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ABSTRACT Effort has been made to find biomarkers for vascular dementia (VaD). Nevertheless, the current
findings are typically obtained through statistical tests of group level differences. In clinical practice,
however, it is more common to perform individual level inferences, e.g., to determine if a subject is suffering
from VaD, which cannot be resolved with statistical analysis. The goal of this study is to develop a method to
effectively discriminate early VaD patients from normal controls by combining EEG features with machine
learning methods. The EEG signals were recorded from a total of 15 VaD patients and 21 controls during
a visual oddball task. Interregional directed connectivity was derived from directed transfer function (DTF)
analysis and used as features in classification. Threemachine learningmethods, including linear discriminant
analyais (LDA), error back-propagation (BP) neural network, and support vector machine (SVM) were used
as classifiers, and their classification performance was compared. It was found that VaD patients can be
effectively identified using the BP and SVM classifiers with high accuracy. In particular, when the SVM
classifier was combined with feature selection by Fisher score, it reached an accuracy 86.11%, sensitivity
86.67%, and specificity 85.71%. The area under the curve (AUC, 0.854) indicates a good identification of
VaD patients from the normal controls. Since the EEG is noninvasive, inexpensive, and widely available to
use, the current study presents a novel clinical application of machine learning methods and could facilitate
automatic screening and diagnosis of the VaD at an early stage in future.

INDEX TERMS Electroencephalogram (EEG), information flow, machine learning, vascular dementia.

I. INTRODUCTION
Vascular dementia (VaD) is one of the most common types
of dementia worldwide, especially in Asian countries [1].
It is characterized by progressive decline in various cog-
nitive functions, such as memory, attention and execution.
Currently, no effective cure method has been found, so it is
important to evaluate brain cognitive functions and diagnose
patients with VaD at an early stage. With the increasingly
larger population recent years, there is a more pressing need
to facilitate early diagnosis and intervention of VaD. This
has drawn an increasing interest and promoted a number
of studies to investigate into VaD [2]–[6]. These studies
utilized a wide spectrum of neuroimaging modalities,
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including electroencephalogram (EEG), magnetoencephalo-
gram, functional magnetic resonance imaging (fMRI) and
near-infrared spectroscopy, to find functional alterations in
VaD. VaD patients were found to be abnormal in sponta-
neous [2] and evoked brain activity [5], [6], as well as in inter-
regional brain connectivity patterns [3], [4]. These findings
may serve as potential biomarkers for VaD identification.

However, traditionally, identifying abnormalities in VaD
patients involves the use of between-group comparisons,
typically through statistical tests. In spite of the insightful
findings, this strategy has serious limitations: it constrains
the obtained conclusions on group level, which may not be
straightforward enough to allow to evaluate the diagnostic
ability of the identified markers at individual level and thus
can be problematic when applied to classify individual sub-
jects in clinical practice [7], [8]. In addition, this approach is
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intrinsically univariate: to extract potential markers that differ
significantly between groups, a number of potential mark-
ers have to be compared iteratively. Although the univariate
method is sensitive to localized effects, the information spa-
tially distributed in the brain tends to be ignored [7], [9], thus
making it difficult to evaluate the joint performance of a set
of markers.

The shortcomings of traditional group comparison
approach can be easily overcome by machine learning tech-
nique [7], [9]. Machine learning methods [10], [11] provide
a powerful tool and a novel perspective to look into various
brain diseases [7], [12], [13]. In the present study, supervised
machine learning methods were used. For supervised classi-
fications, the classifier tries to capture the underlying patterns
and learn a rule that can maximally differentiate different
groups from the training dataset with known class labels.
This learned rule is then used to predict the class member-
ship that a new and previously unseen sample belongs to.
The more accurately the classifier captures the underlying
patterns, the more likely it would distinguish future samples
correctly and achieve better performances. Machine learning
has been successfully applied to the study of a variety of
aging-related brain disorders (for review, see [7]), e.g., mild
cognitive impairment (MCI) [14]–[16], Alzheimer’s disease
(AD) [16]–[18] and Parkinson’s disease (PD) [19], as well as
normal aging [20].

Since VaD population is large, it will be very important and
beneficial if VaD can be screened automatically at an early
stage. However, only untill very recently, machine learning
methods are combinedwith neuroimagingmarkers to identify
VaD patients from the normal aging controls. To our knowl-
edge, the only study that applied machine learning technique
to VaD identification was performed by [21]. In this study,
whole brain connectivity patterns were extracted from resting
state fMRI and used as features in SVM classification to iden-
tify and differentiate VaD patients from healthy individuals.
Compared to fMRI, EEG signal is closely related to post-
synaptic potential generated in the cerebral cortex and hence
more directly reflects the underlying neuronal electrical activ-
ity. EEG is also known for its excellent temporal resolution,
which makes it an ideal tool to investigate the dynamic fea-
tures of neuronal activity. A variety of metrics were proposed
to characterize EEG signal (e.g., fuzzy entropy [22]) and used
for the investigation of patients in clinical applications, e.g.
in migraine patients [23]. Therefore, it would be appealing
and of potentially clinical relevance if EEG proves to help
distinguish patients with VaD from controls.

Actually, EEG has already been widely used and is tradi-
tionally considered as a standard tool in the field of brain-
computer interface [24], where along with machine learning
methods, EEG features are used to identify or discriminate
different types of mental activities or states and serve as
a control signal to perform spefic tasks, such as, to guide
the movement of external mechanical equipments. This is
gaining a growing interest and application particularly in
rehabilitation engineering (see review [25]). Also, in previous

studies, EEG signal was combined with machine learning
algorithms and used in a variety of clinical applications,
e.g., to identify patients with AD [26]–[30], PD [31], [32]
and depression [32]–[34] from normal controls, to detect the
cholinergic intervention in healthy adults [27], to predict the
response to treatment in subjects with depression [35], [36],
to predict seizure onset or discriminate normal, preictal, and
seizure in epilepsy patients [37]–[41], and to predict the
progression to AD at the MCI stage [42]. They demonstrated
the potential power of EEG features in clinical diagnosis and
treatment or medication assessment. In most of these studies,
however, the features adopted were spectrum- or complexity-
related measures, which are based on EEG signal from single
channels. Although these measures provide important infor-
mation regarding local brain activity, the interaction between
brain regions is ignored, which is now considered as an basic
principle of brain [43]. Brain connectivity has gained a very
intense attention recently. Furthermore, since the informa-
tion in the brain is usually processed in sequential order,
the activity of one brain region may be exclusively driven
by another region. In this regard, the interaction between
spatially distant brain regions is intrinsically directed. Taking
these into consideration, EEG and a directed brain connectiv-
ity measure (directed transfer function, DTF [44]) are used in
this study. Actually, DTFwas already adopted to discriminate
interictal periods form ictal periods in seizure patients and a
high performance was achieved [39], [40]. Instead of resting
state EEG, we choose task EEG since the patients in our study
are at their early stage and their cognitive decline is relatively
mild. For these patients, cognitive deficits are more easily
exposed in cognitive tasks. Also, the relatively simple task,
a typical oddball paradigm, ensures patients can complete
without much difficulty.

In the present study, our goal is to find a way to effec-
tively discriminate patients from the normal controls. This
can greatly facilitate the automatic identification and screen-
ing of VaD patients in clinical application in the future.
We combined brain connectivity and machine learning to
identify early VaD patients. Based on DTF, the informa-
tion flow among brain regions were extracted and served as
the feature set in classification. Three supervised machine
learning methods, i.e., linear discriminant analysis (LDA),
back-propagation neural network (BP) and support vector
machine (SVM), were then used as classifiers to differentiate
early VaD patients and the controls, and classification perfor-
mance was evaluated and compared. Primarily, we aimed to
test the hypothesis that VaD patients and the controls could be
reliably separated using EEG connectivity patterns as features
and machine learning methods as classifiers.

II. METHODS
A. SUBJECTS
Thirty-six subjects participated in the study: 15 early VaD
patients (VaD group, 13 males) and 21 normal subjects (CTR
group, 10 males). VaD patients were enrolled from the First
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Affiliated Hospital of Medical College of Xi’an Jiaotong
University and control subjects were recruited from Xi’an
Jiaotong University. All subjects participated in a series of
standardized tests including the Mini-Mental State Exami-
nation (MMSE), the Clinical Dementia Rating (CDR) scale,
the Hospital Anxiety and Depression Scale (HADS), and
the Instrumental Activities of Daily Living (IADL) scale.
The patients were diagnosed by expert clinicians according
to the Diagnostic and Statistical Manual of Mental Disorders,
4th edition (DSM-IV) criteria, and the MRI revealed evi-
dence of large-vessel stroke, or multiple subcortical lacunar
infarcts, and/or extensive white matter lesions in each of
them. All patients had experienced the onset of cognitive
impairment after a clinical stroke. Patients with a family
history of AD were excluded. None of our patients used
medication that was expected to influence EEG recordings.
Table 1 shows the demographic information of the two
groups. Statistical tests showed that there were no signifi-
cant differences between the two groups in age or education
(p > 0.05), but the gender distribution was significantly
different between patients and the elderly (p = 0.033).

TABLE 1. Demographic information of subjects.

All subjects were right-handed, had normal or corrected-
to-normal visual acuity, and no color blindness. After formal
approval by the local ethics committee, informed written
consent was obtained from all subjects.

B. EEG RECORDING AND PREPROCESSING
A classical visual oddball paradigm was used in the study
(Fig. 1). The stimulus sequence contained 300 stimuli and
was composed of two types of stimuli, target stimuli (green
circles) and nontarget stimuli (red circles), with a probabil-
ity of 0.20 and 0.80, respectively. Each stimulus randomly
appeared at the center of the monitor and lasted for 80 ms
with a random inter-stimulus interval of 1000–1200 ms. Each
stimulus had a diameter of 3.5 cm, and was presented against
a black background on a standard CRTmonitor. During inter-
stimulus interval, a yellow cross was displayed at the center
of the monitor to help subjects keep concentrated. Subjects
viewed the stimuli from a distance of about 60 cm. They
were instructed to respond to target stimuli by pressing one
specified button on the keypad as accurately as possible
while ignoring nontarget stimuli. When responding to target

FIGURE 1. Experiment design.

stimuli, subjects were asked to remain quiet at the same
time and only move their right index finger to minimize the
contribution of muscle artifacts to EEG recordings. Reaction
time and accuracy were recorded at the same time.

EEG data were simultaneously recorded from 32 Ag/AgCl
electrodes on the scalp using Neuroscan EEG acquisition
system (Neuroscan Inc., USA). Electrodes were positioned
according to the 10–20 international electrode placement
system. A ground electrode was placed on the forehead, and
linked mastoid electrodes were used as the reference. Vertical
and horizontal electrooculograms (VEOG and HEOG) were
also recorded with two pairs of bipolar electrodes in vertical
and horizontal directions. During the recording, electrode
impedance was kept below 5 k�. EEG data were continu-
ously acquiredwith a sampling rate of 500Hz and a frequency
band of direct current (DC) to 100 Hz.

EEG data were firstly corrected for ocular artifacts using a
threshold reduction algorithm (Neuroscan Inc., USA). Then,
EEG data were visually scanned for contamination by mus-
cles or other kinds of artifacts, and bad EEG periods were
rejected. EEG data were then band-pass filtered at 0.5–30 Hz
with a zero-phase shift FIR filter. Finally, each subject’s
data were segmented into epochs time-locked to stimulus
onset. The epoch was defined as the time period from 0 to
400 ms after stimulus onset. Since the information related
to the detection of novel stimuli is more relavant for the
completion of this task, only correct responses to target stim-
uli were segmented and used for further analysis. In total,
42.27 ± 7.43 and 45.33 ± 7.64 (mean ± SD) epochs
were available for the VaD and CTR groups, respectively.
There was no significant difference in the number of epochs
between two groups (p = 0.238).

C. FEATURES
In this study, interregional connections served as features and
were entered into classifiers for further analysis. We used
directed transfer function (DTF) [44] to measure the infor-
mation flow within the brain. The rationale behind DTF is
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sources contain information that could help to better predict
the behavior of targets. DTF is based on multivariate autore-
gressive (MVAR) model, which quantitatively describes the
generation and evolution of a signal. The EEG signal fromM
channels at sampling instant n can be represented by a vector:
X (n) = (X1(n),X2(n), . . . ,XM (n))T, in which ‘‘T’’ denotes
transposition. Mathematically, a p-order MVAR model has
the following form:

X (n) =
p∑

k=1

AkX (n− k)+ E(n) (1)

in which Ak (k = 1, 2, . . . , p) denotes the model coefficient
matrix at time lag k , and E(n) is assumed to be an white
noise uncorrelated with X (n). In this study, all single-trial
EEG data was used to estimate the MVAR model coeffi-
cient matrices [45] via Levinson–Robinson–Wiggins algo-
rithm [46], [47]. The optimal model order was chosen as
7 with Akaike Information Criterion [48]. After transform-
ing equation (1) into z-domain and making a substituting:
z−1 = e−j2π f /fs, it yields the following:

X (f ) = E(f )H (f ) (2)

H (f ) = (
p∑

k=0

A
′

ke
−j2πkf /fs )−1 (3)

where f denotes frequency inHz, fs is the sampling frequency,
A0′ = I(I is an M -by-M identity matrix), Ak ′ = −Ak (k =
1, 2, . . . , p). X (f ) and E(f ) are the representations of X (n)
and E(n) in frequency domain, respectively. H (f ) is called
transfer function. Then, the information flow from channel j
to i at frequency f is defined by DTF as follows:

DTFij =

∣∣Hij(f )∣∣√∑M
j=1

∣∣Hij(f )∣∣2 (4)

in which Hij(f ) is the (i, j)-th element of matrix H (f ). DTF is
defined in frequency domain and ranges from 0 to 1: for the
information flow from channel j to i, a value of zero implies
no flow of information, whereas a value of one indicates
that the brain activity at channel i is exclusively driven by
the activity at channel j. In the present study, EEG signal
from the following 20 electrodes were extracted and used
in the subsequent analysis: frontal (Fp1, Fp2, F7, F3, Fz,
F4 and F8), left temporal (T7), central (C3, Cz and C4),
right temporal (T8), parietal (P7, P3, Pz, P4 and P8), and
occipital (O1, Oz and O2). The information flow among
these electrodes was evaluated from 0.5 to 30 Hz with a
resolution of 0.5 Hz. DTF values were further integrated
into five frequency bands, i.e., δ (0.5–3.5 Hz), θ (4–7 Hz),
α1 (8–10 Hz), α2 (11–13 Hz) and β (14–30 Hz). Since there
was a significant difference between VaD patients and the
controls in the gender distribution (p = 0.033), we regressed
out the gender effect from each feature by using a linear
regression model before entering into classification.

D. CLASSIFICATION
In the present study, three supervised machine learning meth-
ods, i.e., LDA, BP and SVM, served as classifiers respec-
tively. Their classification performance was evaluated and
compared. To assess the classifier performance, we com-
bined feature selection and leave one out cross validation
(LOOCV). In each fold of LOOCV, one subject serves as
testing dataset and the remaining serve as training dataset.
Feature selection was performed within LOOCV to select the
features that are more relavant to the classification. In this
study, an independent sample t-test (two-tailed) was used
for the selection of significantly different features between
groups (p < 0.05). It is worth noting here that feature
selection was performed on training data to avoid being con-
taminated by the information from the testing data, and the
same set of features were then extracted from testing data.
The main steps in the classification of early VaD patients
were illustrated in Fig. 2. In the present study, the clas-
sification was implemented with MATLAB and LIBSVM
toolbox [49].

1) LDA
LDA is a classical method in machine learning, and is widely
idea underlying LDA is to find a weight vector to project
original features into a new space, in which it would be
easier to separate samples belonging to different classes. The
method used by LDA is to make the samples in the same class
concentrated enough and the samples that belong to different
classes as distant as possible. As such, LDA finds the weight
vector by maximizing the ratio of between-class distance to
within-class variance.

2) BP
BP is one of the classical learning algorithms in artificial
neural network (ANN), which models the behavior of bio-
logical neurons in the real world by adopting similar ways
of information processing. BP algorithm aims to solve the
problems in a multilayer feedforward ANN. In multilayer
feedforward ANN, it consists of an input layer, several hidden
layers and an output layer. While the input and output layers
act as interfaces to receiving the input and producing the
final output respectively, hidden layers receive information
from the previous layer, process it and relay it to the next
layer. Each neuron processes information by modeling it as
some specific function of the weighted sum of its input.
In addition to this forward propagation of input information,
for BP algorithm, it additionally consists of error propagation
in a reverse direction in the network. The error is defined
as the summed squared deviation between the real output
and the expected output. BP algorithm describes the error
as a function of all the weights in the network and finds
the optimal weights by minimizing the error. In this study,
we used a 3-layer network, in which only one hidden layer
is included. We set the number of hidden and output neuron
as 16 and 1.
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FIGURE 2. The main pipeline for the classification of early VaD patients.

3) SVM
SVM seek to find a hyperplane or a boundary that best
separates the samples belonging to different classes according
to certain criteria. For SVM, the best hyperplane is defined as
the one that achieves maximum margin between two classes;
the samples that are closest to the separating hyperplane are
referred to as support vectors. Given the large number of
features in this study, we used a linear kernel to lower the
risk of overfitting. Another advantage of a linear kernel is
that, under the settings of this study (binary classification and

TABLE 2. Performance of different classifiers.

class labels: VaD: +1, CTR: −1), a positive and a negative
weight would indicate that the corresponding feature was
likely to be strengthened or weakened respectively in VaD
patients, compared to the controls [13], [20], [50], [51]. Since
SVM has a hyperparameter C , we used an approach known
as ‘nested leave-one-out cross-validation’ to assess the per-
formance [10], [11]. In this approach, within each LOOCV
fold, another LOOCV is firstly applied to the leave-one-out
training samples to optimize C in a range of parameters C :
[2−15, 2−14, . . . , 215] (via grid search method); then with this
C, a SVM model is learned and tested with training and
testing dataset respectively. Before entering into classifica-
tion, each feature in training dataset was separately scaled
to [0, 1] [18], and the parameters obtained from training
dataset were then used to normalize the same features in
testing dataset [16].

4) PERFORMANCE EVALUATION
The performance of classifier was evaluated with classifica-
tion accuracy (Acc) and the area under the receiver operating
characteristic curve (AUC). In this study, classification accu-
racy is defined as the percent of correctly classified subjects
and AUCmeasures the probability that a classifier will assign
a higher value to a randomly chosen positive instance than
to a randomly chosen negative one [15]. In addition, we also
employed sensitivity (Sens) and specificity (Spec):

Sens =
TP

TP+ FN
(5)

Spec =
TN

TN + FP
(6)

where TP and FN denoting true positive and false negative
(number of correctly and incorrectly labeled VaD patients),
and TN and FP denoting true negative and false positive
(number of correctly and incorrectly labeled CTR subjects).
They are the percentage of correctly identified VaD and CTR
subjects in this study, respectively. Each of these evaluation
indexes were calculated as the average across outer LOOCV
folds.

III. RESULTS
Table 2 and Fig. 3 showed the classification performance of
three classifiers.

SVM is considered to have high generalization ability [10],
[40], [52] and good capability to cope with high-dimensional
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FIGURE 3. ROC of BP and SVM classifiers.

data [10], [53], [54]. Compared to BP, SVM classifier is able
to cope with classification problems of unbalanced samples
more effectively [40], which is our case. In previous studies,
SVM has also been demonstrated to yield superior perfor-
mance to a number of other approaches, including BP [55].
Therefore, we tried to improve its classification performance.
Here, another feature selection method Fisher score (FS) was
adopted [17] to select the most informative features within
each LOOCV fold. Fisher score is closely related to LDA
and is a method to evaluate the potential of a feature to
reflect the difference of distinct classes. It is defined as the
summed differences between the mean of each class and the
mean of all samples devided by the summed within-class
deviations across all classes. A larger Fisher score of a feature
indicates its high possibility to contain useful information
for the discrimanination of different classes. In this study, all
features were ranked in descending order according to their
Fisher scores and a certain percentage of top-ranking features
were selected for use in classification. For a lack of prior
knowledge on the number of features, we selected the percent
of top-ranking features in a broad range from 0.1% to 100%,
with an increment of 0.1%. The result where SVM classifier
achieved the highest accuracy was reported: the dimension of
features was 931 (49% of the whole feature set). The result
(Table 2 and Fig. 3) showed an accuracy 86.11%, a sensitivity
86.67%, a specificity 85.71% and an AUC 0.8540. Yet, we
noted that the performance was very stable across a large
range after the number of features reached 49%.

IV. DISCUSSION
In the present study, based on DTF, the directed connec-
tions among brain regions were extracted from EEG signals
recorded from early VaD patients and healthy controls. They
were used as features for the classification of early VaD
patients and the controls with different classifiers (LDA, BP
and SVM). The results showed a high accuracy for BP and

SVM classifiers and the best performance was achieved by
SVM combined with FS, which demonstrated the features’
power in characterizing and separating the two groups.

A. CLASSIFICATION PERFORMANCE
The exploration of machine learning methods in disease iden-
tification and prediction is a relatively new field, but has
attracted much attention. Recent years, a number of stud-
ies have utilized machine learning methods to investigate
into brain disorders. However, VaD, as one of main types
of dementia in older adults, is rarely studied. Previously,
Zhang et al. extracted brain connectivity patterns from rest-
ing state fMRI and these features were used to differen-
tiate VaD patients from the controls combined with SVM
classifier [21]. Cheveigne et al. tried to predict the devel-
opment of preclinical symptomatic small vessel disease to
VaD within 5 years using morphometric measures extracted
from structural MRI images and SVM [56]. In our study,
EEG signal was analyzed, considering its direct reflection
of brain neuronal electric activity. We further evaluated their
discriminative ability in the identification of VaD patients and
compared the performance of three commonly used machine
learning methods: LDA, BP and SVM.

We found the LDA, BP and SVM classifiers could identify
VaD patients accurately with the accuracy, sensitivity and
specificity >80% and AUC > 0.85, which indicates a good
identification of VaD patients. This suggests connectivity
patterns can effectively describe and probe into the cognitive
changes in VaD patients’ brain. In particular, SVM performed
the best among three classifiers. In this study, SVM was
combined with both two different feature selection methods:
t test and Fisher score. Although the former displayed a
less satisfactory performance, approximately 80% of VaD
patients and two thirds of the controls were still correctly
identified, resulting in an overall accuracy above 70%. For the
latter, it performed even better than LDA and BP: over 85% of
VaD patients and over 85% of control subjects were classified
correctly, resulting in an overall accuracy over 85% and an
AUC larger than 0.85. An inspection of SVM classification
with the latter feature selection method further demonstrated
the robustness of its performance to the number of features:
the performance became almost very stable across a large
range of feature dimensions after the reported 49%. This may
relect SVM’s better capability to capture the abnormalities
in the brain function of VaD patients. On the other hand,
the superior performance of Fisher score compared to t tests
also suggests that, the features that could contribute to a
successful classification may not be the same as those sta-
tistically significant ones. Actually, most of these features
(over 2/3) were not of statistical significance in our case. This
further validated the rationale for the use of machine learning
methods as a complementary way to the traditional statistic
methods.

To our knowledge, our study was the first to apply BP algo-
rithm to VaD identification and a comparable classification
performance was obtained in VaD patients as compared to
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the results in literature in AD and MCI patients, using vari-
ous neuroimaging features (e.g., [14], [16], [18], [57]–[59]).
For example, with resting state fMRI, Dybra et al. reported
an accuracy of 74%, a sensitivity 82%, a specificity 64%
and an AUC 0.80 in discriminating AD patients and the
healthy controls [18]; in Cui et al., SVM was combined
with MRI features to predict the development of cogni-
tion decline within 2 years in MCI subjects and similar
results were shown: an accuracy 78.51%, sensitivity 73.33%,
specificity 79.75%, and AUC 0.841 [57]; in Zhang et al.,
SVM was shown to classify AD and MCI patients from
normal controls with about 70% ∼ 90% accuracy, sensitivity
and specificity, using either MRI or other biomarkers [16];
Long et al. extracted MRI features based on three different
atlas for use in the SVMclassification ofMCI patients, and all
atlas reported accuracies, sensitivities, specificities, and AUC
between 80% and 90% [58]. In contrast with SVM, the dis-
criminant power of BP is much less explored. Therefore,
we demonstrated a promising potential for VaD screening and
automatic identification in real scenario. In addition, in most
of these stuides,MRIwas used as a imagingmethod to extract
features. Compared to MRI, EEG is well known for its low
expense and wide avaliability, which further highlights the
future application of our method in reality.

In previous studies, EEG signal combined with machine
learning methods displayed its potential in a variety of clin-
ical applications [21], [26]–[35], [37]–[42]. For example,
Simpraga et al. used spectral power and amplitude envelope
of EEG signal to distinguish AD patients from healthy con-
trols and an accuracy of 73%, sensitivity 73%, and speci-
ficity 70% was obtained [27]. Similarly, using EEG spectral
mearues, Trambaiolli et al. obtained an accuracy of 91.18%,
sensitivity and specificity around 90% for the identification
of AD patients with SVM [30]. Lehmann et al. combined
multiple spectral measures and machine learning algorithms:
for the separation of mild AD and controls, a sensitivity
of 85% and a specificity of 78%was reached, and for the sep-
aration of moderated AD and controls, a sensitivity of 89%
and a specificity of 88% was obtained [29]. Hosseinifard
et al. extracted spectral power and nonliear features fromEEG
signal and they achieved an accuracy of 83.3% in discrim-
inating depression patients and normal controls [33]. Using
EEG power at baseline, Cao et al. classified two groups of
depression patients: the responders and the non-responders
to ketamine, with an average accuracy 81.3%, a sensitivity
82.1% and a specificity 91.9% [36]. In most of these studies,
however, spectral information and other single-channel based
measures were used. Similar to Wang et al. [39], [40], in our
study, we used brain connectivity measure (DTF) to take the
interactions between brain regions into consideration. The
performance was comparable to those in the above studies.
Actually, in the studies of Trambaiolli [26] and Khodayari-
Rostamabad [35], an improved classification performance
was found compared to spectral features for the identification
of AD patients [26] and functional connectivity (coherence)
between brain regions dominated the most discriminating

features including spectral measures in the prediction of their
response to medication in depression patients [35].

As regards to the application in VaD patients, there is
some methodological difference concerning the use of SVM
classifier compared to Zhang et al. [21],. While the authors
used radial basis function (RBF) as the kernel, which maps
the input features nonlinearly into a much higher dimensional
space, a linear kernel was employed in our study. A linear
kernel is preferred when the dimension of features exceeds
the number of samples [7], [17], [51], which is our case.
A linear kernel also means a one-to-one correspondence
between features and weights, and makes it straightforward
to investigate the contributions of individual features to clas-
sification performance. In previous studies, based on resting-
state fMRI connectivity patterns, linear kernels were used in
SVM classifier to identify neuroimaging markers of diseases
like stroke [60] and PD [19], as well as typical characteris-
tic like handedness [61]. Comparable classification perfor-
mance to ours was obtained: an accuracy of 82.6% with a
sensitivity of 80% and a specificity of 85% in stroke [60],
an accuracy of 93.6% with a sensitivity of 90.5% and a
specificity of 96.2% in PD [19], and an accuracy of 86.2%
with a sensitivity of 83.3% and a specificity of 88.9% in
handness [61].

An additional control study was performed by comparing
with the classification performance of network parameters
derived from brain network analysis. The following network
topological parameters were used due to their wide use in
previous brain network studies, including global (clustering
coefficient, characteristic path length and their normalized
version, global and local efficiency, and smallworldness) and
local (the indegree, outdegree, global and local efficiency, and
betweenness centality of each node) ones [62]. It was found
that the classification performance of the features in our study
was superior to that of network features (accuracy 80.56%,
sensitivity 80%, specificity 80.95% andAUC 0.8476). There-
fore, the connectivity features used in our study may indeed
better capture the patological changes underlying early VaD
patients’ brain, and when combined with machine learn-
ing methods, can identify early VaD patients in a more
effective way.

Overall, the results in this study indicate that connectivity
measures extracted from EEG signals can very well reveal
important neurophysiological information of altered brain of
VaD patients and this information can be further utilized to
characterize VaD patients and distinguish them from nor-
mally aging brains.

B. LIMITATIONS AND FUTURE WORK
In the analysis of EEG signal, the choice of reference is an
important issue to consider. The reference provides a baseline
for the measurement of EEG signal. Currently, many refer-
ence methods exist, e.g., average reference and the so-called
‘reference electrode standadization technique’ (REST) [63].
Average reference assumes the head as a sphere and proposes
to use the average potential of all electrodes on the sphere
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as the baseline. However, this is not the case in reality since
the head is not spherical and it is usually only sampled on
the upper surface (i.e., scalp) by EEG electrodes. For REST,
accurate headmodels incorporating brain tissues’ biophysical
properties would be very crucial [64], which so far are still
poorly understood. It has been demonstrated that estimation
of brain connectivity can be remarkably impacted by the
reference choice [64]. For DTF, since it is based on the
estimation of covariance matrix, Blinowska (the author who
proposed DTF) suggests that introducing additional correla-
tions between EEG channels by reference methods should be
avoided, e.g., by average referencing [65]. When using DTF,
it is recommend that EEG signals be referenced with respect
to the channels not involved in the model estimation [65].
Therefore, in this study, we used the commonly used linked
mastoids as reference.

Despite the insightful findings, there are several limita-
tions in the current study. Firstly, due to practical reasons,
the sample size (the number of subjects) is small. However,
the leave-one-out cross-validation we employed is consid-
ered to be able to provide a relatively less biased estimate
of classification performance [10]. Future studies on larger
samples of dataset or independent datasets [66], [67] will
be needed to confirm the findings of our study. A related
issue is the unbalanced sample sizes between two classes
of subjects. Unbalance is likely to make the classifer tend
to learn the characteristics of the class with larger size and
therefore bias the classification performance. However, it can
be found in our study that in all classifiers, the sensitivity is
comparable and even higher than specificity, whichmeans the
classifiers may indeed learn the rules to separate VaD patients
from controls. Reaching a balance in sample size would
greatly benefit the study of VaD. Secondly, VaD is quite
heterogeneous, containing some different subtypes, such as
small-vessel and large-vessel disease [68]. We were not able
to further divide them due to the relatively small samples.
Again, it would be advantageous with larger samples, when
classifiers can be constructed to further differentiate between
subtypes of diseased populations. This will be appealing and
of great interest to clinicians.

V. CONCLUSIONS
This study investigated the power of EEG connectivity pat-
terns in discriminating early VaD patients from healthy con-
trols with multiple machine learning methods, i.e., LDA, BP
and SVM. Using either BP or SVM as classifers, especially
SVM, the connectivity features achieved a high classification
performance, suggesting they have good capability in char-
acterizing the pathological changes in VaD patients’ brain.
Since EEG is noninvasive, inexpensive and widely avaliable
to use, the method proposed in this study is of practical
significance for the application in VaD patients, andmay have
important implications both for the automatic screening and
for the clinical diagnosis of VaD patients at an early stage in
the future.
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