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ABSTRACT A novel framework of signal extraction is proposed based on improved singular spectrum anal-
ysis (SSA) and compressed sensing (CS) for laser radar. The improved signal selectionmethod, which locates
a cut-off point on the singular spectrum curve, is fused into the SSA to reduce the noise. Afterward, the CS in
the wavelet domain is employed to acquire the observation vector, and the improved reconstruction algorithm
with a hard threshold denoising method reduces the noise furthermore. The simulations and experiments are
performed to verify the superiority of the proposed algorithm compared with other algorithms. The proposed
algorithm can enhance a signal-to-noise ratio while reducing the distortion of the received signal.

INDEX TERMS Laser radar, signal denoising, singular spectrum analysis, compressed sensing, wavelet
transforms.

I. INTRODUCTION
Recently, with the advantages of high precision and high
resolution, laser radar is widely used in various fields, such as
unmanned vehicles [1]–[3], remote sensing [4], [5], mobile
robots [6], [7], etc. Laser radars are divided into two cate-
gories: direct detection laser radars and coherent laser radars,
where direct detection laser radar measures the round-trip
time of laser pulse and achieves the distance between the
target and itself by using time-of-flight method. It has been
noted that ranging distribution and precision of laser radar are
directly affected by signal-to-noise ratio (SNR) [8]. Previous
works demonstrated that ranging precision declined with the
decreasing of SNR [9]. Especially in low SNR, the received
signal buried in noise is not detected and recognized using
classical analog methods such as peak detection (PD), lead-
ing edge detection (LED) and constant fraction discrimina-
tor (CFD) [10], [11]. Thus, it is crucial to extract received
signals through denoising methods.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chenhao Qi.

Fourier transform (FT) [12], as a classical signal anal-
ysis method, is not suitable for non-stationary noisy
received signal. In order to reduce noise of non-
stationary signal, there are a number of researches avail-
able proposing with Time-frequency analysis methods,
such as short time Fourier transform (STFT) [13], discrete
wavelet transform (DWT) [14]–[16], empirical mode decom-
position (EMD) [17], [18], Singular spectrum analy-
sis (SSA) [19], etc. Although STFT overcomes the deficiency
of FT, it is difficult of finding proper length of window
function for achieving ideal denoised effect. The well-known
wavelet threshold denoising method derived from DWT has
been applied in lidar [20], imaging process [21] and gear fault
diagnosis [22], etc. The most critical components of wavelet
denoising algorithms are threshold function, wavelet base
and decomposition level. Previous researches have mainly
focused on threshold functions. Donohon proposed the hard
and soft threshold function to reduce signal noise [23]. Zhou
and Li employed soft threshold function to extract lidar echo
signals [15], [20]. However, hard function will cause addi-
tional oscillation and discontinuity point of signal. Since soft
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threshold function ameliorates signal quality, the similarity
between reconstructed signal and original signal is reduced.
Hence, some scholars put forward other continuous derivable
threshold functions such as the power function [24], [25],
semi-soft function [21] and sine function [26]. Nevertheless,
if the threshold function and threshold are not appropriate
for specific signal, the quality of the denoised result is not
guaranteed. Moreover, wavelet denoising algorithm cannot
achieve high temporal and frequency resolution simultane-
ously. EMD decomposes the signal adaptively and obtains
the complete signal component. But mode mixing and end
effect will affect the precision of signal denoising and extrac-
tion [27], [28].

SSA is a powerful method for studying nonlinear time
series and signal processing. It constructs the trajectory
matrix according to the observed time series. The signals rep-
resenting different components are extracted combined with
decomposition and reconstruction of trajectory matrix. If sig-
nal and noise are regarded as two components of original time
series, the boundary point of two groups of signal is especially
significant. Traditional selection methods of boundary point
are derived from singular value difference spectrum [29],
singular value curvature spectrum [30], and singular entropy
increment [31]. Since there is no obvious distinction between
curves depicted by singular value and singular entropy incre-
ment except the amplitude. Compared with singular value
curvature spectrum, the difference spectrum method is not
adequate to distinguish the cut-off point of singular value due
to the sparse feature of difference spectrum curve. Thus, it is
more convenient by using singular value curvature spectrum.
However, peak selection method in Ref [30] is not always
efficient for echo signal. Therefore, a novel selection criterion
should be updated. What’s more, this bound point is not
completely accurate, and another denoising method should
be utilized.

Compared with above methods, compressed sensing (CS)
theory, firstly put forward by Donoho et al. [32], not only
reduces the noise in reconstruction, but also avoids the
threshold selection of DWT and EMD methods. Based on
CS theory, clean signal is represented as a spot of none-zero
elements, which are so-called K-sparsity in certain orthog-
onal space. Combing with observation matrix and sparsity,
the original signal is recovered through specific algorithms,
which are primarily separated into two parts: convex opti-
mization algorithms and greedy algorithms [33]. In summary,
there are three problems of CS method: sparse decompo-
sition, recovery algorithm and K-sparsity. (1) In the aspect
of CS decomposition, both Chen and Qu adopted DCT and
FFT to decompose the noisy signal respectively [34], [35].
However, it is mostly not reasonable to use DCT and
FFT because of the Gaussian characteristic of the received
laser signal. Despite Zhao exploited detail coefficients to
reduce the noise [36], the recovery signal in every decom-
position level is composed of at least one element. Thus,
the noise contained in the detail coefficients is not com-
pletely removed to all intents and purposes. (2) In addition,

compared with greedy algorithms, it is tough to adopt con-
vex optimization algorithm because of the limitations of
complexity and computation cost. Contrarily, matching pur-
suit (MP) and orthogonal matching pursuit (OMP), as rep-
resentative greedy algorithms, are easy to realize signal
recovery [37]. Furthermore, regularized orthogonal match-
ing pursuit (ROMP), compressive sampling matching pursuit
(CoSaMP), subspace pursuit (SP) algorithms and gener-
alized orthogonal matching pursuit (GOMP), as modified
OMP algorithms, were proposed and used to acceler-
ate convergence on each iteration by exploiting multiple
atoms [38]–[41]. (3) Nevertheless, algorithms above require
prior knowledge about the sparsity that is not acquired for
natural signal. Hence, stagewise orthogonal matching pur-
suit (StOMP) and stagewise weak orthogonal matching pur-
suit (SWOMP) were proposed to make up for shortcomings
and adaptively reconstruct signal without knowing spar-
sity in advance [42], [43]. However, due to existence of
wrong atoms, accurate recovery of approximately sparse
signal is not guaranteed as well. Moreover, the CS recon-
struction is not efficient, once SNR is less than certain
threshold.

In order to solve above problems, we proposed improved
SSA to realize pre-denoising. Afterwards, the CS theory
in wavelet domain is employed to decompose the received
laser signal. Both of approximate coefficients and detail
coefficients are conducted to recovery signal. The improved
GOMP (IGOMP) is proposed to bring about signal recon-
struction and enhance denoising effect.

The remainder of the paper is organized as follows.
In Section 2, the model of noisy signal is given combing laser
radar system. In Section 3, two-stage denoising framework is
proposed. The singular value selection method is added to
SSA algorithm to reduce the noise. Afterwards, the CS in
wavelet domain is employed to acquire the observation vec-
tor, and the improved GOMP reconstruction algorithm with
hard threshold denoising method enhances SNR furthermore.
In Section 4, SNR and peak time error are conducted to eval-
uate denoised effect with different algorithms. In Section 5,
the experiments are carried out and verified the superiority
of proposed algorithm for noisy signal. Finally, some conclu-
sions are given.

II. PRINCIPLE OF LASER RADAR
The laser radar consists of laser emitted system, laser receiv-
ing system and signal processing system. The working
diagram of laser radar is shown in Fig.1. The pulse laser
beam, generated by laser diode and laser emitting circuit,
is collimated into the narrow pulse beam with collimated
lens. Afterwards, the narrow beam propagates in atmosphere
through a 45-degree reflector. Whilst the scattered light
reflected from the target irradiates on the avalanche pho-
todiode (APD) through filter and focusing lens, the pulse
laser light is converted into the pulse current signal, which
is amplified with laser receiving circuit. Thus, the distance
between target and laser radar is calculated.
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FIGURE 1. The working diagram of laser radar.

FIGURE 2. Flow chart of two-stage denoising framework.

Based on literature [8], the voltage of receiving signal is
regarded as linear superposition of two Gaussian functions,
and then we can write it as:

V (t) = A1e−(t−t1)
2/2τ 21 + A2e−(t−t2)

2/2τ 22 + A3 (1)

where A1 and A2 are the amplitudes of two Gaussian func-
tions, respectively, A3 is the direct current voltage, t1 and t2
are the peak time of two Gaussian functions, respectively, and
τ1 and τ2 are pulse widths, respectively.

The noisy signal is represented as:

Vsn(t) = V (t)+ Vn(t) (2)

where Vn(t) is noise signal.
The probability distribution of noise signal, described as

Gaussian distribution, is written as:

p (Vn(t)) =
1

√
2π V n

exp

(
−
V 2
n (t)

2V
2
n

)
(3)

where V n is equivalent root mean square (RMS) noise
voltage.

III. TWO-STAGE DENOISING ALGORITHM
Two-stage denoising framework is composed of improved
singular spectrum analysis and CS denoising in wavelet
domain. Fig. 2 displays flow chart of denoising framework.
In pre-denoising stage, the cut-off selection method is pro-
posed. In CS denoising stage, the signal is decomposed

in wavelet domain, and then adaptive K-sparsity determi-
nation method is put forward by using curvature analysis.
Finally, the improved recovery algorithm with hard threshold
method is employed to enhance the probability of signal
reconstruction.

A. IMPROVED SINGULAR SPECTRUM ANALYSIS
Classical SSA method is divided into four steps: data embed-
ding, singular value decomposition (SVD), grouping and
diagonal averaging [19].

1) STEP1: DATA EMBEDDING
The laser noisy signal is: sN = {ci} i = 1, · · · ,N . The
Hankel matrix is constructed using data embedding method.
Assume that the row number of data embedding is n, and
the column number is N − n + 1. The Hankel matrix is
represented as:

H =


c1 c2 · · · cn
c2 c3 · · · cn+1
...

...
...

...

cN−n+1 cN−n+2 · · · cN

 (4)

2) STEP2: SINGULAR VALUE DECOMPOSITION
After data embedding, the matrix H with SVD is rewritten
as:

H = U6VT (5)

where U and V are orthogonal matrices, and 6 is diago-
nal matrix, which consists of singular values. Vector groups
{ui} of U are the orthonormal normalized eigenvectors of
matrix HHT. Vector groups {vi} of V are the orthonormal
normalized eigenvectors ofmatrix HTH.

Considering the l = rank(H ), the Hankel matrix can be
expressed as:

H =
l∑
i=1

H i =

l∑
i=1

uiσivTi (6)

where the singular values are listed in descending order:
σ1 ≥ σ2 ≥ · · · ≥ σl ≥ 0.

3) STEP3: GROUPING
Based on the grouping principle, the set of indices {1, . . . , l}
are partitioned into IG irrelevant subsets I1, I2, . . . , IG. Let
Ii = {i1, . . . , ip} be the ith subset. The subset matrix and
Hankel matrix can be expressed as

H Ii = H i1 +H i2 + · · · +H iP (7)

H = H I1 +H I2 + · · · +H IG (8)

4) STEP4: DIAGONAL AVERAGING
By applying diagonal averaging method to H Ii=
(aij)(N−n+1)×n, the zth element of signal reconstruction
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FIGURE 3. The flow chart of proposed method.

components RCIi is given by:

RCz =



1
z

z∑
j=1

aj,z−j+1 1 ≤ z ≤ N − n+ 1

1
N − n+ 1

N−n+1∑
j=1

aj,z−j+1 N − n+ 1 ≤ z ≤ n

1
N − z+ 1

N−n+1∑
j=z−n+1

aj,z−j+1 n ≤ z ≤ N

(9)

In fact, the original signal is recombined as:

s =
M∑
i=1

RCIi (10)

According to reference [29], singular values of 6 are
nonzero for the noisy signal. The characteristic of singular
values is: σ1 > σ2 > · · · > σk � σk+1 > · · · > σl .
Let G be 2, and determine k using specific method. We can
construct the denoised signal by Eqs. (9) and (10). In this
paper, we adopt singular value curvature spectrum. We select
k value traditionally according to the peak location. There
is no evidence showing that the peak location is optimal
especially in case of multi peak curve. Moreover, we reduce
partial noise to ensure the efficiency of denoising method
based on CS theory using the SSAmethod. In order to choose
a better k value, we relax the requirements and put forward
the two selection rules. The flow chart of proposed method is
shown in Fig. 3.

The procedure is outlined as follows:
Step1: Find local peak points of curvature amplitude

curve θp, p = 1, 2, 3 · · · .
Step2: Define threshold θT as mean(σk )+ q1 · std(σk ), and

q1 is adjustable factor. Let theminimum curvature point θpmin
be greater than the threshold θT. The ratio of energy from start
point to θpmin to noisy signal energy is detonated as r1.

Step3: Define the ratio of energy from start point
to θm,m = 1, 2, 3 · · · to noisy signal energy as r2m. Set
threshold r2. Let the minimum curvature point θmmin be
greater than the threshold r2.
Step4: If r1 > r2, the location of θpmin is defined as the

cut-off point. Otherwise, define location of θmmin as cut-off
point.
Step5: The cut-off point is determined and output.
In order to estimate the parameter r2, the noisy signal

sequence, whose absolute value is three times larger than the
estimated noise, is selected. The parameter r2 is calculated by
these selected signal parts.

Since we reduce the partial noise, the received voltage sig-
nal still contains residue noise. It is necessary to use denoised
method based on CS theory.

B. COMPRESSED SENSING IN WAVELET DOMAIN
The clean signal x, denoted as N × 1 column vector of
space RN , can be expressed with the linear combination of
the base vectors {ψ i|i = 1, 2, . . .N }. Thus, signal x is
rewritten as:

x =
N∑
i=1

αiψ i = 9α (11)

where 9 is the orthogonal basis matrix, which is composed
of base vectors, α is projection coefficient vector, and αi is
represented as αi =

〈
x,ψ i

〉
, namely, the inner product of

signal and ith base vector.
Obviously, x and α are equivalent representation of the

same signal. x is time domain representation of the signal,
andα is the representation in orthogonal domain.Whenαi has
onlyK nonzero coefficient, namelyK � N , signal x is called
K -sparsity in certain orthogonal domain. In this case, Eq. (11)
is the sparse representation of signal x. According to CS
theory, we can use observation matrix 8 ∈ RM×N (M � N )
to conduct adaptively nonlinear transform of signal x, which
converts the signal x into observation vector y ∈ RM×1.

y = 8x (12)

Substituting Eq. (11) into Eq. (12), the observation vector
is rewritten as:

y = 8x = 89α = Aα (13)

where A is sensing matrix. Since the dimension M of the
observation vector y is much smaller than the dimension
N of the signal x, we can achieve the purpose of signal
compression.

If the signal contain the noise, the noisy signal can be
represented as:

xn = x+ nw (14)

where x is the original signal, and nw is the noise.
The noisy observation matrix is calculated by substituting

Eq. (14) into Eq. (13):

yn = 8(x+ nw) = A(α + αn) (15)
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FIGURE 4. The diagram block of proposed algorithm.

where α is the projection coefficient vector of original signal,
and αn is the projection coefficient vector of noise.

According to the literature [32], compared the original
signal, the noise in the9 domain is not sparse. In other words,
the elements of vector αn are almost nonzero values. Thus,
combing the sparse characteristics of original signal, we can
retain K useful element to eliminate the noise component
and recover signal by solving Eq. (15). The most direct
reconstruction method is by solving Eq. (15) under l0 norm:

min ‖α‖0 s.t. Aα = y (16)

However, the inverse problem of solving Eq. (15) is an
NP-Hard problem. Even if optimization problem is solved
under l1 norm, the enormous computation is unavoidable.
many researchers have put forward reconstruction algorithm
such as MP and OMP algorithm.

In conclusions, three key problems of CS denoising are
signal decomposition, determination of K value and signal
reconstructs algorithm.

With respect to the signal decomposition, we utilize
discrete wavelet transform, discrete Fourier transform and
discrete Cosine transform frequently. Owing to the signal fea-
ture and wavelet characteristics, noisy signal is decomposed
using discrete wavelet base after the signal denoising based
on improved SSA method. The diagram block of proposed
algorithm is shown in Fig. 4.

We obtain the signal sequence α = [an, dn, dn−1 . . . , do]T

by using DWT. The output signal length through traditionally
DWT is equal to input signal length plus filter response
length minus one [44]. The total decomposition coefficient
number of DWT is greater than that of original signal,
which causes the additional component. To avoid redundant
signal, output signal sequence are constructed with peri-
odized extension method, followed by periodic convolution.
Finally, principal values sequence is taken as the output
signal sequence. The observation vector is calculated with
a Gaussian measurement matrix by Eq. (15). Meanwhile,
the original length is dramatically compressed. Compared
with OMP algorithm, GOMP algorithm has better perfor-
mance by rigorous proof [41], and the flow chart of GOMP
algorithm is described as Fig. 5.

The GOMP algorithm needs to know the pre-knowledge
of the K -sparsity, and inspired by singular value curva-
ture spectrum, we propose the curvature analysis method to

FIGURE 5. The flow chart of GOMP algorithm.

determine sparsity. The curvature function in discrete form is:

C(i)=
|α(i+1)−2α(i)+α(i−1)|

(1+(α(i)−α(i−1))2)
3
2

i = 1, . . . ,N − 1 (17)

The sparsity is determined using the identical method in
Section 3. The peak points Cp(i) are searched by traversing
all points. Find the minimum curvature point Cpmin(i) that is
greater than the threshold, which is mean(Cp)+ q2 · std(Cp).
Meanwhile, in order to compromise between the accuracy
and computation cost, we add correlation termination condi-
tion, which is expressed as corr(x,9α̂k ) > corr(x,9α̂k−1).
Thus, the pseudocode of IGOMP algorithm is shown in
Table 1. The whole process is as follows:
Step1: Initialize: iteration count k = 0, estimated

list T 0
= 0, residual vector r0 = y, and selection atom

number S.
Step2: If the termination conditions, denoted as

∥∥rk∥∥2 > ε,
k < M/S and corr(x,9α̂k ) > corr(x,9α̂k−1), are satisfied,
increment k and go to Step3. Otherwise, Go to Step5.
Step3: Calculate the inner product of observation vector

and sensing matrix, and select S maximal values. Select atom
columns 3k , which are corresponding to S maximal values.
And then, update the estimated list T k = T k−1 ∪3k .
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TABLE 1. The IGOMP algorithm.

Step4: Estimated signal sequence α̂k is calculated using
least square method. Update the residual vector rk . Go to
Step 2.
Step5: Output estimated signal sequence α̂.
Despite the IGOMP algorithm can recover the elementary

contour of original signal, the signal sometimes contains
impulse noise on account of the wrong atoms. Moreover,
arbitrary greedy algorithm reconstruct signal successfully
with a certain probability. Thus, we adopt the hard threshold
denoising method to remove the residual noise. In this paper,
the hard threshold denoising aims at the detail coefficients,
and hard threshold function is expressed as:

β =

{
0, |h| < Th
h, |h| ≥ Th

(18)

where h is the detail coefficient after IGOMP reconstruction
algorithm, and Th is the threshold, which is triple standard
deviation of estimated noise level.

After updating the sequence, the inverse DWT is used to
obtain completely denoised signal.

We select n as N /2, the computational complexity of ISSA
algorithm is O(N 3), and the computational complexity of
IGOMP algorithm isO(Klog(N/K )). Therefore, the proposed
computational complexity is O(N 3), as N is big enough.

IV. SIMULATIONS
On account of the ranging requirement, we evaluate perfor-
mance of signal denoising with two parameters: SNR, and
peak time error (PTE).

SNR is defined as:

SNR=10lg
‖V (t)‖22∥∥∥V (t)− Ṽ (t)∥∥∥2

2

(19)

where V (t) is the original signal, and Ṽ (t) is denoised signal.

FIGURE 6. The simulation received laser signals: (a) original signal and
(b) noisy signal with RMS noise voltage 25mV.

And PTE is:

PTE =
∣∣tp − td∣∣ (20)

where tp is ideal time instant with respect to peak voltage, and
td is time instant with respect to peak voltage after de-noising.
Assuming A1 = 0.3V, A2 = −0.1V, A3 = 0V, t1 = 20ns,

t2 = 50ns, τ1 = 20ns, τ2 = 30ns, V n = 25mV, time
resolution to be 1ns, and the signal length N to be 512,
simulation signals are shown in Fig. 6.

A. PROPOSED ALGORITHM
The paramters are: q1 = 0.1, q2 = 0.1, S = 2, M /N = 0.4.
The wavelet decomposition level is 6, and the wavelet base
is ‘db4’. The row number n of data embedding is 256.
The parameter r2 is calculated as 0.8145. It can be seen
from Figure 7 (a), the profile of singular value spectrum is
complex. According to the proposed curvature spectrum, the
threshold, marked as red line, is determined. Meanwhile,
19 singular values are retained. The denoised signal is
depicted in Figure 7 (b). The partial noise is diminished.
It provides the predenoising for CS denoising algorithm. The
sparisity is 16 based on K -sparisity selection method. The
denoised results are shown in Figure 7 (d). If we use IGOMP
reconstruction algorithmwithout hard threshold, the denoised
signal is incomplete. There would be remained impulse noise,
which affects the ranging result. Therefore, the CS denoising
method is not always efficient. In order to keep algorithm
robust and efficient, the remained impulse noise shall be
removed with wavelet hard threshold method. The threshold
is based on the noise level of noisy signal. According to
fifty sequences of noisy signal, the estimated noise level is
0.0239V, and Th is 0.0711V. Fig. 7 (d) illustrates the recov-
ered signal with hard threshold method (blue line), where the
impulse noise is eliminated.

Finally, we compare the wavelet with soft threshold
denoising, DFT with GOMP, and propose the algorithm.
Comparing with other algorithms, the denoising curve of
DFT with GMOP is not smooth due to the residual noise.
On the other hand, it is unavailable to achieve the peak volt-
age or the corresponding time instant correctly. The ranging
accuracy is severely limited, whatever the ranging method
is used. The curve with soft threshold method is smoother
than that of DFT with GMOP. However, partial useful signal
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TABLE 2. SNRs with different algorithms.

FIGURE 7. The denoised results. (a) Curvature spectrum with proposed
threshold (red line). (b) The denoised signal after ISSA algorithm.
(c) Curvature spectrum with wavelet decomposition results. (d) Denoised
signal after two-stage denoising algorithm. (e) The denoised signal curves
with different algorithms.

is lost. Even if peak time instant of DFT with GMOP is
similar to that of the original signal, the peak voltage will
be lower than original one. The proposed algorithm could
correct this deficiency. The CS with IGMOP prevents the
peak voltage decrease. Moreover, the peak inverse voltage is
the same as original voltage. It can keep point cloud more
precisely for laser radar.

B. ALGORITHM COMPARISION
To compare denoised efficiency, we calculate SNR of dif-
ferent algorithms with different RMS noise voltage. The
algorithms adopted are: hard threshold, soft threshold,

DFT with GOMP, DWT with GOMP, ISSA + DFT with
GOMP, ISSA + DFT with GOMP + smoothing filter,
ISSA+Hard threshold, ISSA+ Soft threshold and proposed
algorithms. The paramters are: q1 = 0.1, q2 = 0.1, S = 2,
M /N = 0.4. The wavelet decomposition level is 6, and
the wavelet base is ‘db4’. SNRs and PTEs with different
algorithms are shown in Table 2 and 3 respectively. As can
be seen from Table 2, SNR of the proposed algorithm is
the best. Meanwhile, SNR of hard threshold is the worst.
Whilst equivalent RMS noise voltage is 10mV, SNRs of DFT
with GOMP and DWT with IGOMP are higher than those of
soft threshold and hard threshold method. Nevertheless, the
situation is opposite with lower SNRs. It means that denoised
performance based on CS theory with GOMP is limited in
low SNRs. After denoising with the proposed ISSA algo-
rithm, SNRs of soft threshold and hard threshold methods are
remarkably improved. Additional, SNRs of the two improved
threshold methods tend to be consistent with the decrease
of noise voltage. However, SNR of DFT with GOMP after
denoising signal with ISSA increases slightly. Because the
signal is not smooth as indicated in Fig. 7 (e), we improve
SNR with smoothing filter. Although SNR is increased by
more than 3dB with different noise using smoothing filter,
this algorithm is no better than the proposed algorithm either.
In addition to SNR, we focus on PTE based on ranging
principle. It can been see from Table 3 that the PTEs of
proposed algorithm with different noise are zeros with time
resolution of 1ns. Moreover, the PTEs of hard threshold, soft
threshold, DFT with GOMP and DWT with GOMP through
proposed ISSA are on a downward trend. The PTEs of hard
threshold, soft threshold methods with proposed ISSA reduce
to 1ns. Two-stage noise algorithm can improve the ranging
accuracy and reduce the noise.

C. INFLUENCE OF DIFFERENT PARAMETERS
1) the PARAMETER OF issa ALGORITHM
We have denotated θT as mean(σk )+q1 ·std(σk ) in Section III.
The θT is determined by parameter q1, and it is crucial to
decide the value of parameter q1. SNRs of proposed algorithm
with different q1 are calculated and shown in Table 4. When
q1 is positive between 0 and 1, SNRs of different equivalent
RMS noise voltage are almost invariable. While the q1 is
0 and the noise voltages are 30mV and 35mV, SNRs are lower
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TABLE 3. PTEs with different algorithms.

TABLE 4. SNRs of proposed algorithm with different q1.

FIGURE 8. The influences of different parameters on denoised results.
(a) Different number of indices S. (b) Different observation matrices and
the dimension M.

than those of positive q1. Specifically, as the scope of q1 is
from −1 to 0, r1 is 1. It means that the first stage denoising
method is not efficient. Thus, when the noise voltage is higher
than 15mV, the q1, selected as 0.1, is the best for ISSA
algorithm. In higher SNR situation, the q1 should be selected
to be close to 0.

2) THE PARAMETERS OF IGOMP ALGORITHM
In addition to the parameters of ISSA, The number of
indices S, observation matrix and dimension M of IGOMP
algorithm affect the denoising results as well. Hence,
the influences of different parameters on denoised results
are furthermore studied. Assuming that the other param-
eters are the same as part A. Fig. 8 (a) illustrates SNRs
of different parameters S with different equivalent RMS
noise voltages. While different equivalent RMS noise voltage
increases, SNR decreases. However, it is not in accordance
with the parameter S. When the noise voltage is between

FIGURE 9. Experiments setup and results. (a) The experiments setup.
(b) laser beam distribution. (c) Laser received waveform at 5m. (d) Fitting
curve of received signal.

15mV and 35mV, SNR is highest with S = 2. As the noise is
10mV, SNR of S = 2 is lower than that of S = 3 or S = 5
with 10mV. Generally, SNR is superior with S = 2. From
Fig. 8 (a), SNR is less influenced by parameter S.
Supposing that the other parameters are the same as

part A. SNRs of different observationmatrices and the dimen-
sion M are shown in Fig. 8 (b). We calculated SNRs of
Gaussian matrix, partial Hadamard matrix, Toeplitz matrix
and Bernoulli matrix, respectively. Although the compres-
sion ratio M /N increases, SNRs corresponding to Gaussian
matrix, partial Hadamard matrix and Bernoulli matrix fluctu-
ate around 20dB. The change regulation of partial Hadamard
matrix and Bernoulli matrix is identical. The rate of change
respect to Gaussian matrix are opposite to the three matrices
mentioned above. While M /N is 0.6, SNR is largest for
Gaussian matrix. But the computational cost rises in the
meantime. After balancing between SNR and computational
cost, it is the most suitable for denoising processing by
using compression ratio 0.4. It is worth noting that SNRs
corresponding to Toeplitz matrix are special. The larger the
compression ratio M /N is, the bigger SNR is. Nevertheless,
whatever the compression ratio, SNRs of Gaussian matrix,
partial Hadamard matrix and Bernoulli matrix are higher
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TABLE 5. Parameters of laser.

FIGURE 10. Denoised results. (a) The original received waveform.
(b) Denoised signal with hard threshold method. (c) denoised signal with
soft threshold method. (d) Denoised signal based on DFT with GOMP
algorithm. (e) Denoised signal based on DWT with GOMP algorithm.
(f) Denoised signal based on proposed algorithm.

than those of Toeplitz matrix. In summary, Gaussian matrix,
partial Hadamardmatrix and Bernoulli matrix are appropriate
for IGOMP algorithm.

V. EXPERIMENTAL
The experiments setup is shown in Fig. 9 (a). The light source
is 1064nm pulse diode-pumped solid-state laser. The laser
parameters are listed in Table 5. The beam divergence angle
is 0.8mrad. This small divergence angle is beneficial for laser
radar system. The laser beam, as shown in Fig. 9 (b), exhibits
Gaussian distribution. It is therefore substantial for received
signal measurement experiment. Although the laser power is
adjustable, it is too high to conduct experiments. Therefore,
neutral-density filter with attenuation rate 40% is used to
control the laser power. The radius of neutral-density filter is

FIGURE 11. Denoised results of proposed algorithm with different
parameters. (a) q1 = −0.1. (b) q1 = 0.1. (b) S = 2. (c) S = 4.
(e) Th = 0.05V. (f) Th = 0.1V.

15mm. A 45-degree reflector is mounted on optical platform.
The received optical system is mounted on two-axis platform
to adjust light path, and the resolution is 10µm. The type
of oscillograph is TBS1104. The sampling rate is 1GHz,
and bandwidth is 100MHz. When target, as diffusion reflec-
tor, is placed at 5m away from laser radar, the original voltage
signal is shown in Fig.9 (c). We fit the curve for received
signal. The fitting results are: A1 = −3.027V, A2 = 1.046V,
A3 = 2.446V, t1 = 6.12ns, t2 = 5.071ns, τ1 = −6.767ns,
τ2 = 2.653ns, A3 = 2.4V.
In order to compare denoised effect, another measure-

ment experiment was carried out. The distance between
target and laser radar is 5m. Original waveform is shown
in Fig. 10 (a), and maximum value is approximately 100mV
at 0ns. On account of electromagnetic radiation interference
of power supply, coupled noise, as an impulse noise, is
mixed with receiving signal. The signal length is 2048. The
paramters of denoised signal are set as: q1 = 0.01, S = 3,
M /N = 0.5. q2 = 0.1, Th = 0.0129V. The wavelet
decomposition level is 6, and the wavelet base is ‘db4’. The
demonised result retain the peak of signal with wavelet hard
threshold method, but the noise still exists. Although the
noise removed with wavelet soft threshold method, the signal
amplitude diminishes as well. Rather than removing noise,
the DFT with GOMP algorithm distorts signal furthermore.
The denoised effect of DWT with GOMP algorithm is better
than that of wavelet soft threshold method. However, there
are partial spike noises mixed in signal. Comparing with
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above algorithms, proposed algorithm shows outstanding per-
formance. The partial spike noise is removed, yet the peak
voltage does not attenuate.

In order to analyze denoised results of different parame-
ters, the denoised experiments of proposed algorithm with
different parameters are carried out and shown in Fig. 11. The
parameters are the same as mentioned above. The denoised
signal of Fig. 11 (a) is similar to that of Fig. 10 (e). Accord-
ing to the simulation results, in this situation, the first-stage
denoising method is disabled, and the spike noise exists.
When q1 is 0.1, the noise and peak value diminish simultane-
ously. The peak value is about −0.05mV, and the denoising
performance is not the best. Combined with the simulations,
due to 4.3mV noise level, the best q1 should be lower than
0.1. From Fig. 11 (c) and (d), it is tough to select parameter
S, which should be adjusted in experimentally. Finally, from
Fig. 11 (e) and (f), if the threshold is larger than recommended
value, the signal reduces to certain extent. The larger the
threshold is, the smaller the peak value would be.

VI. CONCLUSION
The principle of laser radar is introduced, and the received
signal model is described. The cut-off point among singular
values is determined by SSA algorithm fused with singular
value selection method. Furthermore, the CS denoising algo-
rithm based on improved GOMP reconstruction algorithm
with hard threshold denoising method enhances SNR. SNR
and peak time error calculation are conducted to evaluate
denoised effect among different algorithms. The experimen-
tal setup is built up, and the de-noising experiments are
carried out.

Some conclusions are achieved: (1) The proposed ISSA
algorithm can keep the useful signal and cut down the noise.
In addition, after using ISSA algorithms, the performances
of other denoised algorithms are of varying degrees improve-
ment through simulations. (2) CS denoising algorithm based
on IGOMP with hard threshold denoising method eliminates
the spike noise. Meanwhile, the failure probability of IGOMP
is smaller than that of OMP. (3) Compared with other algo-
rithms, the proposed algorithms performance is the best.

Our future work focus on full-waveform ranging accuracy
based on the proposed algorithm, especially in multi-target
ranging applications. Since the laser beam irradiates on multi
targets and the partial scattered light from target at long range
is weak, the proposed algorithm is suits well for this situation.

REFERENCES
[1] B. Schwarz, ‘‘LIDAR: Mapping the world in 3D,’’ Nature Photon., vol. 4,

pp. 429–430, Jul. 2010.
[2] I. Ashraf, S. Hur, andY. Park, ‘‘An investigation of interpolation techniques

to generate 2D intensity image from LIDAR data,’’ IEEE Access, vol. 5,
pp. 8250–8260, 2017.

[3] E. Javanmardi, M. Javanmardi, Y. Gu, and S. Kamijo, ‘‘Factors to eval-
uate capability of map for vehicle localization,’’ IEEE Access, vol. 6,
pp. 49850–49867, 2018.

[4] Y. Cheng, J. Cao, Q. Hao, Y. Xiao, F. Zhang, W. Xia, K. Zhang, and
H. Yu, ‘‘A novel de-noising method for improving the performance of full-
waveform LiDAR using differential optical path ,’’ Remote Sens., vol. 9,
no. 11, p. 1109, Oct. 2017.

[5] S. Nie, C. Wang, X. Xi, G. Li, S. Luo, X. Yang, P. Wang, X. Xi, G. Li,
S. Luo, X. Yang, P. Wang, and X. Zhu, ‘‘Exploring the influence of vari-
ous factors on slope estimation using large-footprint LiDAR data,’’ IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 11, pp. 6611–6621, Nov. 2018.

[6] S. Budzan and J. Kasprzyk, ‘‘Fusion of 3D laser scanner and depth images
for obstacle recognition in mobile applications,’’Opt. Lasers Eng., vol. 77,
pp. 230–240, Feb. 2016.

[7] X. Xu, M. Luo, Z. Tan, M. Zhang, and H. Yang, ‘‘Plane segmentation
and fitting method of point clouds based on improved density clustering
algorithm for laser radar,’’ Infr. Phys. Technol., vol. 96, pp. 133–140,
Jan. 2019.

[8] J. Haijiao, J. Lai, Y. Wei, W. Chunyong, and L. Zhenhua, ‘‘Theoretical
distribution of range data obtained by laser radar and its applications,’’Opt.
Laser Technol., vol. 45, pp. 278–284, Feb. 2013.

[9] S. Johnson and S. Cain, ‘‘Bound on range precision for shot-noise limited
ladar systems,’’ Appl. opt., vol. 47, no. 28, pp. 5147–5154, Oct. 2008.

[10] L. Jiancheng, J. Haijiao, Y. Wei, W. Chunyong, and L. Zhenhua, ‘‘Range
uncertainty distribution of direct-detection laser radar with a peak-
detecting routine,’’ Optik, vol. 124, no. 21, pp. 5202–5205, Nov. 2013.

[11] X. Li, B. Yang, X. Xie, D. Li, and L. Xu, ‘‘Influence of waveform char-
acteristics on LiDAR ranging accuracy and precision,’’ Sensors, vol. 18,
no. 4, p. 1156, 2018.

[12] G. Carter, C. Knapp, and A. Nuttall, ‘‘Estimation of the magnitude-squared
coherence function via overlapped fast Fourier transform processing,’’
IEEE Trans. Audio Electroacoust., vol. 21, no. 4, pp. 337–344, Aug. 1973.

[13] X. Ouyang and M. G. Amin, ‘‘Short-time Fourier transform receiver
for nonstationary interference excision in direct sequence spread spec-
trum communications,’’ IEEE Trans. Signal Process., vol. 49, no. 4,
pp. 851–863, Apr. 2001.

[14] P. Chai, X. Luo, and Z. Zhang, ‘‘Image fusion using quaternion wavelet
transform and multiple features,’’ IEEE Access, vol. 5, pp. 6724–6734,
2017.

[15] Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, ‘‘Improve-
ment of the signal to noise ratio of Lidar echo signal based on wavelet
de-noising technique,’’ Opt. Lasers Eng., vol. 51, no. 8, pp. 961–966,
Aug. 2013.

[16] M. Srivastava, C. L. Anderson, and J. H. Freed, ‘‘A new wavelet denoising
method for selecting decomposition levels and noise thresholds,’’ IEEE
Access, vol. 4, pp. 3862–3877, 2016.

[17] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng,
N.-C. Yen, C. C. Tung, and H. H. Liu, ‘‘The empirical mode decomposition
and the Hilbert spectrum for nonlinear and non-stationary time series
analysis,’’ Proc. Roy. Soc. London, Ser. A, Math., Phys. Eng. Sci., vol. 454,
no. 1971, pp. 903–995, Mar. 1998.

[18] J. Su, Y. Wang, X. Yang, and X. Wang, ‘‘Enhancement of weak lidar signal
based on variable frequency resolution EMD,’’ IEEE Photon. Technol.
Lett., vol. 28, no. 24, pp. 2882–2885, Dec. 15, 2016.

[19] N. Golyandina and A. Zhigljavsky, Singular Spectrum Analysis for Time
Series. Berlin, Germany: Springer, 2013.

[20] X. Li and Y. Huang, ‘‘Lidar signal de-noising based on discrete wavelet
transform,’’ Chin. Opt. Lett., vol. 5, no. S1, pp. S260–S263, May 2007.

[21] M. Nasri and H. Nezamabadi-Pour, ‘‘Image denoising in the wavelet
domain using a new adaptive thresholding function,’’ Neurocomputing,
vol. 72, nos. 4–6, pp. 1012–1025, Jan. 2009.

[22] X. Chen, G. Cheng, H. Li, and Y. Li, ‘‘Fault identification method for
planetary gear based on DT-CWT threshold denoising and LE,’’ J. Mech.
Sci. Technol., vol. 31, no. 3, pp. 1035–1047, Mar. 2017.

[23] D. L. Donoho, ‘‘De-noising by soft-thresholding,’’ IEEE Trans. Inf.
Theory, vol. 41, no. 3, pp. 613–627, May 1995.

[24] X.-P. Zhang, ‘‘Thresholding neural network for adaptive noise reduction,’’
IEEE Trans. Neural Netw., vol. 12, no. 3, pp. 567–584, May 2001.

[25] H. Liu, W. Wang, C. Xiang, L. Han, and H. Nie, ‘‘A de-noising method
using the improved wavelet threshold function based on noise variance
estimation,’’ Mech. Syst. Signal Process., vol. 99, pp. 30–46, Jan. 2018.

[26] X. Wang, X. Ou, and B.-W. Chen, ‘‘Image denoising based on improved
wavelet threshold function for wireless camera networks and trans-
missions,’’ Int. J. Distrib. Sensor Netw., vol. 11, no. 9, Sep. 2015,
Art. no. 670216.

[27] P. Flandrin, G. Rilling, and P. Goncalves, ‘‘Empirical mode decomposition
as a filter bank,’’ IEEE Signal Process. Lett., vol. 11, no. 2, pp. 112–114,
Feb. 2004.

[28] J. Chang, L. Zhu, H. Li, F. Xu, B. Liu, and Z. Yang, ‘‘Noise reduction in
Lidar signal using correlation-based EMDcombinedwith soft thresholding
and roughness penalty,’’ Opt. Commun., vol. 407, pp. 290–295, Jan. 2018.

VOLUME 7, 2019 67411



X. Xu et al.: Echo Signal Extraction Based on Improved SSA and CS in Wavelet Domain

[29] X. Zhao and B. Ye, ‘‘Selection of effective singular values using difference
spectrum and its application to fault diagnosis of headstock,’’ Mech. Syst.
Signal Process., vol. 25, no. 5, pp. 1617–1631, Jul. 2011.

[30] X.-Z. Zhao, B.-Y. Ye, and T.-J. Chen, ‘‘Selection of effective singular
values based on curvature spectrum of singular values,’’ J. South China
Univ. Technol., vol. 38, no. 6, pp. 11–18, Jun. 2010.

[31] W.-X. Yang and P. W. Tse, ‘‘Development of an advanced noise reduction
method for vibration analysis based on singular value decomposition,’’
NDT E Int., vol. 36, no. 6, pp. 419–432, Sep. 2003.

[32] D. L. Donoho, ‘‘Compressed sensing,’’ IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[33] M. F. Duarte and Y. C. Eldar, ‘‘Structured compressed sensing: From
theory to applications,’’ IEEE Trans. Signal Process., vol. 59, no. 9,
pp. 4053–4085, Sep. 2011.

[34] Y. Chen, Z. Liu, and H. Liu, ‘‘A method of fiber Bragg grating sensing
signal de-noise based on compressive sensing,’’ IEEE Access, vol. 6,
pp. 28318–28327, 2018.

[35] S. Qu, J. Chang, Z. Cong, H. Chen, and Z. Qin, ‘‘Data compression and
SNR enhancement with compressive sensing method in phase-sensitive
OTDR,’’ Opt. Commun., vol. 433, pp. 97–103, Feb. 2019.

[36] M.-F. Zhao, P. Tang, B. Tang, P. He, Y.-F. Xu, S.-X. Deng, and S.-H. Shi,
‘‘Research on denoising of UV-Vis spectral data for water quality detection
with compressed sensing theory based on wavelet transform,’’ Spectrosc.
Spectral Anal., vol. 38, no. 3, pp. 844–850, Mar. 2018.

[37] J. A. Tropp and A. C. Gilbert, ‘‘Signal recovery from random measure-
ments via orthogonal matching pursuit,’’ IEEE Trans. Inf. Theory, vol. 53,
no. 12, pp. 4655–4666, Jan. 2007.

[38] D. Needell and R. Vershynin, ‘‘Signal recovery from incomplete and
inaccurate measurements via regularized orthogonal matching pursuit,’’
IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp. 310–316, Apr. 2010.

[39] D. Needell and J. A. Tropp, ‘‘CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,’’ Appl. Comput. Harmon. Anal.,
vol. 26, no. 3, pp. 301–321, May 2009.

[40] W. Dai and O. Milenkovic, ‘‘Subspace pursuit for compressive sens-
ing signal reconstruction,’’ IEEE Trans. Inf. Theory, vol. 55, no. 5,
pp. 2230–2249, May 2009.

[41] J. Wang, S. Kwon, and B. Shim, ‘‘Generalized orthogonal matching
pursuit,’’ IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6202–6216,
Dec. 2012.

[42] D. L. Donoho, Y. Tsaig, I. Drori, and J. Starck, ‘‘Sparse solution of under-
determined systems of linear equations by stagewise orthogonal matching
pursuit,’’ IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1094–1121, Feb. 2012.

[43] T. Blumensath and M. E. Davies, ‘‘Stagewise weak gradient pursuits,’’
IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4333–4346, Nov. 2009.

[44] L. H. Sun, Z. Yang, and L. Ye, ‘‘Speech compression and reconstruction
based on adaptive multiscale compressed sensing theory,’’ Acta Electron.
Sinica, vol. 39, no. 1, pp. 40–45, Jan. 2011.

XIAOBIN XU received the B.E. and Ph.D. degrees
from the Nanjing University of Science and Tech-
nology, China, in 2012 and 2017, respectively. He
is currently a Lecturer with Hohai University. His
current research interests include optical imaging,
point cloud processing, and signal processing.

MIN ZHANG is currently pursuing the M.E
degree with the College of Mechanical and
Electrical Engineering, Hohai University, China.
Her research interests include signal processing,
SLAM, and 3D reconstruction.

MINZHOU LUO received the D.S. degree in con-
trol science and engineering from the University
of Science and Technology of China, Hefei, China.
He is currently a Professor with Hohai University.
His research interests include bionics, service and
industrial robots, and industry 4.0 technology.

JIAN YANG received the B.S. and Ph.D. degrees
from the School of Mechanical Engineering,
Nanjing University of Science and Technology,
in 2005 and 2016, respectively. He is currently a
Lecturer with the College ofMechanical Engineer-
ing, Yangzhou University. His current research
interests include signal processing, neural net-
works, and compressed sensing.

QINYANG QU is currently pursuing the bach-
elor’s degree with Hohai University, China.
His research interests include mechanical design,
circuit design, and microcontroller programming.

ZHIYING TAN received the Ph.D. degree in
computer software and theory from the Univer-
sity of Electronic Science and Technology of
China, in 2013. She is currently a Lecturer with
Hohai University. Her major research interests
include numerical analysis, image processing, and
machine vision.

HAO YANG is currently pursuing the M.E. degree
with Hohai University, China. His research inter-
ests include mobile robot and motor control.

67412 VOLUME 7, 2019


	INTRODUCTION
	PRINCIPLE OF LASER RADAR
	TWO-STAGE DENOISING ALGORITHM
	IMPROVED SINGULAR SPECTRUM ANALYSIS
	STEP1: DATA EMBEDDING
	STEP2: SINGULAR VALUE DECOMPOSITION
	STEP3: GROUPING
	STEP4: DIAGONAL AVERAGING

	COMPRESSED SENSING IN WAVELET DOMAIN

	SIMULATIONS
	PROPOSED ALGORITHM
	ALGORITHM COMPARISION
	INFLUENCE OF DIFFERENT PARAMETERS
	the PARAMETER OF issa ALGORITHM
	THE PARAMETERS OF IGOMP ALGORITHM


	EXPERIMENTAL
	CONCLUSION
	REFERENCES
	Biographies
	XIAOBIN XU
	MIN ZHANG
	MINZHOU LUO
	JIAN YANG
	QINYANG QU
	ZHIYING TAN
	HAO YANG


