read/write) and the file name. Mohaisen et al. [199]

employed many features including 2 kinds of file opera-
tion features. The first was the counts for files created,
deleted, and modified. The second was the counts for files
created in predefined paths like %APPDATA%, %TEMP%
and %PROGRAMFILES%. The experiments achieved a pre-
cision of 99.5% and recall of 99.6% for certain families’
classification. Dash et al. [145] extracted the file access char-
acteristics that contained file name/type, name classes and so
on. Moreover, they chose some files as features that may be
executed to run or silently install apps. Overall, the proposed
system was able to achieve 84% classification accuracy using
SVM classifier.Wang et al. [218] proposed a hybrid detection
system that was comprised of misuse detection and anomaly
detection based on CuckooDroid. They extracted numbers of
static and dynamic features including file operation features.
The experimental results of their method showed a great
accuracy, over 98%.

9) BROADCAST RECEIVERS
Broadcasting is a widely used mechanism for transferring
information between apps. Broadcast receiver is a component
that filters and receives broadcasts. Because the broadcast
receiver can be monitored through dynamic analysis, some
work used it as dynamic feature as well. Studies [201], [235]
chose dynamically registered broadcast receivers as one kind
of features. These broadcast receivers were represented by
the intents they registered for. Wang et al. [207] extracted two
types of app’s components for malapp detection, which were
started service and broadcast receiver.

10) LOADING CODE
Some malicious codes are dynamically downloaded from
the Internet during execution (i.e., downloading a file from
the Internet or calling .elf or .so files). There are two situ-
ations: the static payloads include .dex file or .jar files, and
the dynamic payloads contain .elf file or .so files. There-
fore, some work inspects a given Android app and acquires
dynamic loading code when the app is running in a virtual
environment or on a real device.

Some work investigated detection of Android malapps
using loaded code. Lindorfer et al. [235] extracted loaded
code at runtime as feature that was represented by the type
of code (either native code or a DEX class). Wang et al. [201]
extracted 916 dynamic loaded code as one type of features.
The experiments showed that the anomaly detection with
dynamic analysis was capable of detecting zero-day mal-
ware with 1.16% FNR and 1.30% FPR. Yang et al. [215]
proposed a detection method based on Ensemble Learning.
They extracted the dynamic loading feature based on static
analysis, and then adopted the well-constructed multi-label
ensemble learning algorithm to conduct experiments. The
experimental results showed that dynamic loading problems
can be identified and classified correctly. Moreover, com-
pared to other methods, their detection result was more com-
prehensive.
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11) SYSTEM COMMAND
Commands can be used as another dynamic features. Andro-
Dumpsys [236] adopted the usage of system commands of
executing forged files for malapp detection. Andro-Dumpsys
excluded the system commands with low frequency, and
found that some system commands, such as ‘chmod’, ‘ins-
mod’ and ‘su’, were frequently used by malapps. The
experimental results demonstrated that Andro-Dumpsys per-
formed well in detecting malapps. It achieved an accuracy of
over 99% and classified each malware family with low false
positives/negatives.

12) API
APIs can also be used as dynamic features.
Rastogi et al. [129] adopted sensitive API monitoring and
Kernel-level monitoring in malapp detection. They evaluated
3,968 apps from the official Android Markets and identified
exposures of privacy sensitive information of 946 apps.
Pirscoveanu et al. [133] applied both API and API sequence
as features. They modified the initial sequence of API calls
to improve the match between malapps that had similar
patterns. They finally got the average accuracy of 98% with
the FPR of 4.9%. Ozdemir et al. [198] extracted 4 different
feature types from apps. They were complement of each
other: Static and Dynamic Native API calls, Static and
Dynamic Dalvik Byte API calls. The results showed that
using such features increased accuracy and sensitivity of
detection operation. Afonso et al. [139] proposed a method
of malapp detection based on machine learning and features
of API calls and system calls. They evaluated the system
with 7,520 apps and obtained a detection rate of 96.66%.
Hsiao et al. [141] conducted malapp detection using API call
sequence. Somarriba et al. [154] extracted six types of APIs,
such as APIs for accessing sensitive data and APIs commu-
nicating over the network. The evaluations revealed that the
monitoring system did not lose any partial traces, and had a
very small impact on the performance of the monitored apps.
DroidInjector [169] was a process injection-based dynamic
tracking system. It used a process injection technology to
attach itself to the target app’s process. In a malapp detection
system, DroidInjector launched the target app and injected
itself to the app. Furthermore, the system will generate a
tracking log for the API, and then conduct the behavior-
based analysis, getting the results of malapp detection.
Alzaylaee et al. [171] extracted many kinds of dynamic
features including API calls, presenting an investiga-
tion of machine learning based malapp detection. This
study performed several experiments to compare emulator
based detection with device based detection, the exper-
imental results of device-based analysis obtaining up
to 0.926 F-measure with 93.1% TPR and 92% FPR.
Chen et al. [172] proposed a framework that used model-
based semi-supervised (MBSS) classification scheme built
using dynamic Android API call logs. MBSS performed well
under the ideal classification setting, with 98% accuracy and

very low FPR. Wang et al. [219] showed a novel approach,
Droid-AntiRM, to detect possible anti-analysis in Android
malapps. Droid-AntiRM used a list of potential-sensitive
APIs as target methods and the developers demonstrated it
can greatly improve the automated dynamic analysis.

13) HOOK
Hooking obtains control of app execution flow without
changing and recompiling the source code. Hook is achieved
by stopping the function calls and redirecting them to tailor
made codes. By injecting the custom code, any operation can
be performed. After that, the main function can be executed
and returns the result or it will return to the code that recalls
the Hook function. The hooking methods are conducted in
two levels, namely 1) Hooking at the user level; 2) Hooking
at the kernel level. The majority of written malicious codes
for Android OS thus far has targeted the upper layers of
Android OS.

Artenstein et al. [156] had a detailed look at Binder,
the all-powerful message passing mechanism in Android,
and explained how to parse, utilize and exfiltrate the data
passed via Binder. Moreover, they demonstrated how the
binder functionality could be subverted and integrated into
a new kind of Android malapp. Salehi et al. [157] considered
Android security from the kernel level and explained the
Binder component of Android OS from security point. They
designed an active malapp in OS Kernel, and penetrated it
into the Binder and controlled data exchange mechanism
in Android OS. Therefore, they took control of the whole
Android OS through taking control of the Binder approaches.

Tang et al. [167] searched the cache files’ security of the
high frequency use of Android social apps. They provided a
privacy disclosure assessment criterion based on file storage
directories and security state machines. They then proposed
a protection framework, X-Prcaf (Xposed-based-Protecting-
Cache-File), using taint tracking technology, operating sys-
tem hook technology, and cryptographic technology. Their
experiments demonstrated that the X-Prcaf had a good effect
on the cache file leaks. Ruan et al. [159] proposed a model,
DroidRevealer, based on kernel-level system calls monitoring
and ran on real Android devices. DroidRevealer installed a
hook in the kernel so as to intercept and interpret system calls
and monitored how target data source was used. Moreover,
DroidRevealer can reconstruct apps’ behaviors in real-time
and its experiments proved that their method was acceptable.

14) DYNAMIC TAINT ANALYSIS
Dynamic taint analysis traces data flows from sources to sinks
during execution of a program. It allows detection and con-
sequently prevention of flow-based vulnerabilities, such as
data leaks or injection attacks. It’s a mainstream information
control technique.

Shankar et al. [158] developed a framework named Andro-
Taint, which applied Dynamic Taint Analysis on Android
malapps using automatic tagging and without modification in
Android platform. Their Dynamic Taint Analysis algorithm
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categorized the apps into risky, benign, malicious or aggres-
sive. AndroTaint covered 90% of malapps and benign in anal-
ysis phase with less FP and FN. Schüette et al. [162] proposed
a pure application-level dynamic taint analysis. It was not
limited to specific platform modifications and can keep up
with the precision of platform-level dynamic taint analysis.
You et al. [163] considered the characteristic of Android 5.0
and later versions, i.e., Android RunTime (ART). They
presented Taint Man, an ART-compatible dynamic taint anal-
ysis framework. It can be conveniently deployed on unmod-
ified and non-rooted Android devices. With Taint Man, taint
enforcement code was statically instrumented into both the
target app and the system class libraries to track data flow
and common control flow. Taint Man will be a practical
Dynamic Taint Analysis (DTA) framework. Recent years,
HTML5 Hybrid apps are becoming more and more popular,
meanwhile, more attention must be paid to these apps. Sun
et al. [166] proposed a dynamic method to avoid privacy
leakage based on dynamic taint tracking in Android.

D. META-DATA
Some work chooses metadata as feature in malapp detec-
tion. Metadata is the information that users get before down-
loading or installing an app, such as the apps’ description,
apps’ rating, developers’ information and the information in
Android Manifest. Apps’ metadata cannot be categorized as
static or dynamic features since they have nothing to do with
applications themselves.

1) CERTIFICATE FEATURE
Before distributing an app, the developer signs it by his
private key. The certificate can be issued by anyone and can be
self-signed, but it must be the same for all apps of one author
account in the Play Store. Moreover, each app’s certificate
contains the expedition and expiration date, issuer, subject
name, serial number and the country where the certificate is
expedited. Therefore, the certificate is useful for identifying
malapp author. White and black lists can be created regarding
the above information. The certificate has a unique serial
number. Based on that, one can check whether certificates are
the same or not by comparing the serial number. Some work
uses this kind of feature to discriminate a malicious app from
a benign one.

Lindorfer et al. [235] extracted the serial number and
certificate as features, and these features were used to
judged whether the app is self-signed or if its validity
period conformed to the release guidelines of the Play Store.
Kang et al. [230] adopted serial numbers of certificates
in malapp detection to improve the system efficiency.
They found that 4% of total certificates collected from
malapp were signed as much as 70% of the malapp samples.
Jang et al. [236] also extracted serial numbers of certifi-
cates as one kind of features. They concluded that the serial
number distribution in benign samples was different from
that of malapp samples. Lin et al. [238] extracted signature
information from the META-INF files, to judge whether the

app was from a malicious developer and a malapp family.
And it demonstrated that the signature was helpful for malapp
detection.

2) DEVELOPER-RELATED AND PUBLISHER-RELATED
FEATURES
This type of feature includes some information of devel-
oper and publisher, such as developer ID, publisher ID, their
emails and webpages. This information allows to create white
and blacklists regarding developers’ reputation. If an app’s
developer is recurrent in developing malapp, the app is likely
to be malapp. Muñoz et al. [185] captured around 7,569 dif-
ferent developer names in their dataset. They chose these as
one type of feature in malapp detection. Some work uses
publisher IDs to build advertisement (ad) libraries. This is
because publisher IDs can be used to identify whom to pay the
ad view revenue. Lindorfer et al. [235] adopted many meta-
data features including publisher IDs used to identify the
publishers that pay the ad revenue. Wang et al. [3] extracted
developer information from the certificate, such as the coun-
try, email address, organization and so on, and they were used
for malapp detection. Martinelli et al. [237] extracted many
kinds of static and dynamic features as well as meta-data
features including developer reputation for detection. Their
framework tested on a set of 10,000 genuine apps, achieving
a detection accuracy of 99.7% with negligible FPR.

3) INTRINSIC APPLICATION FEATURES
This type of feature involves app’s title, size (in bytes),
code version, number of images and files, and the
date of creation, upload and update at Google Play.
Feldman et al. [231] extracted the low version numbers of
apps because they observed that malicious apps tended to
have lower version numbers compared to benign apps. They
found that 247 malicious apps had a 1.x app version number,
while only 84 benign apps exhibited this characteristic.

4) SOCIAL-RELATED FEATURES
This type of feature includes relevant feedback that is col-
lected from users and available at the market. Features like
number of total votes and apps’ rating make up this feature
set. Saracino et al. [184] extracted some reputation metadata
as features, such as user scores, marketplace and download
number. These features are used for performing a preliminary
risk assessment of the app.

5) JAVA PACKAGE NAME
The Java package name can uniquely identify the apps in
the Google Play Store and many alternative markets. White
and black lists may also be created regarding this feature.
Lindorfer et al. [235] extracted the Java package name that
uniquely identifies apps in app markets.

6) HYBRID META-DATA INFORMATION
Different from previous work on metadata, Wang et al. [186]
proposed a lightweight method based on apps’ metadata for
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malapp detection in Android. Mmda statically analyzed the
app’s executable file and took permissions, hardware fea-
tures and receiver actions as app’s metadata. In evaluation,
Mmda with RF classifier was up to 94% malapp detection
rate. Compared with popular anti-virus scanners VirusTotal,
Mmda with RF had a better detection rate among the most
recent dataset. Martín et al. [187] proposed a fast and accurate
method ADROIT employing meta-information available on
the app store website and in the Android Manifest. They
combined and applied text mining and machine learning
approach to detectmalapps. ADROIT achieved 94% accuracy
rate. Akhuseyinoglu et al. [188] utilized free public meta-
data provided by Google’s official application market as the
feature set for training supervised classification algorithms,
Navie Bayes and the final experimental results showed that
adding the permissions in the official market metadata as a
predictor improved the accuracy of the test. Moreover, they
developed an app AntiWare to demonstrate the effectiveness
of the proposed method. Wu et al. [189] presented a system
PACS (Permission Abuse Checking System), that detected
the permission abuse problem for the apps. PACS firstly used
machine learning and data mining techniques to classify the
apps into different categories by considering apps’ meta-
data information, e.g., the reviews, descriptions, etc. Then,
it used Apriori algorithm to mine frequent patterns of the
app within the same category, getting the maximum frequent
item sets and constructed the permission feature database.
Finally, PACS was used to detect the unknown apps of the
abuse of authority, and the experiment results achieved 77.6%
accuracy rate.

7) TOPIC FEATURE
The topic of a Android application, such as Body building,
Sport live, Puzzle game and so on, denotes its classification
in the app markets. These information can be obtained from
the app’s description. Yang et al. [232] used an advanced
topic model, adaptive Latent Dirichlet Allocation (LDA)
with Genetic Algorithm (GA), to cluster apps according to
their descriptions. They conducted an empirical study on
3691 benign and 1612 malicious apps, and grouped them into
118 topics.

V. FEATURE SELECTION METHODS
Feature selection approach, also called variable selection
approach or attribute selection approach, can be used to
choose features that are most relevant to the predictive mod-
eling problems [242]–[244]. Some irrelevant features and
redundant features may appear in feature sets. Irrelevant fea-
tures should be reduced because they will have low correla-
tion with the class. Redundant features should be screened
out as they will be highly correlated with one or more of
the remaining features. Since feature selection approach can
remove irrelevant and redundant features, it usually gives a
good or better accuracy whilst requiring less data.

There have been a lot of features in malapp detection.
Some work believes that choosing adequate features is an

FIGURE 9. The number of the usage of filter approaches.

important step in malapp detection because appropriate fea-
tures determine effectiveness and results of an experiment.
Out of 234 papers reviewed, 31 papers used feature selection
method. We summarize the following five approaches for
feature selection based on the reviewed papers.

A. SELECTION BASED ON FILTER APPROACH
In the filter approach, features are selected by perform-
ing some statistical analysis on features and labels. Filter
approaches select features without generating learning mod-
els. They are based only on general features like the correla-
tion with the variable to predict. Filter methods suppress the
least interesting variables and the other variables will be used
to classify or to predict data. These methods are particularly
effective in computation time and robust to overfitting. There
are several filter approaches always used for malapp detec-
tion. The number of the usage of filter approaches is shown
in Fig. 9.

Chi-Square is a popular feature selection method. In statis-
tics, the Chi-Square test is applied to test the independence
of two events. Events A and B are defined to be independent
if P(AB) = P(A)P(B) or, equivalently, P(A|B) = P(A) and
P(B|A) = P(B). From the definition of Chi-Square, the use
of chi-square technique in feature selection can be easily
inferred. Suppose there is a target variable (i.e., the class
label) and some features of the app. Now, we calculate chi-
square statistics between every feature and the target variable,
and observe the existence of a relationship between the vari-
ables and the target. If the target variable is independent of the
feature, we can give up that feature. Otherwise, the feature
is very important. Shabtai et al. [191] extracted many types
of features. Three feature selection methods were applied in
Study [191]: Chi-Square, Fisher Score and Information Gain.
They found that Chi-Square and Information Gain graded the
same top 10 selected features with a very similar rank. When
the authors used top 10 features that are selected through Chi-
Square, they achieved the accuracy of 96.3% that was higher
than those of using more features. Sheen et al. [41] adopted
Chi-Square algorithm to select features. Based on the top
20 features, the system finally achieved 93.21% accuracy.
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Information Gain (IG)measures the amount of information
obtained for class prediction by observing the pres-
ence or absence of features. Therefore, in malapp detec-
tion, IG measures the amount of information that a feature
brings to detection system. The more the amount of infor-
mation the feature carries, the more important the feature is.
Shabtai et al. [191] applied three feature selection meth-
ods: Chi-Square, Fisher Score and IG. When they used
top 10 features selected through IG, the method achieved
the accuracy of 96.8% that was higher than those of using
the features selected through Chi-Square and Fisher Score.
Sheen et al. [41] adopted IG algorithm to select features.
Based on the top 20 features, the system finally achieved
93.96% accuracy.

Fisher score analysis is a simple and effective technique
to select the most relevant feature from the dataset. Its main
purpose is to determine a subset of features. In the space
where the feature data spans, the distances between data
points in different classes are as large as possible, while the
distances between data points in the same set are as small as
possible. Because Fisher Score evaluates features individu-
ally, it cannot handle feature redundancy. Shabtai et al. [191]
used top 10 features selected through Fisher score, and the
accuracy was up to 96.2% that was higher than those using
more features. Lindorfer et al. [235] used the Fisher score
to reduce the dimensionality of feature vector and used the
most useful features. The experiments showed that the system
achieved highest accuracy with a set of the 27,808 highest
ranked features, 18,335 of which were dynamic and 9,473 of
which were static.

The RELIEF algorithm calculates the quality of features
according to how well their values distinguish between apps
that are near to each other. For this purpose, given a ran-
domly selected app, xi = {x1i, x2i, . . . , xni}, RELIEF searches
for its two nearest neighbors: Nearest-hit H found from
the same class, and nearest-miss M found from a differ-
ent class. After that, it updates the quality estimate for all
the features according to the values of xi, M , and H . The
RELIEF is robust to feature interactions and can be applied to
binary or continuous data. Sheen et al. [41] employed three
feature selection methods: Chi-Square, Relief and Informa-
tion Gain. The experimental results showed that the top 20
features adopted from RELIEF got the best accuracy, up
to 94.97%.

Correlation based Feature Selection (CFS) is a simple
filter algorithm that ranks features according to a correlation
based on the heuristic evaluation function. Therefore, CFS
consists of a search algorithm and a function that evaluates the
merit of features. Since good feature subsets contain features
highly correlated with the class and they are uncorrelated
with each other, CFS measures the usefulness of individ-
ual features for predicting the class label along with the
level of inter-correlation among them. Xu et al. [10] firstly
extracted 121,621 ICC-related features in total. They applied
CFS to remove the redundant features and finally chose
5,000 ICC-related features that were used for the

classification of malicious and benign apps. It achieved
accuracy of 97.4% with 0.67% FPR.

One-way analysis of variance (ANOVA) is a novel feature
selection method. ANOVA is a technique used to compare
means of three or more samples. In the ANOVA table, entries
SSE (Sumof squared errors), SST (Treatment sum of squares)
and Total SS (Total Sum of Squares) can be found. Proportion
of variance explained by the feature can be calculated as
follows:

Variance =
SST
totalSS

The higher ratio is, the more proportion of variance the
feature can explain in the data. It follows that the features with
high proportion should be selected. Qiao et al. [63] compared
two feature selection methods: (ANOVA) and Support Vector
Machine-Recursive Feature Elimination (SVM-RFE) which
is a wrapper method. When using the ANOVA, the system
achieved 91.36% accuracy.

B. SELECTION BASED ON WRAPPER APPROACH
The wrapper approach offers a simple and powerful way to
address the problem of feature selection. Wrapper approach
considers the feature selection as a search problem, where
different combinations are prepared. Since a combination
should be compared to other combinations, predictive mod-
els are formed to evaluate combinations of features. Then
it assigns a score to each combination based on model
accuracy. Although the wrapper approach may obtain bet-
ter performances, there are some disadvantages of wrapper
approach. It will require greater computational resources as
well as more computation time when the number of features
is large. Meanwhile, the overfitting risk will increase when
the number of observations is insufficient.

One wrapper approach, Support Vector Machine-
Recursive Feature Elimination (SVM-RFE) was used in
study [63] for feature selection. SVM-RFE is a powerful
feature selection algorithm. SVM-RFE computes the ranking
weights for all features and gives a list of features in the
order of weights. The algorithm then will remove the feature
with smallest ranking weight, while retaining the features of
important impact. It is a good choice to avoid overfittingwhen
the number of features is high. However, it may be biased
when there are highly correlated features. Qiao et al. [63]
compared two feature selection methods: ANOVA and
SVM-RFE. When using the SVM-RFE, the system achieved
91.52% accuracy, a little higher than that of using ANOVA.

C. SELECTION BASED ON THE USAGE OF FEATURE
Some work believes that the features that used more in
malicious apps will be more effective than the features that
used more in benign apps. Aafer et al. [12] firstly extracted
8,375 APIs. Then they took only the APIs whose usage in
the malapp set was higher than in the benign set and finally
reduced the features to 169 APIs. They achieved the high-
est accuracy of nearly 99% using KNN. Chen et al. [196]
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compared the permissions requested by the malicious apps
with the permissions requested by benign ones and ulti-
mately selected 59 out of 120 permissions as features.
Chuang et al. [56] ranked the APIs according to their usage
difference in percentage. If an API is used by x%ofmalicious
apps and y%of benign apps, the API will be ranked according
to (x − y)%. Then they select the top k APIs according to
the rank such that the number k satisfied a threshold of 10%
difference in API usage frequency. The experiment showed
that the system achieved 96.69% accuracy with 2.5% false
positive rate in detecting unknown malapps. Hang et al. [71]
weed out the features that most normal apps had to get effec-
tive features formalapp detection. Varsha et al. [69] employed
a feature selection method called entropy based Category
Coverage Difference (ECCD). In terms of this method, if the
feature appears only in one class, then the entropy will be
minimum (equals 0). It indicates that this feature may be a
good discriminant feature. If the feature appears in all class
with same frequency, then the entropy will be maximum.
Varsha et al. [69] got accuracy of 98.14% at a feature length
of 234 using RF classifier.

D. SELECTION BASED ON LOGISTIC REGRESSION
Logistic regression is a linear classifier whose parameters
are weights, usually in terms of weight vector ω, and the
regularization parameter. After training logistic regression,
ω is estimated, and the value of each weight represents how
important that weight is for classification.

Wu et al. [49] pre-generated an API list ranked with
malicious weight values using the LR algorithm. For the
classifier evaluation, they selected top k (50, 100, 150, 200,
250, and 300) dataflow-related APIs as feature vectors and
generated the classification model. The experiment result
showed that the contribution of the top 150 APIs for iden-
tifying malapp was the highest. Muñoz et al. [185] used
Logistic Regression model along with the Step Akaike Infor-
mation Criterion for feature selection. The feature selection
algorithm reduced the number of features to the eight most
relevant ones. The experiments finally achieved the 97%
accuracy.

E. SELECTION BASED ON OTHER APPROACHES
Since feature matrices generated by the system call depen-
dency exhibited high sparsity, Dimjavsevic et al. [131]
removed all columns without a nonzero element from the
matrices. The experiment showed that this method obtained
detection accuracy of 93% with FPR of 5%.

Zhao et al. [38] took the feature dataset as input, and
ran FrequenSel to decide whether a feature satisfied with
the specific conditions or not. These conditions required
that the frequency and coverage of a feature should exceed
several predefined thresholds. The typical features they col-
lected were not only frequently used by malapp, but also
had a certain coverage in the feature dataset. They only used
398 features in the experiments, which was much less than

over 32,000 features they extracted. Thier method finally got
97.8% accuracy which is better than most of the scanners.

Mohaisen et al. [199] ran the recursive feature elimination
(RFE) algorithm which ranks all features from the most
important to the least important feature. First, the estimator
was trained on the initial set of features and weights were
assigned to each one of them. Then, features whose absolute
weights were the smallest were pruned from the current
set features. The procedure was recursively repeated on the
pruned set until the desired number of features to select was
eventually reached. Mohaisen et al. finally chose the top
65 features for malapp detection.

A specific method called ClassifierSubsetEval from
Weka machine learning tool was used to feature selection.
Narudin et al. [136] selected 6 features out of 11 after apply-
ing feature selection algorithm.

Wang et al. [201] usedVarianceThreshold for feature selec-
tion in anomaly detection. VarianceThreshold is a simple
baseline approach to feature selection. It removes all features
whose variance doesn’t meet some threshold. By default,
it removes all zero-variance features, i.e. features that have
the same value in all samples.

Yerima et al. [65] utilized Mutual Information (MI) cal-
culation to rank the extracted features. After calculating the
MI for each feature, they ranked features from largest to
smallest in order to select thosemaximizedMIs to get optimal
classifier performance. When they chose the top 10 features
for experiments, the system achieved the accuracy of 97.43%.

Liu et al. [67] applied an integrated feature selection
approach based on the principle of self-learning to extract
important features. The integrated feature selection method
includes two main steps: generation of training subsets to
establish balanced training subsets and merging feature sub-
sets to obtain a global feature set. The method can decrease
the dimension of features and reduce the risk of information
losing.

Apart from the feature selection methods, there also exist
many methods for the classification or detection of anoma-
lies, intrusions or malapps [245]–[253].

VI. RELATED SURVEYS
There have been thousands of features used for Android
malapp detection. However, to the best of our knowledge,
there is no systematic literature review on the proposed fea-
tures yet. Several related surveys have been conducted. But
they don’t carry out comprehensive analysis of the existing
features.

Sadeghi et al. [7] provided a survey of the existing
approaches for Android security analysis. They analyzed the
results of 336 research papers published in diverse journals
and conferences. They constructed a taxonomy by perform-
ing a ‘‘survey of surveys’’ and conducting an iterative con-
tent analysis over papers they collected. Then they applied
the taxonomy to classify the papers about Android security.
They finally conducted a comprehensive analysis on differ-
ent concepts in the taxonomy, and presented current trends
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and gaps in the existing papers. Simultaneously, they under-
lined key challenges and opportunities that will give a direc-
tion of future research efforts. Faruki et al. [254] discussed
the Android security enforcement mechanisms and threats
to the existing security enforcements and related issues.
In addition to the existing detection methods, this paper
referred the malapp growth timeline between 2010 and 2014,
and stealth techniques employed by the malapp developers.
Cooper et al. [255] gave an overview of malapp characteris-
tics commonly found in themarket. Themalappswere viewed
in terms of characteristics, such as the requested permissions,
API call sequences and nature of arguments. Then, they
showed themitigation approaches that are currently presented
in the papers and highlighted the advantages and disadvan-
tages. Rashidi et al. [256] discussed the existing Android
security threats and existing security enforcement solutions.
The papers they selected were primarily behavior-based and
focused on tracing the apps’ system calls and analyzing the
activities. Li et al. [8] gave a literature review that analyzed
around 90 papers about software engineering, programming
languages and security venues. They presented a view of
papers that statically analyzed Android apps, and highlighted
the trends of static analysis approaches. They pointed out
where the work should focus on and gave a direction that
future researches still need to do.

Although the above previous work involves the analysis
of Android apps, they focus on either macroscopic security
analysis of Android app or comparison of existing tools.
In this paper, we aim to investigate security of Android apps
in detail. We focus on the features and the feature selec-
tion methods used in existing work for malapp detection.
We present a taxonomy of existing features and feature selec-
tion methods. In addition, we provide directions for future
research in next section.

VII. DISCUSSIONS AND DIRECTIONS FOR FUTURE WORK
In the previous sections, we look back at the related workwith
respect to features used for Android malapp detection. Exist-
ing features can be classified into 3 categories, i.e., static fea-
tures, dynamic feature and meta-data based features, each of
which contains many subsets. Based on our survey, it is easy
to find out which features are frequently used. In this section,
we first give some discussions of surveyed papers, and then
provide directions in the field of Android malapp detection.

A. DISCUSSIONS
The analysis of Android apps has gained much attention.
From our survey, we can see that it has become and remained
a hot topic since 2014. We have following findings from our
survey.

1) THE TRENDS OF THE ANALYSIS OF ANDROID APPS
Android malapp detection can be implemented through static
analysis, dynamic analysis, or hybrid analysis. Fig. 10 depicts
the trends of the analysis of Android apps from 2011 to
2018. It is obvious that static analysis technology dominates

FIGURE 10. The Trends of The Analysis of Android Apps.

the field of Android malapp detection. Meanwhile, related
work has paid an increasing attention on dynamic and hybrid
analysis technologies in recent years. Dynamic analysis well
makes up for some deficiencies of static analysis, presenting
a slowly rising trend. Hybrid analysis combines both merits
of static and dynamic analysis.

2) PERFORMANCE OF EXISTING FEATURES
Most existing work extracts multiple features rather than
a single feature for accurately detecting Android malapps.
In our previous work [3], we have made a comparison
between 11 single-type feature sets and 3 combined feature
sets, showing that the latter generally outperforms the former.
As shown in table 3, we exhibit the accuracy of detection
based on some features that has been shown in state-of-the-
art work. Although the detection results depend on the dataset
used, these results reflect the efficiency of their selected
features. A high detection rate can be obtained by extracting
some features, such as API, Permission, Filtered Intent, Sys-
temCall and so on. These effective features are recommended
for detecting Android malapps. Some other features like
‘Battery Feature’ and ‘Other Strings’ is vulnerable to detect
malapps, but they may be helpful to inspect newly unknown
apps.

B. DIRECTIONS
As mentioned in Section I, there are many key issues that
future work needs to resolve. For these issues, we provide
some directions in the field of Android malapp detection.

1) The number of extracted features is generally too large
to deal with. Well-discriminated features characterize
apps’ behaviors more accurately, thus detecting and
categorizing based on these features can be more effec-
tive and efficient. The future work should hence focus
on exploring and refining more effective and represen-
tative features from apps. In addition, future work can
remove redundant features and filter out more irrela-
tive features through optimizing the feature selection
approaches.

67622 VOLUME 7, 2019



W. Wang et al.: Constructing Features for Detecting Android Malicious Applications: Issues, Taxonomy, and Directions

TABLE 3. The accuracy of detection based on individual feature.

2) Collecting more representative malapps and analyzing
their characteristics is very important for their detec-
tion. These behaviors may be helpful to amend the
distinguished feature sets.

3) To deal with the issue of large size of APKs, it is
imperative to explore more effective features that are
easily to extract in future work, so that the difficulty of
extracting features will not be subject to APKs’ size.

4) The number of apps continues to grow rapidly.
In the future, malapp detection can combine with
AI or machine learning based algorithms, such as deep
learning, to make the detection more intelligent, so as
to facilitate automated detection and to ease the man-
agement of app markets.

5) In terms of static features, it may need to pay more
attentions to the features that perform well in persis-
tence, such as our proposed platform-define features.
It is also feasible to extract some underlying features,
such as kernel-level features, so that malapp detection
has relatively low dependence on platforms and apps.

6) In view of the obfuscated Android apps, it’s nec-
essary to extract some obfuscation-invariant fea-
tures. An investigation [257] indicates that there are
several common obfuscation techniques used by

Android apps, namely, identifier renaming, string
encryption, Java reflection and packing. Besides, con-
trol flow obfuscation technology is also widely used in
Android apps. There has been some detection methods
for detecting obfuscated apps with different obfusca-
tion techniques. The same as Android malapps detec-
tion, obfuscation detection can also extract relevant
features from APK files and employ machine learning
algorithms for classification [258]. The features should
be diverse for different obfuscation techniques [233].
For example, with identifier renaming, the apps’ iden-
tifiers would be replaced by some single characters
(like ‘a’ , ‘b’) or strings with repetitive characters,
e.g. ‘aaaa’, ‘bbbb’. Therefore, the identifiers can be
extracted for detecting identifier, such as class names,
methods names, fields names and so on [259]. To detect
string encryption, some features can be captured by
analyzing constant strings of an app before and after
string encryption. As for control flow obfuscation
detection, we can extract features from the control flow
graphs (CFG) of apps.
Through distinguishing the obfuscation techniques
used by obfuscated apps, distinctive and targeted
features can be extracted for detecting obfuscated
malapps, so as to improve the detection efficiency.
For instance, it is necessary to dynamically analyze
apps for detecting malapps that obfuscated by control
flow or Java reflection technologies, while it is only
needed to extract some structural features using static
analysis method, e.g. function call graph, to detect
malapps with identifier renaming. Hence, effective
detection approaches should be proposed correspond-
ing to different obfuscation techniques, in order to real-
ize automatic detection on obfuscated malicious apps.

7) For dynamic analysis, it requires to automatically tra-
verse all possible execution paths so as to extract as
many as effective features for the detection of malapps.
It is imperative to improve or develop a more sonicated
tool for automated dynamic analysis.

8) For the problem of sparse matrix, it requires to develop
approaches to processing high dimensional sparse vec-
tors effectively and efficiently.

In addition, we believe that there should be a publicly avail-
able test dataset so that researchers can verify their proposed
methods, from the features to the classification algorithms.
The vetting for malapp still needs further exploration and
research.

VIII. CONCLUDING REMARKS
In this paper, we follow the systematic literature review
process, and conduct a systematic survey of the features
used in state-of-the-art research literatures aiming at Android
malapp detection. First, we review thousands of papers pub-
lished from January 2011 to February 2019, and finally select
236 papers from them. Second, we present a taxonomy of
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the features that the related employs. Third, based on the
survey, we highlight the issues of constructing features for
malapp detection. Finally, we summarize the trends in the
field of Android malapp detection and provide some direc-
tions for future work.

This survey shows that the existing work should explore
and refine well-discriminated features from numerous static
features, and pay more attention to dynamic analysis and
hybrid analysis to make up for inherent defects in static
analysis. We find that existing work easily overlooks some
features, such as native code, dynamical loading code and
dynamic loading library and these can be amended to form
a more effective feature set for the detection of malapps.

From our investigation, we find that (1) The analysis of
Android apps has gained much attention. It has become and
remained a hot topic since 2014; (2) As code protection tech-
niques (e.g., code obfuscation or encrypted shell protection)
have been widely used and the size of apps has become
increasingly large, effective features are not easy to extract
with traditional static analysis methods. It calls for subtle
techniques like de-obfuscation or anti-packaging so as to
construct more effective features from apps; (3) As functions
of apps have become increasingly powerful and the behaviors
of malapps have become increasingly sophisticated, dynamic
analysis is more effective than static analysis in terms of fea-
ture extraction for the detection of malapp. However, extract-
ing features by dynamic analysis is too time-consuming to
vet a very large number of apps. In addition, traversing all
possible execution paths is a challenging task. It is thus
imperative to develop more effective tools to simulate trig-
gering all possible events in apps so as to construct repre-
sentative features; (4) The meta-data features do not show a
good ability for discriminating malicious apps from benign
ones. However, this kind of features can be for rapid initial
screening and analysis of apps, so that the detection can be
accelerated; (5) The number of features extracted from an
app may be up to a million, it is thus imperative to perform
feature selection in order to remove redundant or irrelevant
features, so that massive apps in the market can be efficiently
processed; (6) As the number of features as well as the num-
ber of apps increases dramatically, effective artificial intelli-
gence or machine learning approaches are required to process
very high dimensional vectors representing apps. Moreover,
the detection of Android apps can be performed with deep
learning models to make detection more intelligent and auto-
mated, especially for the detection of unknown malapps;
(7) Only a small portion of state-of-the-art work have made
their features publicly available. Publicly sharing specific
selected features is impelled so that the detection methods
can be fairly evaluated and compared.
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