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ABSTRACT With the rapid developments in edge devices andwireless technologies, the underwater wireless
sensor networks (UWSNs) are in the process of vigorous development. In UWSNs, the traditional multi-hop
data collection methods have some disadvantages such as high power consumption, severe unbalance in
power consumption, and so on. In recent years, mobile edge elements (such as an autonomous underwater
vehicle, AUV) are widely used in underwater data collection to solve energy consumption imbalance
problems. However, the existing methods do not fully consider the efficient mobile edge computing and
the real mobility model of AUV in the underwater environment. In this paper, we propose a data collection
scheme based on a mobility model of mobile edge elements under water. In this model, the mobility
direction and velocity are fully considered, which are close to the mobility characteristic of AUVs in the
stable 3D environment. By using computing, storage, and mobility abilities of AUVs, a target selection
algorithm is designed to calculate the mobility path of data collection for AUV. The theoretical analysis and
experimental results show that the proposed method improves the efficiency of data collection, reduces the
power consumption of nodes, and extends the network lifetime.

INDEX TERMS Underwater sensor network, mobile edge computing, data collection, mobile elements.

I. INTRODUCTION
In recent years, the IoT (Internet of Things) has been increas-
ingly applied in various fields, such as smart home, smart city,
intelligent transportation, environmental monitoring, security
systems, and advanced manufacturing [1] [2] [3]. The IoT
is composed of technologies such as network edge devices
(mobile devices) andwireless technologies [4] [5].With rapid
developments in mobile devices and wireless technologies,
mobile devices and mobile applications play an increasingly
important role in daily life, and provide great potential devel-
opments for Mobile Edge Computing (MEC) [6] [7]. Mobile
edge computing is a computing paradigm to implement the
cloud computing services on network edges, using mobile
edge devices, such as gateways, routers, micro servers.
Mobile edge devices have advantages in storage, mobility and
computing, which are close to the edge of the network [8].
Therefore, MEC can provide faster service responses and
reduce the network congestion in the IoT [9].

The associate editor coordinating the review of this manuscript and
approving it for publication was Wenbing Zhao.

Similarly, with developments of the underwater IoT and
mobile devices, such as acoustic sensors, and AUV. UWSNs
are widely used in ocean resource detection, underwater envi-
ronment monitoring, and auxiliary navigation. The UWSNs
is an underwater monitoring network system, which are
composed of many sensor nodes with communication, data
collection and computing capabilities [10]. Data collection
is a very important research field in the UWSNs, and can
be treated as a mobile edge application. Modern underwater
applications generate massive data, such as high-definition
video, audio, and pictures. For long distance transmission by
wireless signal in UWSNs, the collected data is easy to lose.
The data collected by sensor nodes needs to be transmitted to
the receiving node, and it forwards throughmulti-hop routing,
which consumes a lot of energy [11]. Moreover, it is difficult
to charge the battery of the underwater mobile edge elements.
Hence, how to reduce the energy consumption of nodes has
become an urgent problem. Currently, the main challenges of
data collection in UWSNs are as follows.

First, most AUV-aided data collection methods are based
on the assumption that the movement velocity of the AUV
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is constant [12]. However, in the underwater environment,
movement velocity of the AUV is influenced bymany factors,
such as water flow, water pressure and obstacles. Moreover,
actual motion status of AUV includes rising, sinking and
turning when AUV moves to different target nodes, so the
velocities of AUV are different [13]. Therefore, setting the
same velocity make the AUV miss some target nodes.

Second, most data collection algorithms are run on the
cloud. The cloud is far away from the data source nodes,
transmitting the collected data to the cloud would increase
energy consumption of nodes [14]. In addition, some key
nodes die firstly and make the network die.

Two typical methods are used to collect underwater data:
multi-hop data collection methods and AUV-aided data col-
lection methods. The former would cause unbalanced energy
consumption. If the relay node is closer to the receiving node,
it consumes the more energy. The latter have serious data
collection delay, because the AUV needs to visit all nodes and
to collects data each cycle. However, the movement velocity
of AUV is slow.

In order to tackle these constraints, this paper proposes a
data collection scheme based on mobile edge model. In the
mobility model, the underwater vehicle is influenced by
its own gravity and buoyancy, which together produces the
heave speed, making the maneuver ability of the underwater
vehicle close to the real world. The AUV has advantages
in computing, storage and mobility in UWSNs. Therefore,
it is used as the MEC layer, providing the MEC service and
data collection service. Meanwhile, a target node selection
method is deployed on the AUV. In the proposed method,
the residual energy of nodes and the distance between nodes
are selected as criterion to select target nodes. The node with
large residual energy is selected as the target node, and the
target node is updated dynamically each cycle. The proposed
target node selection method enables the AUV to access all
target nodes in the shortest time and balance the energy con-
sumption of the whole network. Furthermore, most work on
UWSNs considered acoustic communications until recently.
We combine magnetic induction (MI) communications with
acoustic communications in this paper. The communication
range of MI is less than 10m. The data rate of MI is up to
a few Mbps(up to 10 Mbps) and more than acoustic com-
munication (≤ 100bps). The propagation path loss of MI
is very small [15] [16]. When the AUV accesses the target
node, the distance between the AUV and target nodes is less
than 10 m, so the target nodes can transmit data to the AUV
directly by using MI communication. This reduces the data
transmission time efficiently. Other nodes transmit data to the
target nodes by using acoustic communication.

The main contributions of this paper are as follows:
(1) We combine magnetic induction (MI) communications

with acoustic communications to transmit data, which
can reduce the data transmission time effectively.

(2) We propose a new data collection scheme based on
a mobility model of mobile edge elements under the
underwater sensor networks.

TABLE 1. Different types of data collection methods.

(3) We use AUV as the mobile edge computing layer, pro-
viding the mobile edge computing and data collection
service.

(4) We propose a target nodes selection algorithm based
on the mobile edge model, which enables the AUV to
visit all nodes in the shortest time and balance energy
consumption of the whole network.

The rest of this paper is organized as follows. Section II
reviews the related works. The scenario is set and the relevant
model is given in Section III. Section IV proposes the relevant
algorithms. The simulation results and performance analysis
are discussed in Section V. Section VI concludes the paper.

II. RELATED WORK
In UWSNs, three common schemes are used to collect data.
At the early stage, most data collection methods are based
on the multi-hop collection scheme, because the computing
performance of mobile edge devices is limited. With the
development of mobile edge devices, many researchers used
AUV-aided data collection scheme. Recently, data collec-
tion adopts a scheme that combines multi-hop scheme with
AUV-aided data collection scheme. Table 1 shows some typ-
ical algorithms.

In the multi-hop data collection scheme, source node col-
lects data and selects the relay node to forward the data to
the sink node. Xie et al. [17] proposed a vector based on for-
warding (VBF) protocol. In the VBF, packets are forwarded
in a fixed virtual pipeline between each pair of sources
and targets. In the sparse network, the performance of VBF
decreases and the candidate nodes in the pipeline could hardly
be found. To increase the possibility of finding a node in the
pipeline, Nicolaou et al. [18] proposed the forwarding proto-
col based on hop-by-hop vector (HH-VBF). HH-VBF needs
to initiate a different pipe from each intermediate (relay) node
on each hop.

The multi-hop data collection scheme is unable to solve
the energy consumption unbalance problem in UWSNs,
the AUV-aided data collection scheme was proposed. Chen
et al. [19] proposed theMobicast protocol. They assumed that
all possible sensor nodes form a 3D geographic region are
near the AUV, called 3D reference region (3D ZOR). The
AUV follows user-defined paths and continuously collects
data from a series of sensor nodes in 3D ZOR to adapt to
different time spans. The Mobicast protocol relies on two
phases. In the first phase, the AUV collects data in 3D
ZOR. In the second phase, the nodes in the next 3D ZOR
would be awakened and topology vulnerabilities would be
avoided. This method could avoid the low efficiency of direct
traversal nodes and reduce energy consumption of nodes.
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Han et al. [20] proposed the PNCS-GHA method. These are
two AUV data collection algorithms are based on probabilis-
tic neighborhoods. The AUV follows the designed path to
collect data from the adjacent area. For three-dimensional
UWSN with known deployment information, The AUV only
needs to construct a minimum probability neighborhood cov-
erage set for the aim access several selected locations to
reduce data latency.

The serious data delay in AUV data collection scheme,
many researchers combined the multi-hop data collection
scheme with AUV-aided data collection scheme. In the com-
bination scheme, the AUV does not traverse all nodes or
monitoring areas. Assuming that the network is clustered
with some cluster heads or gateway nodes and other nodes
would forward the data to the cluster heads or gateway
nodes through multiple hops. Hence, the AUV only needs
to visit the cluster heads or gateway nodes to collect data.
Ahmadet al. [21] proposed the AEERP method. In AEERP,
the AUV moves with predetermined elliptical trajectory in
each cycle. However, in a wide network, there is no restriction
about the hop distance between the member and the gate-
way nodes, causing a lot of energy consumption. Cheng and
Li [22] proposed that the important data could be forwarded
to the corresponding layer by multi-hop, and other data is
collected from the bottom to the top by AUV. It could reduce
the latency of important data.

Meanwhile, path selection methods of AUV have a cru-
cial impact on the efficiency of data collection. Basagni
et al. [23] set a value based on the importance of the data,
which decreases the total time. The goal is to determine
the collection path for the AUV to maximize the value of
data. Researchers proposed a heuristic algorithm for AUV
routing (GAAP), which drives AUV to collect data from
nodes to maximize data transmission. This algorithm could
quickly collect data with large important values to a large
extent, but most of the data with small relative values have
serious delay and low efficiency. Researchers [21] proposed a
pre-fixed elliptical trajectory of the AUV to collect data from
the nodes. Although this method could reduce the moving
path, it extends the distance from the member nodes to the
gateway or cluster heads. Moreover, it could not cover all
nodes. The researchers [24] selected the cluster heads and
then used the AUV to collect data from the cluster heads. The
shortest path algorithm (TSP) is used to calculate the AUV
mobility path of data collection.

With the development of the IoT, there is great potential
in the computing service of the IoT [25] [26], such as the
IoT applications in smart cities, the scheduling of emergency
data [27], and the security service [28]. The underwater sen-
sor network is a product of the IoT technology and edge
devices. MEC has become a new paradigm to solve the
needs of IoT and provide localized computing service [29].
In addition, it is a method to alleviate resource congestion
and upgrade in the mobile networks. Firstly, a number of
computing nodes distributed across the network could off
load the computational stress away from the centralized data

center. Secondly, compared with traditional cloud services,
distributed architecture could balance network traffic and
reduce the response time of real-time IoT devices. In addition,
the system could extend the network lifetime and transfer the
computing and communication overhead of a node with less
energy to a node with higher energy.

III. PRELIMINARIES
In this section, we firstly set up the data collection scenario
and describe the data collection process. Then, we introduce
the evaluation mechanism. Finally, we illuminate the under-
water edge network architecture.

A. SCENARIO AND NOTATION
A set of n sensors [s1, . . . , si, . . . , sn] are randomly deployed
on different monitoring areas in the underwater 3D (L×W ×
H ) environment. The nodes collect data and then transmit
the collected data to relay nodes or AUV. When the nodes
consume all energy, the nodes would die automatically.When
m (m/n <some constant) nodes die, the network would fail.
An AUV is deployed to visit all target nodes and collect data.
In each cycle T , the AUVfloats up to the surface and forwards
data to the sink node, and then the sink node sends data to the
cloud.

Assumptions:

(1) Underwater environment is basically stable. Nodes and
AUV are not affected by water flow [30] [31].

(2) As shown in Fig.2 (AUV 3D underwater mobility
model). The initial position and target node position of
AUV are given. The initial velocity is vAUV of AUV, and
the heave velocity is vf .

(3) The location of the n sensor nodes [s1, . . . , si, . . . , sn]
and each node si is given [32] [33].

(4) The underwater environment is relatively stable,
the nodes do not move in a certain period of time,
the end-to-end communication path between nodes is
not affected [34] [35], which can’t lead to the formation
of underwater delay tolerant networks [36] [37].

(5) The remaining power R of the node si is given.
(6) Energy of AUV and sink node is unlimited.
(7) AUV proactively moves around and collects data, which

is unaffected by network partitioning.

Goal: Maximizing the entire network lifetime.
As shown in Fig.1, we use the AUV to collect data. The

whole process is described as follows. In a given monitoring
area, sensor nodes are divided into several clusters. In a clus-
ter, we select a target node, and is also named the cluster head,
which is the node that AUV visits and collects data. Other
nodes in the cluster are called member nodes. The member
nodes are responsible for collecting data and forwarding data
to target nodes by acoustic communication. Finally, the AUV
visits all target nodes and collects data byMI communication.
Target nodes usually consume a lot of energy, so the network
energy consumption is balanced by periodically updating tar-
get nodes. In the mobile edge computing platform, the AUV
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FIGURE 1. Underwater sensor network and AUV based data collection.

processes and stores a large amount of data that will be used
in the next cycle.

B. EVALUATION MECHANISM
The evaluation mechanism is a key to measure the perfor-
mance of data acquisition methods. This paper evaluates the
performance of data acquisition methods by using network
energy consumption and data delay.

In this paper, the energy consumption is divided into two
parts: the data collection energy consumption Ecollection and
the data transmission energy consumption Esend . The total
energy consumption can be defined as:

Etotal = Ecollection + Esend (1)

where Ecollection = xPcTc is the energy consumption of data
collection, Pc is the energy consumption of data collection,
and Tc is the time of collection of collection of x bits data.

The data transmission energy consumption is mainly influ-
enced by transmission bandwidth, transmission delay and
transmission loss. The data transmission energy consumption
is composed of two parts: transmission energy consumption
and noise loss. The energy consumption of data transmission
could be defined as [38] [39]:

Esend = Ps · Ts · A(d) (2)

where Ps is the energy of data transmission by the node, Ts
is the time of data transmission, A(d) is the energy loss of
the distance, and d is the distance between the sender and the
receiver.

In this paper, the AUV visits the target nodes to collect data
through magnetic induction and transmits data to sink node
by radio. The radio speed is very fast, so data transmission
time between the AUV and the sink node is ignored. There-
fore, three different delays lead to data collection delays:
computing delay Tcomputation, the time TAUV taken by the
AUV visit target nodes during data collection, and the waiting
time Td that AUV waits target nodes to transmit data to the
AUV.

Ttotal = Tcomputation + TAUV + Td (3)

TAUV =
∑
i∈TNs

LAUV→i

vAUV→i
(4)

where LAUV→i is the distance between AUV and target nodes
TNi, TNi is the cluster head, it is also the target node for AUV
to collect data, and vAUV→i is the average moving speed of
AUV from the current position to the target head TNi.

C. UNDERWATER EDGE NETWORK ARCHITECTURE
In the underwater edge network architecture, the AUV as
a mobile edge element can provide data collection, storage
and computing services. Hence, UWSNs can be divided into
three layers: data acquisition layer, data processing layer and
application service layer.

In the proposed architecture, the MEC layer lies between
the bottom nodes and the cloud. The mobile edge layer is
close to data source, which can process and transmit data
faster and reduce the delay [8]. In this paper, the AUV is
close to the underwater nodes, and it is taken as the edge
computing layer. The AUV has the ability to store and process
data. Mobile edge devices can attain the aim of collect-
ing data, providing computing services and reducing data
latency and the computation of nodes compared to cloud
computing [40] [41]. The data collection method proposed
based on edge devices is implemented in the mobile edge
computing layer.

IV. DATA COLLECTION PROTOCL BASE ON MOBILITY
MODEL (DCRTM)
In this section, we firstly present the detailed analysis of
the mobility model. Secondly, we introduce the target nodes
selection method. Finally, we give the detailed analysis of
DCRTM.

A. THREE-DIMENSIONAL MOBILITY MODEL OF AUV
In this paper, the AUV is used as the edge computing layer.
Therefore, it is vital to determine the performance of the
realistic mobility model. In the three-dimensional underwater
space, two angles are required to determine direction of AUV.

Considering AUV is affected by its own gravity and buoy-
ancy, we propose a speed synthesis algorithm, as shown
in Fig.2. Therefore, the synthesis speed can be defined as
follows:

vs = vf + vAUV (5)

β = arccos(
L · vf
|L| · |vf |

) (6)

vs = |cos(β + arccos(
vf
vAUV

· cosβ)) · vAUV /cosβ| (7)

where, L is the vector from AUV to the target node, vAUV
is the initial velocity of AUV, and vf is the heave velocity of
AUV. The vector fromAUV to the target node is the synthesis
speed vs. The angle between the position of the target node
and the heave velocity vector is β.

The realistic speed and direction of AUV could be obtained
through the above formula (5) - (7). In this paper, the
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FIGURE 2. AUV 3D mobility model.

implementation of AUV mobility model is based on AUV
controllable.

B. CLUSTER FORMATION BASED ON K-MEANS
The selection and clustering of target nodes are of great
significance to reduce the network energy consumption. The
target node is the cluster head, which is the node that AUV
visits and collects data. Clustering is based on cluster heads.
In this paper, target nodes selection method is proposed
based on residual energy and distance of nodes. The target
nodes selection method directly affects the performance of
the overall network. Furthermore, the target nodes selection
method is designed to run on the AUV and the collected
data information includes residual energy of each node and
distance between two nodes.

For clustering algorithm, K-means clustering algorithm is
used for clustering, which is a typical distance-based cluster-
ing algorithm. It believes that clusters are made up of objects
that are close to each other. It takes compact and independent
clusters as target.

Bipartite K-means clustering algorithm is a special form
of k-means, which can be applied in the node partition and
then to form a sub-group structure in the underwater sensor
networks. Bipartite K-means clustering algorithm is insen-
sitive to the selection of initial clustering centers and easy
to converge to the global optimal clustering. Hence, Bipar-
tite K-means clustering algorithm is used in this paper. The
method is described as follows:

(1) Two nodes are randomly selected as initial clustering
centers, and K-means algorithm is used to obtain clustering
results. Two subgroups are formed and their objective func-
tions are calculated:

T =

∑k
i=1

∑
s∈Xi

‖s−ci‖
n

‖c1 − c2‖
(8)

where, k is the number of clusters, here the number of
clusters is 2; Xi is the NO. i (i = 1, 2) clustering subset;

Algorithm 1 Cluster Formation Based on K-Means
1: Setting all sensor nodes as initial subgroup X and setting

size threshold R as input of the algorithm;
2: The initial sub-group X is clustered into two sub-groups

by dichotomous K-means clustering, which divides the
underwater sensor network into two sub-groups. This
step includes the process of repeating clustering N times
and retaining the clustering result with the minimum
objective function value;

3: Determining whether the bounds of subgroups obtained
in step (2) are less than the size threshold. If there are
subgroups that do not satisfy the conditions, then the
K-means clustering is continued;

4: When all subgroups satisfy the above conditions, the exe-
cution of the algorithm ends and the resulting subgroups
are saved as output results.

s is the sample point in Xi (sensor node); Ci is the center of
NO. i cluster subset. The numerator of the objective function
is used to compute the average distance between all sample
points on their respective class centers. The denominator of
the objective function represents the distance between two
class centers. Obviously, the smaller the T value is, the better
the effect of node partition is.

(2) Reselect randomly selected initial clustering centers
and complete the clustering calculation N times, retaining the
clustering results with the minimum T value as the subgroup
structure of network partition.

The aim of this paper is to use clustering theory to divide
the n sensor nodes in the underwater sensor network into sev-
eral subgroups according to their space positions, as shown
in Fig.5.
Definition 1: Subgroup, that is dividing n nodes into K

node sets by clustering method, in which each node set
becomes a sub-group.

In order to get the appropriate size subgroup structure for
AUV to collect the data of nodes, it is necessary to continue
clustering and node partitioning within sub-clusters by using
bipartite K-means network until the size constraints satisfy
the conditions. This process is called sub-cluster-based net-
work partitioning.
Definition 2: Subgroup threshold, the maximum

Euclidean distance between any two nodes in subgroup X ,
that is,

max
(∥∥si, sj∥∥) , si, sj ∈ X (9)

Definition 3: Size threshold, setting the communication
radius Rsen of underwater sensor nodes.
Therefore, the clustering condition for underwater sensor

networks is that the boundaries of all subgroup which are less
than the size threshold. At this time, all nodes in the cluster
can send data to the cluster head node.

The partitioning algorithm of underwater sensor network
based on K-means is given in Algorithm 1.
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FIGURE 3. Example of clustering.

The most important thing in clustering method is to deter-
mine the number of clusters. Assuming that there are n nodes
in the network and the number of initial clusters is k . In gen-
eral, there are n/k nodes in each cluster. Cluster head nodes
transmit data to AUV. The size of the network is L ∗ L ∗ L.
According to [42], the optimal number of clusters is:

k =

√
∧L
πd

(10)

where d is the distance between nodes and the AUV.
After clustering, all member nodes send data to cluster

heads. So the cluster heads consume the most energy, and
we choose the node with the most residual energy as the
cluster head in a cluster. In this way, the energy consumption
of network nodes can be balanced. According to formula
(2), the energy consumption of data transmission is posi-
tively correlated with distance. Through the above process,
the member nodes send data to the cluster head and reduce the
data transmission distance, so the total energy consumption of
all nodes is the minimum. It can be expressed as follows:

argmin
∑
si∈S

Esend ⇒ argmin
∑
si∈S

(Ecollection + Esend ) (11)

C. PATH SELECTION BASED ON AUV MOBILITY MODEL
After clustering, AUV collects data of target nodes through a
mobility path.Mostmethods treat selection path as a traveling
salesman problem (TSP), a class of NP hard problem [43]
[44]. According to the mobility model, we use a greedy
algorithm to collect data over a short period of time. We can
figure out the distance between any two points in three dimen-
sions by using Euclid’s formula for distance [45]:

d(i− 1, i) =
√
(xi−1 − xi)2 + (yi−1 − yi)2 + (zi−1 − zi)2

(12)

In this paper, the goal is not to find the shortest distance
path. Instead, it is to find the path that takes the shortest time
of data collection from AUV, as show in Fig.4. The AUV
travels to target nodes in different positions, so the velocities

FIGURE 4. Example of path selection based on AUV mobility model.

of AUV are different. Therefore, the velocity of AUV could
be calculated by combining the realistic mobility model. The
velocity vi−1→i of AUV from position of node i−1 to position
of node i could be obtain by using the realistic mobility
model. ti is the time when AUV accesses node i from node
i− 1 that could be obtained:

ti =
d(i− 1, i)
vi−1→i

(13)

Greedy algorithm is used to calculate the time cost between
nodes, find out all possible data acquisition paths, and calcu-
late the path that needs the shortest data acquisition time. The
process is described as Algorithm 2.

Algorithm 2 Path Selection of AUV Alogorim
Require: The set of target nodes TNs; the time ti of from

TNi−1 to TNi
Ensure: Mintime
1: Initialization: mintime=0; the set T of total time
2: Define function(TNs)
3: // Represents lines 3 to 13 of the algorithm
4: while TNi ∈ TNs and TNs 6= φ do
5: visit TNi
6: mintime = mintime+ti
7: // Visit to a target node, add the time spent visiting

that node a to sum of time
8: remove TNi from TNs
9: if TNs 6= φ then
10: function(TNs)
11: // A recursive call to the function itself
12: add mintime to set T
13: // Add minimum time to time set T
14: end if
15: end while
16: return argmintime

In Algorithm 2, the shortest time is initialized and the time
set of all paths is spent on the first line; in the second line,
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a function for paths selection is defined; in the fourth and fifth
line, the AUV visits a target node TNi, TNi ∈ TNs; in the sixth
line, the time spent on visiting the node is accumulated; in
the seventh line, the visited node is removed from the current
target node set TNs; in the eighth and ninth lines, the function
of paths selection is executed iteratively, and the total time
spent is added to the time set T . When all paths are traversed,
the minimum time in the time set T is returned. The path that
takes the shortest time is the best one.

Through the above process, we can find the path that takes
the shortest time and collect data on this path. The shortest
time for data collection to move could be expressed by the
following formula:

TAUV = argmin
∑
ti∈T

ti ⇒

Ttotal = argmin(Tcomputation + TAUV + Td ) (14)

After each round of data collection, target nodes are
updated.

D. ANALYSIS OF DCRTM
In this paper, clustering is based on mobile edge devices
(AUV). Traditional algorithm is carried out in the cloud,
because the cloud is far away from the edge devices. thus,

Tedge < Tcloud (15)

where Tedge, and Tcloud denote the delay of the mobile edge
computing, and the delay of cloud computing respectively.
According to formula (5), we reduce the calculation delay,
thus reducing data delay. In algorithm 1, the complexity
of algorithm is related to the number of nodes. Assum-
ing that there are k target nodes, the time complexity is
O(k ∗ n) in the worst case. The time complexity is O(n!)
of traditional path planning TSP based on the greedy algo-
rithm. In this paper, based on the mobile model of path
planning, the time complexity of using greedy algorithm
is O(n!).

V. SIMULATION AND PERFORMANCE EVALUATION
A. SIMULATION SETTING
Simulation experiments are implemented on the MATLAB
2018a software. Some parameters utilization are given as
follows. 150-550 sensor nodes are randomly distributed in
the 400m*400m*400m monitoring area under the water. The
acoustic transmission rate is set up 4kbps. Other environment
Settings are shown in Table 2.
The simulation results are evaluated by analyzing the fol-

lowing indicators: PDR, the collection delay, the unit energy
consumption and the network lifetime. Unit energy consump-
tion is defined as the average energy consumption per node in
each round when forwarding packets once. Network lifetime
is defined as the elapsed time when the first node dies in
the network. PDR denotes the ratio of packets successfully
received by the AUV to the packets sent by all nodes.

TABLE 2. Simulation parameters.

FIGURE 5. Simulation results with different heave velocities. (a) Unit
Energy Consumption(J). (b) Collection Delay(J).

B. RESULT AND ANALYSIS
1) THE EFFECT OF AUV HEAVE VELOCITY
The AUV is influenced by its own gravity and buoyancy in
the underwater environment, producing the heave velocity in
vertical. In the simulation, we set three heave velocities to
0m/s, 0.5m/s, and 1m/s respectively, as shown in Fig.5(a).
The relationship between unit energy consumption and the
number of nodes is negative. When the heave velocities
are different, the initial speeds and directions of AUV are
different. This results in that the AUV will not move along
the desired trajectory and consume unnecessary energy. The
results show that the faster the heave velocity, themore energy
the AUV consumes. Fig.5(b) shows the relationship between
the data collection delay and the number of nodes is positive,
and it also demonstrates that the greater the heave velocity is,
more serious the data collection delay is.

2) THE EFFECT OF DATA RATE
The target nodes transmit the collected data to AUV, and the
data transmission rate directly affects the data collection time
of the AUV, because the data transmission rate of electromag-
netic wave signal is 10Mpbs in the underwater environment.
We set the data transmission rate to 10k, 20k and 40k respec-
tively in the simulation. As shown in Fig.6(a), the relationship
between the energy consumption of each node and the data
transmission rate is negative. The higher data transmission
rate is, the higher PDR is. The higher the transmission success
rate is, the lower the energy consumes. Fig.6(b) shows that
relationship between data collection delay and data trans-
mission rate is positive. higher the data transmission rate is,
the shorter the transmission time of packets is.

VOLUME 7, 2019 65363



S. Cai et al.: Data Collection in Underwater Sensor Networks based on MEC

FIGURE 6. Simulation results with different DRs. (a) Unit Energy
Consumption. (b) Collection Delay.

FIGURE 7. (a) Simulation results with different transmissions.
(b) Simulation results with different speeds of AUV.

3) COMPARISON OF DIFFERENT DATA TRANSMISSION
METHODS
Nodes range from 150 to 500, each node transmits data at
100p/r (packets per round), the data transmission rate of
acoustic communication is 100bps, and the data transmission
rate of magnetic induction (MI) is 10Mbps. The first data
transmission method is acoustic communication. Both the
member nodes transmit data to the target nodes and the target
nodes transmit data to the AUV by acoustic communication.
The second data transmission method is the combination of
acoustic communication andMI. The member nodes transmit
data to the target nodes by acoustic communication while
the target nodes transmit data to the AUV by MI. According
to Fig.7(a), it can be inferred that combination of acoustic
communication and MI require less data transmission time
than single acoustic communication method. As the number
of nodes increases, the combined transmission mode reduces
more transmission time than the single transmission mode.
It’s for the reason that the number of target nodes increases
with the number of nodes increasing, the data transmission
time between the target nodes and the AUV increases.

4) THE EFFECT OF SPEED OF AUV
Fig.7(b) shows the comparison of network lifetime among the
DGS, AEERP, DCRTM by setting different speed of AUV.
From Fig.7(b), when the speed of AUV is less than 1m/s,
the network lifetime is unchanged in the DCRTM. After the
AUV traverses the target nodes each round, the target nodes
update dynamically. When the AUV speed is very small,
the target node updates very slowly, and the network lifetime
changes little. However, when the speed of AUV is greater

than 1m/s, as the speed of AUV increases, the network time
would increase until the speed of AUV is at approximately
4m/s. Then the network lifetime would remain unchanged
in general. For the reason that when the speed of AUV is
over 4m/s, updating target nodes are unable to increase net-
work lifetime. According to Fig.7(b), we also could conclude
that the network lifetime is still unchanged in the DGS and
the AEERP, when the speed of the AUV changes, because
gateway nodes consume more energy in both the DGS and
the AEERP, and there is no relationship between updating
gateway nodes and the speed of AUV.

5) COMPARISON OF DIFFERENT ALGORITHMS
We compare the proposed method with three common meth-
ods (CARP, Mobilcast, AEERP). All methods work in the
same simulation environment. Fig.8(a) presents that the unit
energy consumption changes with the number of nodes. The
results show that the unit energy consumption of the pro-
posed algorithm is less than CARP and AEERP but greater
than Mobilcast. In addition, the unit energy consumption
decreases when the node density increases.

Fig.8(b) shows relationship between the network lifetime
and the number of nodes. The network lifetime of the pro-
posed algorithm is longer than the other three algorithms at
the same number of nodes. The proposed algorithm updates
the target nodes each cycle, selecting the nodes with the
higher energy as the target nodes. Hence, the proposed algo-
rithm reduces the energy consumption when forwarding data
to the target nodes and balancing the energy consumption
of the network. The CARP consumes the most energy due
to the multi-hop data collection scheme. The Mobilcast uses
the AUV to collect data from each node, and could balance
the energy consumption too. In the AEERP, member nodes
send data to the gateway nodes, and AUV collects data of the
gateway nodes. In the AEERP, AUV trajectory is fixed, and
the gateway nodes change little, which increases the energy
consumption of the gateway node greatly.

Fig.8(c) presents the data collection delay time of different
methods. It is obvious that the delay time of the CARP
is much lower than the other methods. The Mobilcast has
the maximum data collection delay time, because it needs
to visit all nodes and data is transmitted by single-hop or
multi-hop acoustic signals. In the AEERP, the AUV has a
fixed elliptical trajectory. Hence, the movement distance of
the AUV is the shortest, which makes the data collection
delay of AEERP less than that of Mobilcast and the proposed
algorithm. The proposed algorithm enables the AUV to visit
target nodes in the shortest time and reduces partial data
collection delay. Furthermore, as the number of nodes and the
amount of collected data increases, the data collection delay
of all algorithms increases correspondingly.

Fig.8(d) shows the performance of different algorithms on
the PDR. It is obvious that with more nodes, the network
would be denser and the PDR would be higher. The PDR of
the proposed method is higher than the VBF, the Mobilcast
and the AEERP, because the data transmission method of all
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FIGURE 8. Simulation results with different algorithms. (a) Unit Energy Consumption. (b) Network Lifetime. (c) Cllection Delay. (d) PDR.

FIGURE 9. The number of sensor nodes that are alive in the three
algorithms.

member nodes uses single-hop. The VBF uses the multi-hop
to forward data, which undoubtedly increases the probability
of packet loss through the higher number of hops. In the
Mobilcast, the AUV visits all monitoring areas, but part of
nodes still forward the data by multi-hop, which increases
packet loss. In the AEERP, the AUV has a fixed movement
trajectory, and nodes forward the data to gateway nodes by
multi-hop or single-hop.

6) THE NETWORK LIFETIME OF DIFFERENT ALGORITHMS
Fig.9 shows the comparison of network lifetime among the
DGS,AEERP, andDCRTM.According to Fig.9, we conclude
that death time of the first node in the DCRTM is later than
the DGS and AEERP. Therefore, the network lifetime of
the DCRTM is higher than the DGS and AEERP, because
the proposed method selects target nodes based on residual
energy of nodes and distance among nodes. We need to select
appropriate TNswithmore residual energy relatively, because
TNs are responsible for collecting data from their member
nodes and transmitting them to the AUV. In order to avoid
making the TNs die early, we update TNs at each round, and
nodes with more energy would be more possible to become
the target nodes.

VI. CONCLUSION
In this paper, we propose a new data collection scheme based
on the realistic model of mobile edge elements. In the real-
istic mobility model, the mobility direction and velocity are

fully considered, making the mobility characteristic of AUVs
close to the realistic underwater environment. It provides the
mobile edge computing service and data collection service by
making full use of computing, storage, and mobility abilities.
Then a target node selection algorithm is designed for the
AUV, enabling the AUV to visit all nodes in the shortest time
and balancing energy consumption of the whole network.
The simulation results show that the realistic mobility model
could reduce the energy consumption, extend the network
lifetime and improve the package delivery ratio. Therefore,
there is of great potential for mobile edge elements to provide
mobile computing services and underwater data collection
services in the mobile underwater environment.
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