
SPECIAL SECTION ON ADVANCED INFORMATION SENSING AND LEARNING
TECHNOLOGIES FOR DATA-CENTRIC SMART HEALTH APPLICATIONS

Received April 10, 2019, accepted May 14, 2019, date of publication May 22, 2019, date of current version June 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2918150

gwSPIA: Improved Signaling Pathway Impact
Analysis With Gene Weights
ZHENSHEN BAO 1, YIHUA ZHU2, QINYU GE1, WANJUN GU 1,
XIANJUN DONG3,4, AND YUNFEI BAI1
1State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
2College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
3Neurogenomics Laboratory and Precision Neurology Program, Brigham and Women’s Hospital, Boston, MA 02115, USA
4Department of Neurology, Harvard Medical School, Boston, MA 02115, USA

Corresponding authors: Xianjun Dong (xdong@rics.bwh.harvard.edu) and Yunfei Bai (whitecf@seu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61871121, Grant 61271055, and
Grant 61471112.

ABSTRACT Gene set analysis using signaling pathway has become a popular downstream analysis follow-
ing differential expression analysis. From a biological point of view, only some portions of a pathway are
expected to be altered; however, a few approaches using the different importance of genes in signaling path-
ways, which encompass the constitutive functional nonequivalent roles of genes in real pathways, have been
proposed and none of them tries to associate the importance of genes with the related disease. In this paper,
we developed an extended method of signaling pathway impact analysis (SPIA), called gwSPIA, by incorpo-
rating three signaling pathway-based gene weight merits that reflect the importance of genes from different
aspects and attempt to associate the importance of genes with the related diseases. By applying the gwSPIA
to the gene expression data sets in comparison with other seven methods in three measures, sensitivity, prior-
itization, and specificity, we show that the gwSPIA ranks in the second place in both sensitivity and prioriti-
zation. Furthermore, the specificity of the gwSPIA is better than SPIA, which is lower than 25%. The results
also suggest that the gene weight used in the gwSPIA can reflect the association between the genes and the
related diseases. The R package of the gwSPIA can be accessed from https://github.com/sterding/gwSPIA.

INDEX TERMS Differentially expressed genes, gene weights, gwSPIA, signaling pathways analysis.

I. INTRODUCTION
As the rapid development of high-throughput sequencing
technology in recent years, more and more differentially
expressed genes (DEGs) studies have been proposed to reveal
the perturbed signaling pathways across different disease
conditions, drug treatments, or developmental stages. The
analysis that combines DEGs with signaling pathways has
become a dominant analytical method. In such an analysis,
significant signaling pathways based on DEGs are identi-
fied using statistical methods, allowing researchers and clin-
icians to better understand interactions between diseases and
genes. Common signaling pathway databases include Kyoto
Encyclopedia of Genes and Genomes (KEGG) [1]–[3],
BioCarta [4], [5], and Reactome [6], [7]. The original sig-
naling pathway analysis methods can be divided into
two categories: pathway-topology based and non-pathway-
topology based approaches.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qingxue Zhang.

Most classic signaling pathway analysis methods in the
non-pathway-topology based category are designed based
on either over-representation analysis (ORA) or functional
class scoring (FCS). ORA-based methods, including Onto-
Express [8], [9] and Gene Ontology Enrichment Analysis
Software Toolkit (GOEASE) [10], merely measure the num-
ber of differential expressed genes in a specific signaling
pathway and determine the significance of overlapping via
statistical tests like Fisher’s exact test. FCS-based methods
however take into account of coordinated changes of genes
expression in the specific signaling pathways, such as gene
set enrichment analysis (GSEA) [11]. All these methods have
common limitations that genes in a signaling pathway are
treated equally, and they are without considering the complex
interactions between genes.

On the other hand, pathway-topology based approaches
consider the complex interaction between genes through
incorporating pathway topology information, specifically
the KEGG signaling pathways. SPIA is a classic pathway-
topology based approach, which combines the features
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of ORA or FCS method and the perturbation on a given
signaling pathway [12]. Later, Li et al. improved the SPIA
method by using a subgraph method to increase the accuracy
of SPIA [13]. Bao et al. recently improved the SPIA by
substituting +1 or −1 as the strength of interaction of genes
with Pearson correlation coefficients and mutual information
to increase the accuracy of SPIA [14]. Gene Graph Enrich-
ment Analysis (GGEA) is another method to detect gene sets
enriched consistently and coherently, based on prior knowl-
edge derived from directed gene regulatory networks [15].
Ihnatova et al. developed a novel R package that offers seven
distinct methods for topology-based pathway analysis [16].
Liu et al. proposed a topological method to find sub signaling
pathways in a signaling pathway to improve the performance
of pathway analysis method [17]. However, all these pathway
topology-based methods still have the limitation of treat-
ing the functional roles of genes in pathways equivalently.
Because genes in pathways can function inequivalently, they
could have different importance in signaling pathways in
different disease.

Apparently, some genes are more important than others
are, if they are in a hub position in the pathway (or net-
work) topology or have a key functional role in different
disease process biology. There are existing methods weigh-
ing the importance of genes. And these methods are called
gene-weight-based methods. For example, EnrichNet mea-
sures the functional association between the gene list of
interest and a functional gene set using the Random Walk
with Restart (RWR) algorithm [18]. Pathway Analysis with
Down-weighting of Overlapping Genes (PADOG) uses the
frequency of a gene present in the pathways analyzed to
improve gene set analysis [19]. Functional Link Enrichment
of Gene Ontology or gene sets (LEGO) takes into con-
sideration these two types of information by incorporating
network-based gene weights in ORA analysis [20]. However,
methods like EnrichNet, PADOG or, LEGO are all based on
the non-pathway-topology based method, not based on path-
way topology. Thus, like any other non-pathway-topology
based methods, these methods do not consider the complex
interactions between genes in pathways. Moreover, the gene
weights used by them are fixed values for different diseases.
These weights cannot reflect the association between genes
and diseases.

In this study, we developed an extended method of SPIA,
called gwSPIA, by considering both the pathway topol-
ogy (i.e. the interactions between genes in pathways) and
the importance of genes. This method is a gene weight
method, but not like the methods mentioned above this
method is improved from a pathway-topology based method.
It enhanced SPIA by weighing genes with various signaling
pathway-based merits. Thus, gwSPIA has two advantages:
on one hand, it takes the complex interactions in consid-
eration; on the other hand, it also takes the importance of
gene which can reflect the association between genes and
diseases in consideration. Three types of weights are used
in gwSPIA: impact factor (IF), betweenness centrality (BC),

and specificity (SP). We increased the accuracy of SPIA by
incorporating these weights into the SPIA method. In addi-
tion, we can analyze the relationship strength of differ-
ential expressed genes and specific phenotypes based on
IF and SP. The IF value can vary a lot for different diseases
which can reflect the association between genes and diseases.
We applied the newmethod gwSPIA to 33 data sets. All these
data sets are picked up based on specific disease pathways.
For example, we aim for the colorectal cancer pathway as the
target pathway in colorectal cancer data set. As an extended
version of SPIA, we compare gwSPIA with SPIA and other
6 methods from three aspects: sensitivity, prioritization, and
specificity. Results show that the performance of gwSPIA is
always ranked in the second place in terms of comparing both
sensitivity and prioritization compared with other methods.
And our results demonstrate the efficacy of the gene weights
used in this study.

II. METHODS
A. BENCHMARK DATA
A total 33 datasets from the KEGGdzPathwaysGEO
R-package and KEGGandMetacoreDzPathwaysGEO R-pac-
kages are used as benchmark data (see Table 1) [19], [21],
including various cancers and neurological diseases. These
disease datasets are analyzed in the same way: First, for
the probes with the same Entrez gene ID, only the probes
with the highest average expression can be retained. Second,
differential expression analysis is performed by fitting linear
models using the empirical Bayes method as implemented
in the limma R-package [22]. Each of the 33 datasets was
matched with the corresponding KEGG pathway according
to its name, e.g. a dataset of colorectal cancer patients is
associated with the colorectal cancer pathway [23]. We call
such a pathway a target pathway and its p-value and rank
in the database are further evaluated. We use the following
rules to identify DEGs: i) selecting more than 200 genes
with FDR adjusted p-values < 0.1; ii) if not, selecting more
than 200 genes with original p-values < 0.05 and log (fold
change)> 1.5; iii) if not, selecting top 1% of genes ranked by
p-values.

B. PATHWAYS IN KEGG DATABASE
The signaling pathways are downloaded in the KEGG. In the
KEGG database, each pathway stores in an XML document
(KGML format). For our method, we analyze 213 signaling
pathways downloaded from the KEGG database one by one.
The pathways can be transformed into networks format using
KEGGgraph R-package, where genes and their interactions
are nodes and edges respectively [50]. The igraph R-package
is used to combine the 213 gene networks into one big gene
network [51].

C. SIGNIFICANTLY ENRICHED PATHWAYS ANALYSIS
The procedure to identify significantly enriched pathways
using gwSPIA include: (i) reconstructing the gene network
from the signaling pathways using KEGGgraph R-package,
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TABLE 1. Data sets used for assessing the proposed methods.

(ii) calculating the gene weights including SP and BC from
these gene networks, (iii) reconstructing the all signaling
pathways into a big gene network by the genes shared in dif-
ferent pathways through R package igraph, (iv) projecting the
DEGs onto the networks of the constructed gene networks,
(v) calculating the gene weight IF based on the big gene
network, and (vi) evaluating the statistical significance of
each pathway. gwSPIA is implemented by using the statistical
programming language R. The flow can be seen in Figure 1.

D. PATHWAY-BASED GENE WEIGHTING
Three types of weight measures are used in gwSPIA: IF, BC,
and SP. IF of a gene is defined as the number of differential

FIGURE 1. The brief workflow of gwSPIA. The operations with blue color
are only done based on the topology of signaling pathways. The
operations with red color are done from gene expression data. The
operations with purple color are done with the topology of signaling
pathways and the gene expression data. The operations with green color
are done with all information.

expressed genes linked to the gene downstream directly. If the
value which reflects the DEGs of the genes in the direct
downstream place of a gene is bigger, we think that the gene
is tended to be an important gene which may lead to the
different expression of the DEGs downstream directly. Thus,
the bigger IF is, the more important the gene is. The IF is an
up-weighting value. Furthermore, the IF value is variational
in different datasets and can reflect the association between
gene importance and related diseases. In graph theory, BC is
a measure of centrality in a graph based on shortest paths.
Here we define BC of a gene as the number of shortest paths
across it between two any genes in a given signaling pathway.
The more the shortest paths cross a gene in a signaling
pathway, the more important the gene is. For example, in the
Ras signaling pathway,Ras is included inmuchmore shortest
paths than other genes in the pathway so changing expression
of gene Ras might have a bigger impact on the expression
of the pathway. And SP of a gene is the number of times
of the gene that appears in all signaling pathways analyzed.
The genes with lower SP might more important than other
genes. This is just like the sight words in English [19]. Thus,
the SP value is a down-weighting value [19].

Given P networks with G genes in these networks, we cal-
culate the gene weights of each gene in the P networks. Here,
for each gene Gi in Pj network, we compute its BC value as
the numbers of liner paths across Gi using igraph R package.
The bigger the BC value, the more important a gene is. If the
BC values in the network Pj have s levels, and the BC value
of the gene Gi in the network Pj at k level, then the BC value
was normalized in such a way:

wBC = k 1, · · · , S (1)
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We compute the SP from all 182 signaling pathways. The
SP value of a geneGi is the frequency of the gene appearing in
all 182 signaling pathways. Before calculating the IF value of
genes, we use the R package igraph to reconstruct the 182 sig-
naling pathways into a big gene network. The IF value of a
gene is defined as the number of differential expressed genes
linked with the gene in the downstream. Thus, the IF value of
a gene is ranged from 0 to the out-degree of the gene.

We think that the IF value is associated with the SP value.
The larger the frequency of a gene appearing in the pathways
analyzed is, the bigger out-degree the gene is supported to
have in the big gene network contents all signaling pathways
analyzed. The IF value of a gene is calculated from the out-
degree of the gene. So the IF value may be influenced by the
SP value. So to eliminate the effects of SP value to IF value,
we calculate the weight of the gene from IF and SP value in
such way:

wI =
IF
SP

(2)

The wI is an up-weighting value. The bigger wI of a gene
is, the more important the gene is. The wI can vary in a large
range. Thus, we use the Min-Max normalization to normalize
the gene weight wI using the formula:

wn = 1+
wI −min (wI )

max (wI )−min (wI )
(3)

E. SIGNALING PATHWAY IMPACT ANALYSIS BY
INCORPORATING SIGNALING PATHWAY-BASED
GENE WEIGHTS (gwSPIA)
gwSPIA method combines the over-representation of path-
ways and the abnormal perturbation in a given pathway
in the same way with the SPIA method [12]. These two
aspects are captured by two independent probability values,
PFCS and PPERT .
PFCS captures the significance of the given pathway by

a method improved from the PADOG method [19]. PFCS is
the probability to observe an average t-score in a given path-
way, Sper , more extreme than Sobs just by chance. The t-score
of a gene is calculated using R package limma. The average
t-score of a given pathway Pj is calculated in this way:

Sobs =
1

N (Pj)

∑
gi∈Pj

|T (gi)| · wn(gi) (4)

In Equation (4), T (gi) dominate the t-score of a gene
gi in the given pathway Pj, wn(gi) represent the weight wn of
the gene gi. N

(
Pj
)
is the number of genes in the given

pathway Pj. Different from the original PADOG method,
we multiply the T (gi)with the gene weight wn (gi) instead of
the normalized frequency of the gene gi across all gene sets
to be analyzed to improve the accuracy. When computing the
random score Sper for the same pathway, we randomly select
N
(
Pj
)
t-scores from the t-scores of all genes analyzed. Then

Sper is computed for nB=2000 times, so PFCS (Pj) POVER(Pj)

is computed in such way:

PFCS
(
Pj
)
=

∑
nB I

(
Sper

(
Pj
)
≥ Sobs

(
Pj
))

nB
(5)

Because the t-score and the combined gene weight of a
gene are all independent of fold change, themodified PADOG
can be used to replace the original ORAmethod used in SPIA.

The probability PPERT is measured by propagating mea-
sured expression changes across the pathway topology and
is calculated based on the amount of perturbation of genes.
Formulate of calculating the perturbation of each gene (per-
turbation factor) is as follow:

PF (gi) = wBC (gi) .1E (gi)+
n∑

m=1

βim
PF (gm)
Nds (gm)

(6)

Differ from the SPIA method, the first term represents
that the signed normalized measured expression change of
the gene gi (log fold-change if two conditions are compared)
multiply with the normalized BC value of the gene. The sec-
ond term in Equation (6) is the sum of perturbation factors
of the genes gm directly upstream of the target gene gi,
normalized by the number of downstream genes of each
such gene Nds (gm) . The absolute value of βim quantifies
the strength of the interaction between genes gi and gj . And
in this method, the βim is always set as 1. Just like SPIA,
gwSPIA calculates the net perturbation accumulation at the
level of each gene, Acc

(
gj
)
, as the difference between the

perturbation factor PF of a gene and its observed weighted
log fold-change:

Acc (gi) = PF (gi)− wBC (gi) .1E (gi) (7)

The total net accumulated perturbation in the pathway is
computed as tA =

∑
Acc (gi). Then the second probabil-

ity, PPERT , will be the probability to observe a total accu-
mulated perturbation of the pathway, TA, more extreme than
tA just by chance:

PPERT = P (TA ≥ tA|H0) (8)

Then gwSPIA defines a significance evaluation index PG in
the samewaywith SPIA, which is calculated by the following
formula:

PG = c− c ln c (9)

In the formula (9), c = POVER × PPERT .
When there aremore than one gene sets for analysis, we use

Bonferroni procedure to adjust the p-value [52]. We also
report the adjusted p-value based on FDR [53]. Actually,
the two weights can be used to improve other methods.
Because in the calculation of the perturbation factor of a gene,
Nds which is the number of downstream genes of such gene is
used. If we use the weight wI to improve the PF, the function
of Nds and wI will be repetitive.
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F. SEVEN OTHER METHODS APPLIED
TO COMPARE WITH gwSPIA
Since gwSPIA is like an enhanced version of SPIA with gene
weight considered, we first compare gwSPIA with the SPIA
method. Fisher [54], GSA [55], and GSEA [11] are three
classic pathway analysis methods. Then Fisher, GSA, and
GSEA method are also compared with gwSPIA. MRGSE
and ROntoTools are also compared with gwSPIA. In the
end, the gene-weight-basedmethod PADOG is also compared
with gwSPIA.
(1) SPIA: SPIA combines theGSAmethod instead ofORA

method and the abnormal perturbation analysis. The
SPIA R package developed by Tarca et al. is applied
to perform SPIA [12].

(2) Fisher: Fisher is a classic method which is referred to
as ‘‘2 × 2 table method’’. It uses Hypergeometric test
to evaluate the significance of pathways [54].

(3) GSA: GSA uses the max mean as the statistics to test
whether the genes in a particular gene set have coor-
dinated changes [55]. We used the function ‘‘GSA’’ of
the GSA package in R.

(4) GSEA: Gene Set Enrichment Analysis, frequently used
and widely accepted method, a Kolmogorov-Smirnov
statistic was used to test whether the rank of the
p-value of a gene in a genome was similar to a uniform
distribution [11]. The GSEA is implemented as the
default set-based enrichment method of the Enrich-
mentBrowser [56] R package.

(5) MRGSE: tests if the ranks in a particular gene set
(sorted by the t-statistics) are different from genes in the
background gene list [57]. We use moderated t-test in
‘‘limma’’ package in R to calculate t values and ‘‘gene-
SetTest’’ function in ‘‘limma’’ package for ranking of
enriched gene sets.

(6) ROntoTools: Pathway-Express in ROntoTools incorpo-
rates pathways topology to calculate a global probabil-
ity for genes in a given pathway. The negative log value
of this global probability is defined as the impact factor
of a gene, and the impact factor values are then used for
pathway enrichment analysis [12], [58]. This method
is contained in the R package ‘‘ROntoTools’’ and the
function ‘‘pe’’ was used.

(7) PADOG: the method computes a gene set score as the
mean of absolute values of weighted moderated gene
t-scores. The gene weights are chosen to favor genes
appearing in few pathways versus genes that appear in
many pathways [19]. We use the R package PADOG to
analyze the data sets.

G. THE MEASURES OF SENSITIVITY, PRIORITIZATION,
AND SPECIFICITY
Michaela et al. compiled many disease gene expression
datasets whose KEGG target pathways were known [23]
using a number of measures to evaluate the performance
of different methods. We also follow these measures in the
benchmark, which are including sensitivity, prioritization,

and specificity. The sensitivity of a method is the median
p-values of the target pathways in 33 datasets, with a lower
p-value indicates higher sensitivity. In each dataset, all tested
pathways are sorted by their p-value from lowest to high-
est. The rank percentage of the target pathway is the ratio
of the rank of target pathway and the number of pathways
analyzed (213 pathways in this study). The prioritization of a
method is the median rank percentage of the target pathways
in 33 datasets with lower rank percentages indicates higher
prioritization. The specificity of a method is the ratio of
significant pathways (using a significance threshold of 0.05)
in the pathways analyzed.

III. RESULTS
In 2015, Michaela et al. compiled 36 disease gene expression
datasets in which the target pathway of each dataset was
known [23]. They used these datasets to compare 7 FCS
methods. 33 datasets of 36 can acquire the results of target
pathways using all 8 methods compared in this article. Thus,
here, to further test the usefulness of gwSPIA in functional
studies, we select 33 datasets as the benchmark. And we
compare gwSPIA with SPIA, Fisher, GSA, GSEA, MRGSE,
ROntoTools, and PADOG. The descriptions of these methods
can be found in Methods. We follow the instructions of their
respective R package to perform pathway enrichment. The
usefulness of these gene weights used in this article is also
proved in this section.

A. COMPARISON OF gwSPIA WITH SEVEN METHODS
USING A BENCHMARK OF 33 DISEASE
GENE EXPRESSION DATASETS
In total 33 gene expression datasets are used to compare
gwSPIA with seven other methods. Every dataset represents
a certain disease and has been linked to a defined target path-
way from the KEGG database (see Table 1). Michaela et al.
proposed measures to test the performance of a method,
which are sensitivity (defined as the p-value of the target
pathway), prioritization (defined as the rank percentage for
the target pathway), and specificity (defined as the aver-
age percentage of pathways detected as significant and not
significant).
Out of all eight methods being compared, gwSPIA ranks

in second place in terms of sensitivity (the median p-value of
the target pathways in 33 datasets) (Figure 2). And gwSPIA
also ranks in second place in terms of prioritization (the
median rank for target pathways in 33 datasets) (Figure 3).
It is worth noting that the sensitivity measure and the pri-
oritization measure evaluate the performance of a method
from different aspects, and a method that ranks in first place
based on a measure may not also rank in first place based
on another measure. For instance, PADOG ranks in first
place in terms of prioritization, while it ranks in fourth
place in terms of sensitivity. MRGSE ranks in first place
in terms of sensitivity, but it only ranks in sixth place in
terms of prioritization. gwSPIA ranks in second place in
both sensitivity and prioritization, suggesting that it is able
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FIGURE 2. gwSPIA performs the 2nd among other methods in terms of
the sensitivity of detecting target pathway. The boxplots show the
distribution of the target pathways p-values.

to prioritize target pathways with high sensitivity. For the
specificity of the eight methods, we can note that MRGSE
identifies on average almost 50% of all database pathways as
significantly enriched, while for GSA it is lower than 10% of
the significant pathways (Figure 4). For SPIA, Fisher, and
gwSPIA can identify between 20% and 35% of the signifi-
cant pathways. This can demonstrate that the gwSPIA may
have a similar specificity to SPIA and Fisher. For MRGSE,
depending on disease, multiple pathways could be altered.
However, it could be questioned whether such a number of
pathways is realistic or it reflects the lack of specificity of this
method [23]. For GSA, depending on disease, few pathways
could be altered. This method also lacks specificity. It can
infer that the specificity of gwSPIA is modest. In conclusion,
the performance of gwSPIA in this benchmark well illustrates
its usefulness. And this result also suggests that the use
of gene weights in gwSPIA can improve the performance
of SPIA. In addition, the computational efficiency of gwSPIA
is similar to SPIA. This is because that gwSPIA is an extended
method of SPIA.

B. DEGs ANALYSIS THROUGH THE GENE WEIGHT
COMBINE IF AND SP IN TWO BENCHMARKS
In this paper, we calculate a gene weight wI that com-
bines IF and SP. The genes with high wI are thought highly
associated with the specific phenotype and vice versa. In this

FIGURE 3. gwSPIA performs the 2nd among other methods in terms of
prioritization of detecting target pathway. The boxplots show the
distribution of the target pathways ranks.

FIGURE 4. Average percentage of the pathways detected as significant
and not significant by each method using the threshold of
p-values <= 0.05.

section, we analyze the top 10 DEGs ranked through the
combined gene weight wI of 2 benchmark data sets from
largest to smallest, respectively. The 2 benchmark data sets
are GSE4107 and GSE4183 as two examples. And we also
analyze the 10 DEGs ranked in the end by the weightwI from
largest to smallest. All these genes can be seen in Table 2.

In the benchmark data set GSE4107, genes SFRP2, SFRP1,
PRNP, NFE2L2, and WWTR1 which are ranked in the first
play important roles in colorectal cancer shown inMalaCards
dataset). Gene SFRP5 is an important paralog of SFRP1.
Genes SFRP2, SFRP1, SFRP4, and SFRP5 are in the same
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TABLE 2. The top and bottom 10 DEGs ranked through the combined gene weight OF 2 BENCHMARK DATA SETS FROM largest to smallest in
GSE4107 and GSE4183.

node in the wnt signaling pathway. The wnt signaling path-
way is highly associated with colorectal cancer [59]. Gene
PARVB is in the Focal adhesion pathway which also plays
an important role in colorectal cancer [60]. Gene KIF3A
only participates in the Hedgehog signaling pathway which
is also highly associated with colorectal cancer [61]. The
gene PRPH has no association with colorectal cancer. This
may come from the noise of the data. These genes are
the top 10 genes ranked by the weight from the largest to
smallest. GenesMCU, SLC27A2, STEAP1,GPX7,MAN1C1,
SLC30A1, PCGF5 and ENTPD1 are not associated with col-
orectal cancer as the MalaCards data set show. CD46 and
AQP8 are associated with colorectal cancer. Gene CD46 par-
ticipates in Complement and coagulation cascades pathway
and Measles which have no relationship with colorectal can-
cer. Gene AQP8 is in the most downstream of the Bile secre-
tion pathway. Thus, there is no gene in the downstream of
gene AQP8. These genes are the last 10 genes ranked by the
weight from the largest to smallest.

In the benchmark data set GSE4183, genes YAP1,WWTR1,
TEAD1, and AJUBA are highly associated with colorectal
cancer shown in the MalaCards data set. An important par-
alog of gene LATS2 is LATS1. From the MalaCards data
set, we can find that LATS1 is associated with colorectal
cancer. And LATS2 participates in the Hippo signaling path-
way which is highly associated with colorectal cancer [62].
COL6A3 may be a promising biomarker or target for the
prognosis and treatment of CRC [63]. An important para-
log of ROBO3 is ROBO2. From the MalaCards data set,
we can find that ROBO2 is associated with colorectal cancer.

ROBO3 appears in the Axon guidance pathway. The Axon
guidance pathway plays an important role in colorectal can-
cer [64]. FST is in the upstream of the TGF-beta signal-
ing pathway which is also an important pathway for col-
orectal cancer [65]. AGAP2 is also in the upstream of the
FoxO signaling pathway and participates in the Endocy-
tosis pathway. The two pathways are both highly related
to colorectal cancer [66], [67]. These genes are the top
10 genes ranked by the weight from the largest to smallest.
The genes WDR61, SPIRE2, CELA3B, NPFFR1, SPTLC2,
DERL2, CLIP1, SLC5A1, and AMOTL1 have no association
with colorectal cancer and are ranked in the last 10 by the
weight from the largest to smallest. TRPM6 is highly associ-
ated with colorectal cancer. However, this gene is a gene with
no genes in the downstream.

From the analysis of genes with weight wI in the two
benchmark data sets, we can see that the DEGs with high
wI are supposed to highly associate with a specific phenotype.
The DEGs with low wI always have no association with
specific phenotypes.

C. THE USEFULNESS OF THE COMBINED GENE WEIGHT
We enrich the genes which ranked in the top 500 by the
value of gene weight wI ranked from high to low. The result
showed that 25 signaling pathways are enriched more than
10 genes using 5 colorectal cancer datasets of 33 benchmark
(Figure 5). Most of these pathways are highly associated with
colorectal cancer according to scientific articles. The pathway
Chemical carcinogenesis is highly associated with colorec-
tal cancer [68]. Phosphatidylinositol 3-Kinase is important
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FIGURE 5. The distribution of signaling pathways that contain more than 10 genes with a high combined gene weight ranked in the top 500
genes by the value of the combined gene weight.

in the management of metastatic colorectal cancer [69].
Thus, the signaling pathway Phosphatidylinositol signal-
ing system may associate with colorectal cancer. Obviously,
pathway MicroRNAs in cancer is highly associated with
cancer. The Jak-STAT signaling pathway is a biological
target with therapeutic implications [70]. The proliferation
and migration of colorectal cancer cells can be inhibited
by the inhibition of cytokine receptors [71]. Thus, path-
way Cytokine-cytokine receptor interaction may associate
with colorectal cancer. SLIT2 axon guidance can suppress
the growth of colorectal cancer cells [72]. It indicates that
the Axon guidance pathway is related to colorectal cancer.
HOXA3 promotes tumor growth of human colorectal cancer
through activating the Ras signaling pathway [73]. The path-
way Endocytosis obviously plays an important role in col-
orectal cancer [74]. Focal adhesion, Pathways in cancer, Cell
cycle, ECM-receptor interaction, MAPK signaling pathway,
PI3K-Akt signaling pathway, Choline metabolism in cancer,
Phospholipase D signaling pathway,Wnt signaling pathway,
and RNA transport are highly associated with cancer includ-
ing colorectal cancer [75]–[80]. Activated thyroid hormone
promotes differentiation and chemotherapeutic sensitization
of colorectal cancer stem cells [81]. So the Thyroid hormone
signaling pathway is related to colorectal cancer. RASAL2
promotes tumor progression through the LATS2/YAP1 axis
of Hippo signaling pathway in colorectal cancer [82]. For
the Rap1 signaling pathway, Rap1B is a target of miR-139

FIGURE 6. The percentages of the 500 genes detected as different
expression and not different expression in 5 colorectal cancer datasets.

to suppress human colorectal cancer cell proliferation [83].
Chemokine signaling pathway plays an important role in
hepatic metastasis of colorectal cancer [84]. Pathways like
Protein digestion and absorption and Amoebiasis are not
associated with colorectal cancer. Thus, they only enriched
more than 10 genes in GSE4183.

The percentages of the 500 genes detected as different
expression and not different expression in 5 colorectal cancer
datasets are also shown in the results (Figure 6). The results
show that most of the top 500 genes are not DEGs in the
5 colorectal cancer datasets. And it is worth noting that the
pathways enriched more than 10 genes are mostly associated
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with colorectal cancer. In conclusion, the combined gene
weight used in this study is useful.

D. BC VALUES OF GENES IN PATHWAYS
The genes in a signaling pathway with high betweenness
centrality always play roles as switches in the signaling path-
ways, such as Ras in the Ras signaling pathway. From the
Ras signaling pathway in the KEGG data set, we can see that
Ras is in the key position on the Ras signaling pathway. And
the BC value of node Ras in the pathway is 112, which is the
highest. Rap1 in the Rap1 signaling pathway also plays an
important role. The BC value of node Rap1 in the pathway is
196 which is also the highest. In theNotch signaling pathway,
the BC value of node Notch is 51 which is the second largest
in the pathway. The highest BC value in this pathway is 52.
PI3K-Akt signaling pathway contains a node named AKT
with BC value 366 which is the highest in the pathway.
All these nodes in these pathways are very important. The
pathways are named by these nodes. Thus, we consider that
the genes in a pathway with high BC values play important
roles in the pathway.

IV. DISCUSSION
The major limitations of traditional non-pathway-topology
based methods are that they ignore the functional non-
equivalence roles of genes and the complex interactions
between genes. And the major limitation of pathway-
topology based methods is that they ignore the functional
non-equivalence roles of genes. Gene weight dominated the
importance of genes that collect the information of the func-
tional non-equivalence roles of genes from the pathways can
be used to overview the common limitation of non-pathway-
topology based methods and pathway-topology based meth-
ods as mentioned above. In fact, methods incorporated the
functional non-equivalence roles of genes are presented by
some studies in recent years. For instance, EnrichNet mea-
sures the functional association between the interesting gene
list and a gene set using a RandomWalk with Restart (RWR)
algorithm [18]. PADOG uses the value that the frequency
of a gene appears in pathways analyzed to improve gene
set analysis [19]. However, these methods do not consider
the complex interactions between genes. These methods only
incorporate gene weights with non-pathway-topology based
methods. And the gene weight used in these methods can-
not reflect the association between genes’ importance and
disease. Therefore, we propose a new method combined
the pathway-based weights of genes IF, SP and BC with
a pathway-topology based method SPIA, called gwSPIA.
For evaluating our method is applied to 33 differentially
expressed gene datasets.

To test the performance of gwSPIA, we compare
gwSPIA with original SPIA and other 6 methods in three
aspects: sensitivity, prioritization, and specificity following
Michaela et al. proposed in 2015. Results show that gwSPIA
always ranks in the top compared with the other 7 methods
in terms of sensitivity and prioritization. And the specificity

of gwSPIA is similar to SPIA and Fisher. Thus, the gene
weight used in gwSPIA can help to improve the performance
of SPIA.

The method gwSPIA is a gene-weight-based method. The
gene weight used in gwSPIA can not only help to improve the
performance of SPIA but also can help users to filter DEGs.
In this study, the gene weights wI which combined IF and
SP value can help to filter DEGs. Two colorectal cancer data
sets are used to illustrate the ability of gene weights wI . The
DEGs with high wI are supposed to highly associate with a
specific phenotype. And the DEGs with low wI always have
no association with specific phenotypes. We also enrich the
genes which ranked in the top 500 by the value of gene weight
ranked from high to low using the data from the 5 colorectal
cancer datasets. The result showed that the combined gene
weight wI can also be used in the genes which are not DEGs.
And the genes in a given pathway with high BC values are
supposed to play important roles in the given pathway. These
results all dominate the usefulness of the gene weights used
in this article.

However, the gene weights IF, SP and BC cannot com-
pletely explain the importance of genes in pathways. The
IF value is calculated from the DEGs in specific data sets.
Thus, the redundancy of data sets can also influence the
IF value. And the genes at the end of the network which con-
tain all signaling pathways in the analysis do not all have high
association with specific phenotypes. However, the IF values
of these genes are zero. Weights that can completely explain
the importance of genes in pathways need to be excavated
to improve the limitation of proposed methods. Thus, some
pathways are not associated with colorectal cancer when
enriching the top 500 genes. Nevertheless, the results of
gwSPIA and the analysis of gene weights in gwSPIA already
make gwSPIA a useful method for large-scale functional
genomics studies. In the further, we may use a gene weight
to quantify the importance of a gene in the aspect that the
number of articles which report the gene is associated with a
specific disease. We think that this gene weight can overcome
the limitation of the weight used in this article.

V. CONCLUSION
In this study, we developed a new method based on signal-
ing pathway impact analysis combined with consideration
of the importance of genes. And we show that this method
outperforms better than SPIA and popular standard signaling
pathway analysis methods in identifying altered signaling
pathways. Furthermore, we show that the weighted genes
importance could help us to detect the false positive genes
in differentially expressed genes. We also show that the roles
which we used to weight genes’ importance are scientific.
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[8] S. Drǎghici, P. Khatri, R. P. Martins, G. C. Ostermeier, and S. A. Krawetz,
‘‘Global functional profiling of gene expression,’’Genomics, vol. 81, no. 2,
pp. 98–104, Feb. 2003.

[9] P. Khatri, S. Drǎghici, G. C. Ostermeier, and S. A.Krawetz, ‘‘Profiling gene
expression using onto-express,’’ Genomics, vol. 79, no. 2, pp. 266–270,
Feb. 2002.

[10] Q. Zheng and X. J. Wang, ‘‘GOEAST: A Web-based software toolkit
for gene ontology enrichment analysis,’’ Nucleic Acids Res., vol. 36,
pp. W358–W363, Jul. 2008.

[11] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert,
M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander,
and J. P. Mesirov, ‘‘Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wide expression profiles,’’ Proc. Nat.
Acad. Sci. USA, vol. 102, pp. 15545–15550, Sep. 2005.

[12] A. L. Tarca, S. Draghici, P. Khatri, S. S. Hassan, P. Mittal, J. S. Kim,
C. J. Kim, J. P. Kusanovic, and R. Romero, ‘‘A novel signaling pathway
impact analysis,’’ Bioinformatics, vol. 25, no. 1, pp. 75–82, Jan. 2009.

[13] X. Li, L. Shen, X. Shang, and W. Liu, ‘‘Subpathway analysis based on
signaling-pathway impact analysis of signaling pathway,’’ PLoS ONE,
vol. 10, Jul. 2015, Art. no. e0132813.

[14] Z. Bao, X. Li, X. Zan, L. Shen, R. Ma, and W. Liu, ‘‘Signalling pathway
impact analysis based on the strength of interaction between genes,’’ IET
Syst. Biol., vol. 10, no. 4, pp. 147–152, Aug. 2016.

[15] L. Geistlinger, G. Csaba, R. Küffner, N. Mulder, and R. Zimmer, ‘‘From
sets to graphs: Towards a realistic enrichment analysis of transcriptomic
systems,’’ Bioinformatics, vol. 27, no. 13, pp. i366–i373, Jul. 2011.

[16] I. Ihnatova and E. Budinska, ‘‘ToPASeq: An R package for topology-based
pathway analysis of microarray and RNA-Seq data,’’ BMC Bioinformatics,
vol. 16, p. 350, Dec. 2015.

[17] W. Liu, P. Xu, and Z. Bao, ‘‘Understanding the mechanisms of can-
cers based on function sub-pathways,’’ Comput. Biol. Chem., vol. 78,
pp. 491–496, Feb. 2019.

[18] E. Glaab, A. Baudot, N. Krasnogor, R. Schneider, and A. Valencia,
‘‘EnrichNet: Network-based gene set enrichment analysis,’’ Bioinformat-
ics, vol. 28, no. 18, pp. i451–i457, Sep. 2012.

[19] A. L. Tarca, S. Draghici, G. Bhatti, and R. Romero, ‘‘Down-weighting
overlapping genes improves gene set analysis,’’ BMC Bioinformatics,
vol. 13, p. 136, Jun. 2012.

[20] X. Dong, Y. Hao, X. Wang, and W. Tian, ‘‘LEGO: A novel method for
gene set over-representation analysis by incorporating network-based gene
weights,’’ Sci. Rep., vol. 6, Jan. 2016, Art. no. 18871.

[21] A. L. Tarca, G. Bhatti, and R. Romero, ‘‘A comparison of gene set analysis
methods in terms of sensitivity, prioritization and specificity,’’ PLoS ONE,
vol. 8, no. 11, Nov. 2013, Art. no. e79217.

[22] G. K. Smyth, Limma: Linear Models for Microarray Data. New York, NY,
USA: Springer, 2005.

[23] M. Bayerlová, K. Jung, F. Kramer, F. Klemm, A. Bleckmann, and
T. Beißbarth, ‘‘Comparative study on gene set and pathway topology-based
enrichment methods,’’ BMC Bioinformatics, vol. 16, p. 334, Oct. 2015.

[24] Y. Hong, K. S. Ho, K. W. Eu, and P. Y. Cheah, ‘‘A susceptibility gene set
for early onset colorectal cancer that integrates diverse signaling pathways:
Implication for tumorigenesis,’’Clin. Cancer Res., vol. 13, pp. 1107–1114,
Feb. 2007.

[25] B. Gyorffy, B. Molnar, H. Lage, Z. Szallasi, and A. C. Eklund, ‘‘Evaluation
of microarray preprocessing algorithms based on concordance with RT-
PCR in clinical samples,’’ PLoS ONE, vol. 4, no. 5, p. e5645, May 2009.

[26] O. Galamb, B. Györffy, F. Sipos, S. Spisák, A. M. Németh, P. Miheller,
Z. Tulassay, E. Dinya, and B. Molnár, ‘‘Inflammation, adenoma
and cancer: Objective classification of colon biopsy specimens with
gene expression signature,’’ Disease Markers, vol. 25, no. 1, pp. 1–6,
2008.

[27] J. Sabates-Bellver, L. G. Van der Flier, M. de Palo, E. Cattaneo, C. Maake,
H. Rehrauer, E. Laczko, M. A. Kurowski, J. M. Bujnicki, M. Menigatti,
J. Luz, T. V. Ranalli, V. Gomes, A. Pastorelli, R. Faggiani, M. Anti,
J. Jiricny, H. Clevers, and G. Marra, ‘‘Transcriptome profile of human
colorectal adenomas,’’ Mol. Cancer Res., vol. 5, no. 12, pp. 1263–1275,
Dec. 2007.

[28] Y. Hong, T. Downey, K. W. Eu, P. K. Koh, and P. Y. Cheah, ‘‘A ‘metastasis-
prone’ signature for early-stage mismatch-repair proficient sporadic col-
orectal cancer patients and its implications for possible therapeutics,’’Clin.
Exp. Metastasis, vol. 27, no. 2, pp. 83–90, Feb. 2010.

[29] S. Uddin, M. Ahmed, A. Hussain, J. Abubaker, N. Al-Sanea,
A. AbdulJabbar, L. H. Ashari, S. Alhomoud, F. Al-Dayel, Z. Jehan,
P. Bavi, A. K. Siraj, and K. S. Al-Kuraya, ‘‘Genome-wide expression
analysis of Middle Eastern colorectal cancer reveals FOXM1 as a novel
target for cancer therapy,’’ Amer. J. Pathol., vol. 178, no. 2, pp. 537–547,
Feb. 2011.

[30] A. Sanchez-Palencia, M. Gomez-Morales, J. A. Gomez-Capilla,
V. Pedraza, L. Boyero, R. Rosell, and M. E. Fárez-Vidal, ‘‘Gene
expression profiling reveals novel biomarkers in nonsmall cell lung
cancer,’’ Int. J. Cancer, vol. 129, no. 2, pp. 355–364, Jul. 2011.

[31] L. Badea, V. Herlea, S. O. Dima, T. Dumitrascu, and I. Popescu, ‘‘Com-
bined gene expression analysis of whole-tissue and microdissected pancre-
atic ductal adenocarcinoma identifies genes specifically overexpressed in
tumor epithelia,’’Hepatogastroenterology, vol. 55, no. 88, pp. 2016–2027,
Nov./Dec. 2008.

[32] H. Pei et al., ‘‘FKBP51 affects cancer cell response to chemotherapy
by negatively regulating Akt,’’ Cancer Cell, vol. 16, no. 3, Sep. 2009,
pp. 259–266.

[33] T. R. Donahue, L. Li, B. L. Fridley, G. D. Jenkins, K. R. Kalari, W. Lingle,
G. Petersen, Z. Lou, and L. Wang, ‘‘Integrative survival-based molecular
profiling of human pancreatic cancer,’’ Clin. Cancer Res., vol. 18, no. 5,
pp. 1352–1363, Mar. 2012.

[34] H. He et al., ‘‘The role of microRNA genes in papillary thyroid carci-
noma,’’ Proc. Nat. Acad. Sci. USA, vol. 102, no. 52, pp. 19075–19080,
Dec. 2005.

[35] W. S. Liang, L. M. Tran, R. Hill, Y. Li, A. Kovochich, J. H. Calvopina,
S. G. Patel, N. Wu, A. Hindoyan, J. J. Farrell, X. Li, D. W. Dawson, and
H.Wu, ‘‘Gene expression profiles in anatomically and functionally distinct
regions of the normal aged human brain,’’ Physiol. Genomics, vol. 28,
no. 3, pp. 311–322, 2007.

[36] E. M. Blalock, J. W. Geddes, K. C. Chen, N. M. Porter, W. R. Markesbery,
and P. W. Landfield, ‘‘Incipient Alzheimer’s disease: Microarray cor-
relation analyses reveal major transcriptional and tumor suppressor
responses,’’ Proc. Nat. Acad. Sci. USA, vol. 101, no. 7, pp. 2173–2178,
Feb. 2004.

[37] J. Nunez-Iglesias, C.-C. Liu, T. E. Morgan, C. E. Finch, and Z. X. J. Zhou,
‘‘Joint genome-wide profiling of miRNA and mRNA expression in
Alzheimer’s disease cortex reveals alteredmiRNA regulation,’’PLoSONE,
vol. 5, p. e8898, Feb. 2010.

[38] M. Affer, D. C. Taussig, A. G. Ramsay, R. Mitter, F. Miraki-Moud,
R. Fatah, A. M. Lee, T. A. Lister, and J. G. Gribben, ‘‘Gene expression
differences between enriched normal and chronic myelogenous leukemia
quiescent stem/progenitor cells and correlations with biological abnormal-
ities,’’ J. Oncol., vol. 2011, Feb. 2011, Art. no. 798592.

[39] R. Le Dieu et al., ‘‘Peripheral blood T cells in acute myeloid leukemia
(AML) patients at diagnosis have abnormal phenotype and genotype and
form defective immune synapses with AML blasts,’’ Blood, vol. 114,
no. 18, pp. 3909–3916, Oct. 2009.

[40] D. L. Stirewalt, S. Meshinchi, K. J. Kopecky, W. Fan,
E. L. Pogosova-Agadjanyan, J. H. Engel, M. R. Cronk, K. S. Dorcy,
A. R. McQuary, D. Hockenbery, B. Wood, S. Heimfeld, and J. P. Radich,
‘‘Identification of genes with abnormal expression changes in acute
myeloid leukemia,’’Genes Chromosomes Cancer, vol. 47, no. 1, pp. 8–20,
Jan. 2008.

[41] A. S. Barth, R. Kuner, A. Buness, M. Ruschhaupt, S. Merk, L. Zwermann,
S. Kääb, E. Kreuzer, G. Steinbeck, U.Mansmann, A. Poustka, M. Nabauer,
and H. Sültmann, ‘‘Identification of a common gene expression signa-
ture in dilated cardiomyopathy across independent microarray studies,’’ J.
Amer. College Cardiol., vol. 48, no. 8, pp. 1610–1617, Oct. 2006.

[42] A. Hever, R. B. Roth, P. Hevezi, M. E. Marin, J. A. Acosta, H. Acosta,
J. Rojas, Herrera R., D. Grigoriadis, E. White, P. J. Conlon, R. A. Maki,
and A. Zlotnik, ‘‘Human endometriosis is associated with plasma cells and
overexpression of B lymphocyte stimulator,’’ Proc. Nat. Acad. Sci. USA,
vol. 104, no. 30, pp. 12451–12456, Jul. 2007.

VOLUME 7, 2019 69181



Z. Bao et al.: gwSPIA: Improved SPIA With Gene Weights

[43] Z. Liu, Z. Yao, C. Li, Y. Lu, and C. Gao, ‘‘Gene expression profil-
ing in human high-grade astrocytomas,’’ Comparative Funct. Genomics,
vol. 2011, Art. no. 245137, Aug. 2011.

[44] H. Runne, A. Kuhn, E. J. Wild, W. Pratyaksha, M. Kristiansen, J. D. Isaacs,
E. Régulier, M. Delorenzi, S. J. Tabrizi, and R. Luthi-Carter, ‘‘Analysis of
potential transcriptomic biomarkers for Huntington’s disease in peripheral
blood,’’ Proc. Nat. Acad. Sci. USA, vol. 104, no. 36, pp. 14424–14429,
Sep. 2007.

[45] Y. Zhang, M. James, F. A. Middleton, and R. L. Davis, ‘‘Transcriptional
analysis of multiple brain regions in Parkinson’s disease supports the
involvement of specific protein processing, energy metabolism, and sig-
naling pathways, and suggests novel disease mechanisms,’’ Amer. J. Med.
Genet. B, Neuropsychiatric Genet., vol. 137, no. 1, pp. 5–16, Aug. 2005.

[46] B. Zheng et al., ‘‘PGC-1α, a potential therapeutic target for early interven-
tion in Parkinson’s disease,’’ Sci. Transl. Med., vol. 2, no. 52, Oct. 2010,
Art. no. 52ra73.

[47] T. A. Wallace et al., ‘‘Tumor immunobiological differences in prostate
cancer between African-American and European-American men,’’ Cancer
Res., vol. 68, no. 3, pp. 927–936, Feb. 2008.

[48] M. E. Lenburg, L. S. Liou, N. P. Gerry, G. M. Frampton, H. T. Cohen, and
M. F. Christman, ‘‘Previously unidentified changes in renal cell carcinoma
gene expression identified by parametric analysis of microarray data,’’
BMC Cancer, vol. 3, p. 31, Nov. 2003.

[49] Y. Wang, O. Roche, M. S. Yan, G. Finak, A. J. Evans, J. L. Metcalf,
B. E. Hast, S. C. Hanna, B. Wondergem, K. A Furge, M. S. Irwin,
W. Y. Kim, B. T. Teh, S. Grinstein, M. Park, P. A. Marsden, and M. Ohh,
‘‘Regulation of endocytosis via the oxygen-sensing pathway,’’ Nat. Med.,
vol. 15, no. 3, pp. 319–324, Mar. 2009.

[50] J. D. Zhang and S. Wiemann, ‘‘KEGGgraph: A graph approach to KEGG
PATHWAY in R and bioconductor,’’ Bioinformatics, vol. 25, no. 11,
pp. 1470–1471, Jun. 2009.

[51] G. Csardi and T. Nepusz, ‘‘The igraph software package for complex
network research,’’ Interjournal Complex Syst., vol. 1695, 2006.

[52] Y. Hochberg, ‘‘A sharper Bonferroni procedure for multiple tests of signif-
icance,’’ Biometrika, vol. 75, no. 4, pp. 800–802, Dec. 1988.

[53] S. R. Narum, ‘‘Beyond bonferroni: Less conservative analyses for con-
servation genetics,’’ Conservation Genet., vol. 7, no. 5, pp. 783–787,
Oct. 2006.

[54] P. Khatri, M. Sirota, and A. J. Butte, ‘‘Ten years of pathway analysis:
Current approaches and outstanding challenges,’’ PLoS Comput. Biol.,
vol. 8, Feb. 2012, Art. no. e1002375.

[55] B. Efron and R. Tibshirani, ‘‘On testing the significance of sets of genes,’’
Ann. Appl. Statist., vol. 1, no. 1, pp. 107–129, Jun. 2006.

[56] L. Geistlinger, G. Csaba, and R. Zimmer, ‘‘Bioconductor’s enrichment-
browser: Seamless navigation through combined results of set-& network-
based enrichment analysis,’’BMCBioinformatics, vol. 17, p. 45, Jan. 2016.

[57] J. Michaud, K. M. Simpson, R. Escher, K. Buchet-Poyau, T. Beissbarth,
C. Carmichael, M. E., Ritchie F. Schütz, P. Cannon, M. Liu, X. Shen,
Y. Ito, W. H. Raskind, M. S. Horwitz, M. Osato, D. R. Turner, T. P. Speed,
M. Kavallaris, G. K. Smyth, and H. S. Scott, ‘‘Integrative analysis of
RUNX1 downstream pathways and target genes,’’ BMC Genomics, vol. 9,
p. 363, Jul. 2008.
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