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ABSTRACT Automated model generation (AMG) is an automated artificial neural network (ANN)
modeling algorithm, which integrates all the subtasks (including adaptive sampling/data generation, model
structure adaptation, training, and testing) in neural model development into one unified framework.
In existing AMG, most of the time is spent on data sampling and model structure adaptation due to the
iterative neural network training and the sequential computation mechanism. In this paper, we propose an
advanced AMG algorithm using parallel computation and interpolation approaches to speed up the neural
modeling of microwave devices. Efficient interpolation approaches are incorporated to avoid repetitive
training of the intermediate neural networks during adaptive sampling process in AMG. Parallel computation
formulation based on a multi-processor environment is proposed to further save time during interpolation
calculation, data generation, and model structure adaptation process. Examples of automated modeling of
two microwave filters are presented to show the advantage of this paper.

INDEX TERMS Design automation, modeling, neural networks, parallel computation, interpolation
approaches.

I. INTRODUCTION
Artificial neural networks (ANNs) have been recognized as
powerful tools in microwave modeling and design [1]–[3],
such as nonlinear microwave device modeling [4]–[6],
parametric modeling [7]–[9], electromagnetic (EM) opti-
mization [10], [11], multiphysics modeling [12], and inverse
modeling [13]. ANNs are trained to learn EM/physics data
which represent the behavior of microwave devices. The
trained ANNs can then be used for high-level circuit design
to provide fast and accurate solutions to the task they have
learned.

Automated model generation (AMG) with training-driven
adaptive sampling algorithm was firstly introduced in [14]
to automate the neural network model development pro-
cess. It integrates all the subtasks involved in neural model
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development like adaptive sampling/data generation, model
structure adaptation, training and testing into one uni-
fied framework, thus reducing the intensive human effort
demanded by conventional manual modeling approaches.
In AMG of [14], training data are dynamically generated
during ANN training by driving EM/physical/circuit simu-
lators. Neural model structure is automatically adjusted by
training ANNs with different numbers of hidden neurons to
obtain themost compactmodel with best accuracy. Therefore,
ANN training is needed to be performed both in adaptive
sampling process and model structure adaptation process in
conventional AMG algorithm. Recently, a modified AMG
algorithm with interpolation approaches [15] was presented
as an improvement of [14] to avoid repetitively training inter-
mediate neural networks during adaptive sampling process.
Different localized interpolation functions are produced as
local models in different subregions of the modeling input
space to assess the adequacy of training data during adaptive
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sampling process in AMG. The computationally intensive
and time-consuming ANN training during adaptive sampling
process in [14] is replaced by simple and efficient interpola-
tion computation, thus making AMG faster than that in [14].
This modified AMG algorithm [15] has been applied in
microwave power amplifier modeling [16] and interconnect
reliability analysis [17]. However, the existing AMG with
interpolation approaches in [15] is based on a sequential
computation mechanism, involving sequential interpolation
calculation for all subregions during adaptive data sampling,
sequential data generation by repetitively driving detailed
EM/physics/circuit simulators, and batch ANN model train-
ing through iterative training stages.

With increased complexity in microwave modeling
problems, the efficiency of existing AMG becomes impor-
tant. Since the detailed EM/physics/circuit simulations are
usually CPU expensive and the ANN training is an iter-
ative process, they are the most computationally inten-
sive and time-consuming processes in existing sequential
AMG. When the complexity of microwave modeling prob-
lem increases, the efficiency of existing AMG decreases.
Motivated by this, the purpose of this paper is to incorporate
parallel computation mechanism into the AMG with interpo-
lation approaches. Parallel computation is a type of computa-
tion in which many calculations or the execution of processes
are carried out simultaneously [18]. In the field of neural net-
work, development of parallel processing methods for ANN
has become an active research topic. Several techniques have
been reported for the parallel architecture study [19], [20]
and parallel backpropagation training of ANN [21]. Recently,
parallel computation has also been studied and utilized in
several areas of microwave applications. A parallel space
mapping approach to EM optimization is presented in [22],
using parallel coarse/fine model evaluations to reduce the
number of space mapping iterations and speed up the opti-
mization process. In [23], distributed parallel computing
technique is incorporated to EM data generation process in
EM modeling. This technique runs multiple EM simulations
in parallel to speed up the computationally expensive EM
data generation process. A parallel ANN training technique
based on parallel matrix formulation [24] is proposed for
dynamic nonlinear transistor modeling with large datasets.
The ANN feedforward and derivatives used in ANN training
are calculated in parallel to reduce total time for training a
neural network model.

In this paper, we propose an advanced AMG algorithm
using parallel computation and interpolation approaches.
A new parallel mechanism of interpolation calculation is
proposed to generate multiple local models in parallel dur-
ing adaptive sampling. These local models are utilized to
determine the amount of training data and their distribution
in the entire model input space. Parallel data generation and
parallel neural network training techniques are incorporated
in the proposed AMG algorithm to further improve the neural
modeling efficiency. Parallel data generation is achieved by
driving multiple EM/physical/circuit simulators in multiple

processors simultaneously. Parallel neural network training
during model structure adaptation is achieved by distributing
the workload of error feedforward and derivatives calculation
to multiple processors. The proposed AMG algorithm takes
advantage of both parallel computation and interpolation
approaches, further improving the efficiency of neural-based
AMG process.

II. PROPOSED AMG ALGORITHM USING PARALLEL
COMPUTATION AND INTERPOLATION APPROACHES
The proposed AMG algorithm proceeds in a stage-wise man-
ner. In each stage, the proposed AMG algorithm performs
either parallel interpolation for adaptive sampling, or paral-
lel data generation, or parallel neural network training. The
workload in each stage is distributed into multiple processors
for parallel processing, thus speeding up the AMG process.
Finally, a compact neural network model with good accuracy
is obtained in a shorter time than existing AMG methods.

A. NOTATION
Let x represent a vector containing n physical parameters of
a microwave component, and d (x) represent the response of
the component under consideration. Therefore, the training
data can be denoted by input-output sample pair (x, d(x)).
We define the input-output relationship of the ANNmodel as

y = y(x,w) (1)

where y is the ANN output and w is a vector containing
the weights of the ANN model. Let k represent the number
of stages during AMG process. We define Ektrain and Ektest
to represent the training error and testing error of the ANN
model in the kth stage of AMG, respectively. We also define
Ed to represent the user-desired neural model error. In our
proposed AMG algorithm using parallel computation and
interpolation approaches, Np is denoted as the number of
parallel processors.

B. PARALLEL INTERPOLATION APPROACH
In adaptive sampling process, the original model input space
is regarded as one region at first. If the testing error of this
region is large, the region would be divided into 2n subregions
and new data are generated in this region. In every stage,
the algorithm compares the testing error of every subregion
and chooses the subregion with largest testing error as the
worst region. The worst region would be divided into 2n new
subregions again in the next stage by generating new data
in this region. In this way, the algorithm can automatically
distinguish nonlinear and smooth regions of the model and
generate training data accordingly. More data are generated
in the nonlinear region while fewer data are generated in the
linear region. Suppose the original model input space is a
two-dimensional (2-D) space. Fig. 1 shows an example of
the distribution pattern of training data in the 2-D input space
during the first 4 stages of adaptive sampling process.

We propose parallel interpolation approaches to obtain
the testing error of every subregion during every adaptive
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FIGURE 1. The distribution patterns of the training data in the 2-D input
space during the first 4 stages of adaptive sampling. ‘‘•’’ represents the
locations of training data and ‘‘×’’ represents the locations where to
measure the testing error of each subregion. (a) 1st stage. (b) 2nd stage.
(c) 3rd stage. (d) 4th stage.

sampling stage. Different interpolation functions are created
as local models of different subregions to calculate the testing
error and to determine where to add new training data in the
next stage. While the neural network model represents the
nonlinear input and output relationship in the entire input
space, simpler interpolation functions are sufficient to repre-
sent the model in local subregions. Therefore, these interpo-
lation functions can replace the intermediate neural network
models in [14] as the local models of subregions, avoiding the
repetitive and time-consuming neural network training during
the first few stages of adaptive sampling in [14].

For each subregion, we formulate the interpolation func-
tion f (x) as

f (x) = α0 +
n∑
j=1

αjxj + αn+1x1x2 + αn+2x1x3 + · · ·

+αK x1x2 · · · xn +
n∑
j=1

αK+jx2j

= αT · φ (2)

where α is a vector containing the coefficients needed to
be determined of the interpolation function, and φ is a
vector containing the products of various combinations of
x1, x2, · · · , and xn.
To compute the values of coefficients α, the training data

in and around the interpolation region is selected to form a
matrix X which contains the location information of these
training data in the input space, and a vector d which contains
the output values of these training data. The details of matrix
X and vector d are provided in Appendix. Then we obtain

Xα = d (3)

The least square solution of (3) is

α = (XTX)−1XT d (4)

In this way, we obtain the interpolation function f (x) for each
subregion. Since the interpolation functions are completely
independent between different subregions, they can be com-
puted concurrently and asynchronously by the Np parallel
processors to increase the interpolation efficiency. We define
Rk to represent the number of subregions in the kth stage
of adaptive sampling. Since the number of subregions in
different stages is different, Rk is a function of stage k , i.e.,

Rk =
{
1, k = 1
2n+k−2 − k + 2, otherwise

(5)

The workload of interpolation calculation in these Rk sub-
regions is divided into Np sections and distributed to Np
processors to implement in parallel. The ith processor
(i = 1, 2, · · · ,Np) creates interpolation functions and cal-
culates testing errors for N k

f ,i subregions, where

N k
f ,i =


⌊
Rk

Np

⌋
, if 1 6 i 6 Np − 1

Rk mod Np, otherwise
(6)

We define fj and ej as the interpolation function and the
testing error of the jth subregion (j = 1, 2, · · · ,Rk ) in the kth
stage respectively, i.e.,

ej = fj(xmid,j) (7)

where xmid,j represent the location of the middle point of the
jth subregion in the input space. Fig. 1 shows an example
of the locations where to measure the testing error of each
subregion in a 2-D input space. The testing error of the entire
input space in the kth stage Ektest is calculated by

Ektest = max
16j6Rk

ej (8)

If Ektest > Ed (same as over-learning phenomena in ANN
training process), the proposed AMG algorithm divides the
worst region by generating new training data in the next stage.
Once Ektest 6 Ed (same as good-learning phenomena in ANN
training process), the adaptive sampling process stops.

The proposed parallel interpolation approach is summa-
rized in the following steps:
Step 1) Initialize the multi-processor environment.
Step 2) In the kth stage of proposed AMG, we first calculate

Rk and N k
f ,i, then divides and distributes the total

workload of interpolation calculation to Np proces-
sors.

Step 3) Each processor completes the interpolation tasks
assigned to it. The ith processor (i = 1, 2, · · · ,Np)
creates interpolation functions for N k

f ,i subregions
and calculates the testing errors of these subregions
using (2) to (7).

Step 4) We collect all the results from all processors to
compare the testing errors of all subregions in the
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kth stage. The subregion with the worst testing error
Ektest is selected as the worst region.

Step 5) If Ektest > Ed , the worst region will be divided by
generating new training data in this worst region,
and proposed AMG algorithm enters into the parallel
data generation process; otherwise, the interpolation
calculation and data generation process stop.

We use the speedup factor Sf and the parallel efficiency
ηf to measure the performance of our parallel interpolation
approach. Let Sf be the ratio between the interpolation time
on one single processor and that on Np processors, and let
ηf be equal to the speedup factor divided by the number of
processors, i.e.,

Sf =

T1 + Tf ·
m∑
k=1

Rk

T1 + Tf ·
m∑
k=1

(
max

16i6Np
N k
f ,i

) (9)

and

ηf =
Sf
Np
× 100% (10)

where m is the total number of stages performing inter-
polation calculation, T1 represents the overhead time dur-
ing interpolation, and Tf represents the individual time of
each interpolation calculation on a single processor. We sup-
pose Tf on every processor is equal to each other. It is
observed that large speedup and high parallel efficiency of
interpolation calculation can be achieved if T1 is smaller
than Tf .

C. PARALLEL DATA GENERATION METHOD
In adaptive sampling/data generation process of AMG, mul-
tiple new training data are generated in the worst region of the
input space in every stage. Since repetitively driving detailed
EM/physical/circuit simulators to generate training data is
a time-consuming process in conventional AMG algorithm,
we propose to use parallel data generation method by driving
Np EM/physical/circuit simulators on Np parallel processors
simultaneously to improve the data generation efficiency.
We defineD to represent the number of new training data gen-
erated in every stage, which only relates to the dimensionality
n of the modeling problem, i.e.,

D =
n∑
j=1

((
n
j

)
· 2(n−j)

)
(11)

Let Nd,i represent the number of simulations that the ith
processor (i = 1, 2, · · · ,Np) is performed in every stage of
data generation process, and Nd,i is formulated as

Nd,i =


⌊
D
Np

⌋
, if 1 6 i 6 Np − 1

D mod Np, otherwise
(12)

The proposed parallel data generation method is summa-
rized in the following steps:

Step 1) Initialize the multi-processor environment.
Step 2) We first calculate Nd,i and divide the D new input

samples xj, j = 1, 2, · · · ,D into Np subsets. The
ith subset (i = 1, 2, · · · ,Np) contains Nd,i samples.
These subsets are written intoNp files and distributed
to Np processors, respectively.

Step 3) Each processor first reads the corresponding
file containing new input samples, then drives
EM/physical/circuit simulators to obtain the respon-
ses of these samples d(xj), j = 1, 2, · · · ,Nd,i. After
data generation, these Nd,i input samples and their
responses is written in a file.

Step 4) All files containing the newly generated training data
from all processors are collected. Parallel data gen-
eration in the kth stage of AMG stops.

We use the speedup factor Sd and the parallel efficiency ηd
to measure the performance of the parallel data generation
method. The definitions of Sd and ηd are similar to those of
Sf in (9) and ηf in (10), i.e.,

Sd =
T2 + m · D · Td

T2 + m ·
(

max
16i6Np

Nd,i

)
· Td

(13)

and

ηd =
Sd
Np
× 100% (14)

wherem is the total number of stages performing data genera-
tion (same as the total number of stages performing interpola-
tion calculation), T2 represents the overhead time during data
generation process, and Td represents the simulation time for
each data generation on a single processor. Since T2 is much
smaller than Td , a large speedup and high parallel efficiency
of data generation can be achieved.

D. PARALLEL ANN TRAINING
After data generation, the proposed AMG algorithm proceeds
to neural model structure adaptation stages to determine the
suitable number of hidden neurons in the ANN model. The
initial guess of the number of hidden neurons in the ANN
model can be flexible. According to the training and testing
errors in every stage, the proposed AMG algorithm automat-
ically detects the ANN learning phenomenon (i.e., under-
learning, over-learning, good-learning), and decides whether
to add or delete hidden neurons of ANN in the next stage.
If the ANN with H k hidden neurons is under-learning
(i.e., Ektrain > Ed ) in the kth stage, an ANN with H k

+ δ

hidden neurons is trained by the algorithm in the (k + 1)th
stage; if the ANN with H k hidden neurons is over-learning
(i.e., Ektrain 6 Ed and Ektest > Ed ) in the kth stage, an ANN
with H k

− δ hidden neurons is trained by the algorithm in
the (k + 1)th stage; otherwise, the ANN is good-learning
(i.e., Ektest 6 Ed ) and the model structure adaptation process
is finished.

ANN training is an iterative and a computationally inten-
sive process in AMG, in which the neural network weights
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w are iteratively updated based on the training error and its
derivatives w.r.t weights to minimize the overall training error
Etrain. Because the feedforward training error calculation and
the backpropagation derivative computation are completely
independent between different training data, we propose to
use parallel ANN training method by performing training
error calculation and error backpropagation in Np processors
parallely. We divide the total number of training data into
Np subsets and distribute to Np processors. Each processor
computes the training error and its derivatives using its corre-
sponding training data subsets. Then all the results are added
together to obtain the total training error and derivatives. The
neural network weights are synchronously updated among all
the processors. Let L represent the total number of training
data obtained from data generation process, and Nl,i repre-
sent the number of training data sent to the ith processor
(i = 1, 2, · · · ,Np) for training error and derivative calcula-
tion. The formulation of Nl,i is

Nl,i =


⌊
L
Np

⌋
, if 1 6 i 6 Np − 1

L mod Np, otherwise
(15)

The training error on the ith processor Ektrain,i and its deriva-

tive
∂Ektrain,i
∂w in the kth stage of AMG are defined as

Ektrain,i =
1
2

Nl,i∑
j=1

∥∥∥yk (xj,w)− d(xj)∥∥∥2 (16)

and

∂Ektrain,i
∂w

=

Nl,i∑
j=1

(
yk (xj,w)− d(xj)

)
·
∂yk (xj,w)

∂w
(17)

respectively, where yk (xj,w) represent the response of the
ANN model at the input sample xj in the kth stage of AMG.

The total training error Ektrain and its derivative
∂Ektrain
∂w for each

training iteration are defined as

Ektrain =
1
2

Np∑
i=1

Nl,i∑
j=1

∥∥∥yk (xj,w)− d(xj)∥∥∥2 (18)

and

∂Ektrain
∂w

=

Np∑
i=1

Nl,i∑
j=1

(
yk (xj,w)− d(xj)

)
·
∂yk (xj,w)

∂w
(19)

respectively.
One iteration of the proposed parallel ANN training is

summarized in the following steps:

Step 1) Initialize the multi-processor environment.
Step 2) We calculate Nl,i and divide the L training data into

Np subsets. The ith subset (i = 1, 2, · · · ,Np) con-
tains Nl,i samples. These subsets are written into Np
files, then distributed to Np processors, respectively.

Step 3) Each processor reads the corresponding file, i.e., the
ith processor reads the file containing Nl,i train-

ing data, then computes Ektrain,i and
∂Ektrain,i
∂w using

(16) and (17).

Step 4) We gather the results of Ektrain,i and
∂Ektrain,i
∂w from all

processors, then calculate the overall training error

Ektrain and its derivative
∂Ektrain
∂w using (18) and (19).

Step 5) All processors update the weight vector using quasi-
Newton method. One iteration of ANN training is
finished.

We use the speedup factor Sl and the parallel efficiency
ηl to measure the performance of the parallel ANN training
method. The definitions of Sl and ηl are similar to those of Sf
in (9) and ηf in (10), i.e.,

Sl =
T3 + q · L · Tl

T3 + q ·
(

max
16i6Np

Nl,i

)
· Tl

(20)

and

ηl =
Sl
Np
× 100% (21)

where q represents the number of iterations for one ANN
training, T3 represents the overhead time during ANN train-
ing, and Tl represents the computation time of training error
and its derivative per training data on a single processor.
In (20), T3 and Tl are in the same order of magnitude, and
the number of training iterations q is usually more than thou-
sands. Using the proposed parallel training method, a large
speedup and high parallel efficiency of data generation can
be achieved.

The flowchart of the proposed AMG algorithm with
using parallel computation and interpolation approaches is
shown in Fig. 2. Using the proposed AMG algorithm,
the model development time can be greatly shortened with
the increase of the number of parallel processors. In this
way, the proposed AMG algorithm is more efficient in auto-
mated neural-based model development than existing AMG
methods.

III. EXAMPLES
A. AUTOMATED MODEL DEVELOPMENT OF
TWO-SECTION LOW-PASS ELLIPTIC
MICROSTRIP FILTER
In this example, we develop a parametric model for a two-
section low-pass elliptic microstrip filter [9], [22], [25],
as shown in Fig. 3 (a). The thickness of the alumina sub-
strate h equals to 0.508 mm and the dielectric constant of
the substrate εr equals to 9.4. The geometrical input param-
eters of the ANN model shown in Fig. 3 (b) are x =
[L1 L2 Lc1 Lc2 Wc Gc]T , chosen based on the sensitivity data
of the above low-pass filter. The model output is the magni-
tude of S21.

We perform the proposed AMG algorithm with parallel
computation and interpolation approaches to develop a neural
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FIGURE 2. Flowchart of the proposed AMG algorithm with parallel
interpolation, parallel data generation and parallel ANN training.

network model with 1% testing error for the low-pass filter.
The training data are generated by CST Microwave Studio
EM simulator at 101 frequency points between 1 and 4 GHz.

FIGURE 3. Low-pass elliptic microstrip filter example.

We use C language to program the proposed AMG algorithm,
including interpolation calculation, driving EM simulator
for data generation, driving NeuroModelerPlus software for
ANN training and testing. Parallel processing is implemented
using OpenMP in C language on Intel Xeon E5-2440 proces-
sors. In this example, Np = 4.
For comparison purpose, we also perform the AMG algo-

rithmwithout interpolation and parallel computation [14] and
the AMG algorithm with interpolation but without parallel
computation [15] to develop models with 1% testing error for
this low-pass filter. The initial guess of the number of hidden
neurons is 30, i.e., H1

= 30. The comparison of the CPU
time used in different AMG algorithms is listed in Table 1.
With interpolation techniques, the proposed AMG algorithm
avoids 3 stages of intermediate ANN training during adaptive
sampling process and the CPU time is saved compared to
existing AMG without interpolation in [14]. With parallel
computation, the proposed AMG algorithm is nearly 4 times
faster than the existing sequential AMG in [14], and 3 times
faster than that in [15], leading to improved efficiency in
automated neural-based model development for microwave
applications. Table 2 shows the detailed speedup and parallel
efficiency of parallel interpolation, parallel data generation
and parallel ANN training in the proposed AMG algorithm
for the low-pass filter modeling example. The time for inter-
polation calculation in parallel is 0.022 h, and that for the
sequential interpolation calculation is 0.053 h, which results
in a speedup (Sf ) of 2.41 and a parallel efficiency (ηf ) of
about 60.2%. The time for 1394 training data generation in
parallel is 5.60 h, and that for the sequential data generation is
18.54 h, which results in a speedup (Sd ) of 3.31 and a parallel
efficiency (ηf ) of about 82.7%. The time for parallel ANN
training is 0.71 h, and that for sequential ANN training is
2.32 h, which results in a speedup (Sl) of 3.27 and a parallel
efficiency (ηl) of about 81.7%. It is observed that the pro-
posed AMG algorithm is more efficient in automated neural-
based model development than existing AMG algorithms.
The total CPU time can be further reduced if more parallel
processors are used.
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TABLE 1. Comparisons of Interpolation Time, Data Generation Time and
ANN Training Time Between Proposed AMG Algorithm and Existing AMG
Algorithms for the Low-pass Filter Example.

TABLE 2. Speedup and Parallel Efficiency of Parallel Interpolation,
Parallel Data Generation and Parallel ANN Training in Proposed AMG
Algorithm (Using 4 Parallel Processors) for the Low-pass Filter Modeling
Example.

B. AUTOMATED MODEL DEVELOPMENT OF
BANDPASS HTS MICROSTRIP FILTER
In this example, we consider the parametric modeling of
an HTS quarter-wave parallel coupled-line microstrip filter
[22], [26]–[28], as illustrated in Fig. 4 (a). The geometrical
input parameters of the ANN model shown in Fig. 4 (b) are
x = [L1 L2 L3 S1 S2 S3]T , where L1, L2 and L3 are the lengths
of the parallel coupled-line sections, and S1, S2 and S3 are the
gaps between the sections. In this bandpass filter structure,
L0 is the length of the input and output transmission line
feeding the coupled line filter. We assume the same width
W = 0.635 mm for all the sections. The thickness of the

FIGURE 4. Bandpass HTS microstrip filter example.

TABLE 3. Comparisons of Interpolation Time, Data Generation Time and
ANN Training Time Between Proposed AMG Algorithm and Existing AMG
Algorithms for the Bandpass Filter Example.

lanthanum-aluminate substrate h equals to 0.508 mm and the
dielectric constant of the substrate εr equals to 23.425.
For comparison purpose, we perform the existing sequen-

tial AMG algorithms with or without interpolation tech-
niques [14], [15] and our proposed AMG algorithm with
interpolation and parallel computation to develop ANNmod-
els for the bandpass filter. The user-desired testing error of the
model is 1%. In this example, 8 processors are used for paral-
lel processing of the proposed AMG algorithm, i.e., Np = 8.
Table 3 shows the comparison of the model development time
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using three AMG algorithms. Because of the incorporation
approaches, the proposed AMG algorithm uses less time for
ANN training than the AMG algorithm in [14]. Furthermore,
the proposed AMG algorithm uses parallel processing in
interpolation calculation and ANN training process, leading
to further reduction in interpolation time and ANN training
time over the existing AMG algorithms in [14] and [15].
During the AMG process, 1394 training data are needed to
develop the neural network model. Using parallel data gen-
eration method, the data generation time is decreased from
19.36 h to 4.23 h. In this way, the total CPU time of the model
development using proposed AMG algorithm is less than that
using the previously published AMG algorithms.

TABLE 4. Speedup and Parallel Efficiency of Parallel Interpolation,
Parallel Data Generation and Parallel ANN Training in Proposed AMG
Algorithm (Using 8 Parallel Processors) for the Bandpass Filter Modeling
Example.

The speedup and parallel efficiency of the proposed AMG
algorithm is shown in Table 4. A speedup (Sf ) of 4.77 and
a parallel efficiency (ηf ) of 59.6% is achieved for parallel
interpolation calculation; a speedup (Sd ) of 4.58 and a parallel
efficiency (ηd ) of 57.2% is achieved for parallel data gen-
eration; a speedup (Sl) of 4.46 and a parallel efficiency (ηl)
of 55.8% is achieved for parallel ANN training. Therefore,
the entire AMG process is benefited from the computation
speedup of the proposed parallelization including parallel
interpolation calculation, parallel data generation and parallel
ANN training. From Table 3 and Table 4, it is observed the
proposed AMG algorithm is more efficient for automated
neural model development than existing AMG algorithms.

IV. CONCLUSION
In this paper, an advanced automated neural-based modeling
algorithm of microwave devices using parallel computation
and interpolation approaches has been proposed to improve
the neural model development efficiency. Parallel interpola-
tion approaches has been proposed to assess the adequacy
of training data and to determine the distribution of train-
ing data in the modeling input space. Parallel data gener-
ation has been achieved by automatically driving multiple
EM/physical/circuit simulators in parallel onmultiple proces-
sors. Parallel neural network training has been incorporated
by performing training/testing error computation and error
backpropagation in parallel on multiple processors. The pro-
posed algorithm has been illustrated by automated modeling
of two microwave filter examples.

FIGURE 5. Automated sampling distribution in the 4th stage by the
proposed AMG for a 2-D example. A total of 9 points are selected in and
around the present interpolation region to calculate interpolation
function. A factor of 10 is applied to 4 vertices of the interpolation region
when formulating matrix X and vector d in (3).

APPENDIX
In this appendix, we provide detailed information of the
matrix X and the vector d defined in (3) following the
existing literature [15]. When calculating the interpolation
in one region, the region is called the interpolation region.
In the proposed interpolation formulation of one subregion,
(3) is the key formula to compute the values of coefficients
α in the interpolation function. We select M training data
(x(i), d (i)), i = 1, 2, . . . ,M in and around the interpolation
region to form matrix X and vector d . These M points are
the available training data nearest to the center of the inter-
polation region. The elements in d are output values d (i) of
these M training data, and the elements in X are the location
information of these training data. For models with 2 inputs
(n = 2) as an example, 9 training data are selected to form X
and d , including 4 data points (vertices) of the interpolation
region, and 5 more data points in the neighboring regions
M = 9. A weighting factor of 10 is applied to the 4 vertices
of the interpolation subregion when forming matrix X and d .
Fig. 5 shows a 2-dimensional example of the interpolation
and points used during the interpolation process.
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