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ABSTRACT Chest X-ray (CXR) is one of the most common types of radiology examination for the
diagnosis of thorax diseases. Computer-aided diagnosis (CAD) was developed to help radiologists to achieve
diagnostic excellence in a short period of time and to enhance patient healthcare. In this paper, we seek
to improve the performance of the CAD system in the task of thorax diseases diagnosis by providing a
new method that combines the advantages of CNN models in image feature extraction with those of the
problem transformation methods in the multi-label classification task. The experimental study is tested on
two publicly available CXR datasets ChestX-ray14 (frontal view) and CheXpert (frontal and lateral views).
The results show that our proposed method outperformed the current state of the art.

INDEX TERMS CAD, CXR, transfer learning, CNN, computer vision, multi-label classification, problem
transformation method, deep learning, image classification, image feature extraction, thoracic pathologies.

I. INTRODUCTION

The thorax also called chest, is the upper part of the trunk
located between the neck and the abdomen. It is mostly
protected and supported by the rib cage, spine, and shoul-
der girdle. The rib cage is bounded by neighboring ribs
and muscles and contains viscera, mainly the lungs, heart,
and mediastinum organs, which have a vital role in feeding
(esophagus), breathing, and pumping the blood to all parts of
the body.

Chest pain is the most frequent reason for consultation
and emergency room visits. Chest radiography, colloquially
called Chest X-Ray (CXR), is one of the most common types
of radiology examination for the diagnosis of thorax dis-
eases. However, radiology involves decision-making under
conditions of uncertainty, and therefore cannot always pro-
duce infallible interpretations or reports [1]. In this purpose,
Computer-Aided Diagnosis (CAD) was developed to help
radiologists to achieve diagnostic excellence in a short period
of time and to enhance patient healthcare. CAD systems
are not meant to replace or compare with doctors, but they
are used as a “‘second opinion” complementary to that of a
radiologist.

Over the past few years, a lot of interest and attention has
been paid to improve CAD systems using Artificial Intelli-
gence (AI) and Computer Vision (CV) techniques. One of
the core problems and the typical task is medical image
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classification. The intent of the classification process is to
assign single or multiple diagnostic outcomes to a medical
image based on its content. In this regard, many efforts have
been made to develop advanced classification approaches and
methods in order to improve classification accuracy.

Originally, a dual-stage approach was used to tackle image
classification problem. Where the first stage aims to extract
hand-crafted features from image using feature descriptors,
and then the extracted features are provided as input to a
trainable classifier in the second stage [2]. However, the accu-
racy of this approach depends highly on the method used
for feature extraction in the first stage. For this reason, deep
learning was investigated in the task of image classification; it
allows automatic extraction of features and classification by
modeling data through multiple processing layers containing
non-linearity.

The Convolutional Neural Networks (CNNs) are the most
favorite and popular deep learning models for the task of
image classification since it provides high accuracy and
impressive results compared with other models. It was spe-
cially designed for use on two-dimensional data, such as
image and video. The first CNN model was proposed in the
late 90s, its basic idea is inspired from the human visual
perception of recognizing things. Of these, the best known is
the LeNet architecture that was used to read zip codes, digits,
etc. [3].

However, these models are immensely data-hungry and
rely on huge amounts of labeled data to achieve their perfor-
mance, which is one of the most important obstacles since
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labeled data are not always available, in some tasks and
domains, or are expensive to obtain. Therefore, a number of
research studies have introduced the use of transfer learn-
ing method, where what has been learned in one setting is
exploited to improve generalization in another [4].

Nowadays, multi-label classification methods are receiv-
ing increased interest and are required by many real-world
application domains such as text classification and protein
function classification. In multi-label classification, each
instance can be assigned simultaneously into multiple classes.
This is performed by either transforming the problem into one
or more single-label sub-problems or by adapting a single-
label classifier to handle multi-label data directly.

This paper presents our contribution to the task of detecting
thoracic diseases from chest X-ray images using transfer
learning and multi-label problem transformation methods.
The main idea is to extract relevant features from CXRs
using a pre-trained CNN and then classify the extracted fea-
tures with multi-label problem transformation methods that
transform the multi-label problem to single-label classifica-
tion. The experimental study is tested on two publicly avail-
able datasets for CXRs. The results show that our proposed
method outperformed previous works and introduce a new
state-of-the-art with an average AUC of 0.882.

Il. RELATED WORK

Various works have been proposed to automatically classify
thorax diseases from frontal CXRs, thanks to the public
release of the ChestX-ray14 dataset [19]: In the work of [19],
they evaluated four classic CNN architectures to classify and
localize disease lesion areas in a weakly supervised man-
ner. In order to exploit label dependencies, [20] presented a
two-stage end-to-end neural network model that combines a
densely connected image encoder with a recurrent neural net-
work decoder. While [21] investigate that which loss function
is more suitable for training CNNs from scratch and present
a boosted cascaded CNN for global image classification. The
well-known of these works are CheXNet [22] that fine-tunes a
DenseNet-121 on the global chest X-ray images, which has a
modified last fully-connected layer and [23] that proposes an
attention guided two-branch convolutional neural network for
thorax disease classification. The proposed network is trained
by considering both the global and local cues informed in
the global and local branches respectively, and has achieved
superior performance over the state-of-the-art approaches on
CXR dataset.

Unlike the above works, a novel DualNet architecture [24]
was introduced to assess frontal, as well as lateral CXRs. It
emulates routine clinical practice by taking into account both
view types simultaneously.

Ill. TRANSFER LEARNING WITH MEDICAL IMAGE

Transfer learning was used in the medical domain to face the
problem of scarce and insufficient annotated images, and also
to reduce the efforts of building a model from scratch for
a specific task. Generally speaking, transfer learning aims
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to exploit knowledge present in a large training data from
a source domain, and then use it either as initialization or a
fixed feature extractor to enhance a model’s performance in
a target domain.

Transfer learning using CNN is a commonly used strategy
to tackle the task of medical image classification, where a
pre-trained CNN on a huge dataset (such as ImageNet [5])
can be exploited in three ways:

A. CNN ARCHITECTURE

In this case, we are just interested in the architecture. So,
we have to train our model from scratch by fine-tuning all
the layers of the CNN according to our dataset again. Instead
of defining random weights as a starting point, we can use
initial weights obtained from the pre-trained network that
gives a good starting point against random initialization of
the weights.

B. FREEZING CNN LAYERS

In this case, we freeze some of the earlier layers of the pre-
trained CNN (due to overfitting concerns) which contain
general features and only fine-tune some higher layers of
the network that contain more specific features related to the
properties of classes contained in the original dataset.

C. CNN AS FEATURES EXTRACTOR

In this case, we get rid of the last or latest fully-connected
layers of a pre-trained CNN on a huge dataset in order to use
the entire network as a fixed feature extractor. Then we train a
linear classifier such as softmax classifier or SVM to predict
label for a new dataset.

To tackle our problem of multi-label CXR classification,
we chose to follow the first and the last strategy. First we
train a pre-trained CNN on a huge dataset from scratch by
fine-tuning all layers, then we remove the last fully connected
layer (that predicts the diagnostic outcomes) and finally,
we treat the rest of CNN only as a fixed feature extractor for
our CXR dataset.

In order to choose the best CNN model for our task, we had
to choose between several CNNs that have been applied for
CXR classification including ResNet [6], VGG-Net [7], and
DenseNet [8]. As aresult, we chose the DenseNet-121 model
which achieved the state-of-the-art results.

IV. MULTI-LABEL CLASSIFICATION (MLC)
Recently, Multi-label image classification has gained a surg-
ing interest in the field of computer vision and has been
applied to tackle the problem of image and video annotation.
Unlike single-label (binary/multi-class) image classification,
where each image has only one label, a multi-label classifier
can assign to an image multiple labels, exactly one or no label
at all.

Different approaches have been proposed to address
the problem of multi-label classification; they are mainly
arranged into three categories:
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Problem Transformation Methods: The main idea is to
fit data to an algorithm by transforming the multi-label
classification problem into one or more single-label
(binary/multi-class) sub-problems, and then combine their
results to form the multi-label prediction. Representa-
tive algorithms include Binary Relevance [9], Random
k-Labelsets [10] and Classifier Chains [11].

Problem Adaptation Methods: The core idea is to fit an
algorithm to data by extending popular learning techniques
to deal directly with multi-label data. Representative algo-
rithms include an adaptation of lazy learning techniques
ML-KNN [12], an adaptation of decision tree techniques
ML-C4.5 [13], an adaptation of kernel techniques Rank-
SVM [14].

A novel approach called Ensemble methods [15] was
developed on top of these two approaches. It consists
in transforming the problem of multi-label classification
into an ensemble of multi-label sub-problems. Represen-
tative algorithms include the Random k-labELsets method
(RAKEL) [16], Ensemble Classifier chains (ECC) [17], and
label space partitioning classifiers [18].

In order to find the most suitable approach for our case,
we tried to make a comparison between the three above
methods. However, both problem adaptation methods and
ensemble methods have high memory requirements and take
a considerable amount of time (>20 hours) when it is run on
our dataset. For this, this work is carried out using problem
transformation methods including Binary Relevance, Label
Powerset, and Classifier Chains.

Binary Relevance (BR): This method assumes that labels
are independent; it converts the multi-label task into k binary
classification problems where k is the number of labels. So,
it creates k datasets and train k binary classifier on each of
these datasets. For a new instance, each of k binary classifiers
votes separately to get the final result. The main advantages
of BR are: low computational complexity and high flexibility
as labels can be added or removed without affecting the
model. However, BR suffers from two problems: the first
one is that BR ignores interdependences between labels and
the second one is the data imbalance that may occur after the
transformation.

Label Powerset (LP): This method assumes labels are
dependent; it converts the multi-label task into multi-class
classification problem with k different classes where k is
the number of possible combination of labels. This method
is straightforward. Nevertheless, the main drawbacks of
this method are: the computational cost is exponential
with the original label set, and after the transformation,
it is possible to have limited training examples for classes
with less frequent combinations, producing data imbalance
problem.

Classifier Chain (CC): As BR, CC transforms a multi-label
problem into k binary classification problems where k
denotes a set of labels and for each label; a separate
binary classifier is designed. Classifiers are linked along
a chain where the input for each classifier is different.
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This chaining method passes label information between
classifiers, allowing CC to take into account label corre-
lations and thus overcoming the label independence prob-
lem of BR. However, CC still retains the advantages
of BR.

V. THE PROPOSED APPROACH

The idea behind our approach is to combine the effectiveness
of CNN for image features extraction from a small image
dataset and the power of the problem transformation methods
in the task of multi-label classification. As shown in Figure 1,
the development of the proposed method consists of four
parts: data description and exploration, data pre-processing,
feature extraction part, and classification part.

A. DATA DESCRIPTION AND EXPLORATION

1) CHESTX-RAY14 DATASET

The dataset contains 112,120 frontal CXRs from 30,805
unique patients. All CXRs are PNG format and have a
size of 1024 x 1024. CXRs are labeled with 14 com-
mon thorax diseases including Atelectasis, Consolidation,
Infiltration, Pneumothorax, Edema, Emphysema, Fibro-
sis, Effusion, Pneumonia, Pleural_thickening, Cardiomegaly,
Nodule, Mass and Hernia. If none of these diseases has
been detected in a CXR, then it will be labeled as
“No finding”.

Visual exploration is an important step that allows us to
understand what is in a dataset and the characteristics of the
data including the size, format, and distribution of data. This
is illustrated in the following figures.

2) CHEXPERT DATASET
CheXpert [25] is a large public dataset for chest radio-
graph interpretation, comprises 224,316 CXRs of 65,240
patients. Both frontal and lateral CXRs (see Figure 4)
have been retrospectively collected from Stanford Hospital,
performed between October 2002 and July 2017 in both
inpatient and outpatient centers. However, in this study,
we have worked only with 134,327 CXRs (115723 of
frontal views and 18604 of lateral views) because we have
ignored CXRs with uncertain labels. Each CXR is labeled
with one or more pathology labels including Atelectasis,
Cardiomegaly, Enlarged Cardiomediastinum, Consolidation,
Pneumonia, Pneumothorax, Edema, Lung opacity, Lung
Lesion, Pleural Effusion, Pleural other, Fracture, Support
devices, No finding.

To better understand our dataset, we counted the number
of CXRs for each pathology label and the number of CXRs
with multiple labels (see Figure 5 and Figure 6).

B. DATA PRE-PROCESSING

Data pre-processing is meant to adequate our CXRs to the
format the pre-trained model requires so we have resized
CXRs to the required size 224 x 224 pixels. And in order
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FIGURE 1. Multi-label CXR classification pipeline.

FIGURE 2. Example of ChestX-ray14 dataset: frontal CXR of a patient with
infiltration and nodule.

to augment the dataset and make convergence faster while
training the network, we utilized horizontal flipping and nor-
malized our data by subtracting the mean from each pixel and
then dividing the result by the standard deviation.

C. FEATURE EXTRACTION
The main goal of this phase is: given a CXR, generate the
features that will subsequently be fed to a classifier in order to
classify the CXR into one or multiple possible classes. To this
end, a denseNet-121 model is used as a feature extractor.

The Dense Convolutional Network (DenseNet) [8] is a
new CNN architecture that has outperformed the state-of-
the-art results on most highly competitive object recognition
benchmark tasks. The core idea of DenseNet is to ensure
maximum information flow between layers in the network
by connecting all layers (with matching feature-map sizes)
directly with each other. As shown in Figure 8, this introduces
M connections in an L-layer network, instead of just L,
as in traditional architectures.

A DenseNet is a stack of dense blocks followed by tran-
sition layers. A dense block consists of a series of units.
Each unit packs two convolutions, each preceded by Batch
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TABLE 1. The DenseNet-121 architecture.

Layers Output DenseNet-121
Size
Convolution 112x11 | 7x7 conv, stride2
2
Pooling 56x56 3x3 max pool, stride 2
Dense Block 1 56x56

1x1 conv
X 6
3x3 conv

56x56 1x1 conv

Transition Layer 1 28x28 2x2 average pool, stride 2

1x1 conv
x 12
3x3 conv

28x28 1x1 conv

Dense Block 2 28x28

Transition Layer 2

14x14 2x2 average pool, stride 2

1x1 conv
Dense Block 3 14x14 |: j| x 24
3x3 conv
14x14 1x1 conv
Transition Layer 3 7x7 2x2 average pool, stride 2
1x1 conv
Dense Block 4 7x7 |: j| x 16
3x3 conv
1x1 7x7 global average pool
Classification
Layer 14D fully connected, sigmoid

Normalization and ReLLU activations. In addition, each unit
generates a fixed number of feature vectors. This parameter,
called growth rate, controls the amount of new information
that layers can transmit. The layers between these dense
blocks are transition layers which perform down-sampling
of the features passing the network. A detailed explanation
of DenseNet-121 architecture, the DenseNet we used in this
work, is shown in Table 1.

Motivated by the results obtained by DenseNet-121 on
ChestX-rayl4 dataset [23], [24], we have trained the
DenseNet-121 model on our dataset, using initial weights
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FIGURE 3. Number of CXRs, in ChestX-ray14 dataset, per pathology label.

FIGURE 4. Number of CXRs, in ChestX-ray14 dataset, having multiple
pathology labels.

obtained from the pre-trained network, on ImageNet, which
gives a good starting point against random initialization of
the weights. We have used a mini-batch size of 8 samples,
and a number of epochs up to 110, the binary cross-entropy
as a loss function where the best model was selected based
on the validation loss. The Adam optimizer is used with an
initial learning rate of 0.001 which is multiplied by 10 each
time the validation loss plateau after an epoch.

Since this trained model is used only as feature extractor,
we have removed the last fully connected layer (14D fully
connected, sigmoid) and obtained a fixed feature vector
of 1024D.

D. CLASSIFICATION
After the feature extraction stage, a classifier is needed to
find the corresponding label(s) for every CXR. This is carried
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FIGURE 5. Example of CheXpert dataset: Frontal and lateral CXR of a
patient with Pneumonia.

out using problem transformation methods including Binary
Relevance, Label Powerset and Classifier Chains. Commonly
used base classifier algorithms with these methods are SVM,
J48 and Logistic Regression (LR). In this work, we choose to
work with LR since it is the fastest and the more accurate for
our specific task.

LR is a linear classifier. Its basic form seeks a hyperplane
that separates data belonging to two classes. A brief descrip-
tion is as follows: assuming we have the set of training data
(xL,yl),(x2,y2),...(xn,yn) and we want to classify the set
into two classes where xi € Rd is the feature vector and yi
€ {0,1} is the label class. These classes are separated by a
hyperplane wx + b = 0, where the conditional probability
for LR classifier takes the following form:

(Owxi+b)yi)
pOilx) = ——————, i=1...n %)

1 + e(Owxi+b)y)’

A probability close to 1 means xi is very likely to be
part of that label. The classifier parameters w and b can be
determined by minimizing the average logistic loss function:

1 n , ,
lavg(w» b) = Z ZiZI log(l + e((wx,+b)yt)) )
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FIGURE 6. Number of CXR, in CheXpert dataset, per pathology label.

FIGURE 7. Number of CXRs, in CheXpert dataset, having multiple
pathology labels.

arg max g (w, b) (3)
w,b

VI. EVALUATION METRICS FOR MLC TASK
Unlike the traditional classification problems, where the pre-
diction can be either correct or wrong, the multi-label classifi-
cation problem is a more challenging task and requires more
special evaluation measures since the performance over all
labels should be taken into account. In a multi-label classifi-
cation problem, a prediction can be fully correct (all predicted
labels are correct), partially correct (some of the predicted
labels are correct) or fully wrong (all predicted labels are
wrong).

The evaluation metrics of MLC are broadly grouped into
two categories:

A. EXAMPLE-BASED METRICS

The main idea is to first evaluate the average difference
between the predicted and ground-truth classes for each test
examples, and then average over all examples in the test set.
The commonly used Example-Based metrics to evaluate the
performance of a multi-label classification model are: Ham-
ming Loss (HL), which reports how many times on average,
an example-label pair is misclassified and the well-known
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FIGURE 8. DenseNet with 5 layers [8].

metrics from the Information Retrieval (IR) Recall (R), Pre-
cision (P) and F1-score that combines the precision and recall
measures of a classifier by means of an evenly harmonic mean
of both them.

B. LABEL BASED METRICS

This category exploits the use of two types of averaging
method. The former is called macro-average, where first any
binary evaluation metric can be computed on each individual
class and then averaged over all classes, while the latter is
called micro-average, where any binary evaluation metric can
be computed globally over all instances and all classes [25].
Recently, the area under the receiver operating character-
istic (ROC) curve, known as the AUC, has been widely
used in MLC because it avoids the supposed subjectivity in
the threshold selection process, when continuous probability
derived scores are converted to a binary presence—absence
variable, by summarizing overall model performance over all
possible thresholds [26].

VII. RESULTS AND DISCUSSION

In this section, we conduct the experiments on two CXR
datasets described in Section. 5.1. As shown in Table 2 each
dataset was randomized and then split into 80% of the training
set and 20% of the testing set. For performance evaluation,
we used the following metrics AUC, hamming loss and
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TABLE 2. Total number of training and testing CXRs per dataset.

Dataset Train Test
ChestX-rayl4 89692 22424
CheXpert 107461 26866

TABLE 3. Results on ChestX-ray14 dataset.

Metrics
Classifier Training Micro- | Hamming | Average
time Fl Loss AUC
BR (LR) 21 min 0.547 0.061 0.877
LP (LR) | 4h50min36s | 0.540 0.069 0.875
CC(@IR) | 17min% | 0.561 0.067 0.876

FIGURE 9. The AUC results and ROC curves obtained by BR on
ChestX-ray14 dataset.

micro-averaged F1 score. All experiments are run on an HP
ZBook17 with Intel Core i7-4700MQ CPU, 24 GB RAM, and
NVIDIA Quadro K3100M with 4 GB.

A. RESULTS ON CHESTX-RAY14 DATASET
Table 3 presents a summary of classification performance
results, in terms of micro-averaged F1 score, hamming loss
and averaged AUC. As can be seen, Classifier Chain is the
fastest classifier with a training time of 17min9s, followed
by Binary Relevance with a training time of 21 min, while
Label Powerset takes the longest time, up to 5 hours. The
three classifiers produce very satisfactory and close results
where Binary Relevance achieved the best hamming loss
and averaged AUC of 0.061 and 0.877 respectively, while
Classifier Chain reached the highest micro-averaged Flscore
of 0.561.

It is obvious from the above figures that our classifiers
achieve very close and high AUC values, between 0.75 and
0.99, in all pathology labels of the ChestX-ray14 dataset.
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FIGURE 10. The AUC results and ROC curves obtained by LP on
ChestX-ray14 dataset.

TABLE 4. Results on CheXpert dataset.

Metrics
Classifier Training Micro- | Hamming | Averaged
time Fl1 Loss AUC
BR(LR) 18min47s 0.622 0.116 0.812
LP(LR) 7h15min53s 0.619 0.126 0,808
CC(LR) 22min33s 0.631 0.118 0.785

B. RESULTS ON CHEXPERT DATASET

As shown in Table 4, Binary Relevance takes the least training
time on CheXpert dataset and achieves the best hamming loss
of 0.116 and the highest averaged AUC of 0.812. Classifier
Chain takes also little time in the training process and reaches
the highest micro-F1 score of 0.63, while training the Label
Powerset classifier on CheXpert dataset takes a long time
of up to 7 hours. It should also be mentioned that the three
classifiers give very similar results.

Figures 11-13 illustrate the AUC values and the ROC
curves obtained by each classifier on the 14 pathology labels.
It is clear that the performance of the three classifiers in
terms of AUC values is almost similar and very high for all
pathology labels.

Although the datasets suffer from the problem of imbal-
ance label distribution (see Figure 3, 4, 6, and 7) that has been
exacerbated by the use of problem transformation methods,
especially for minority labels. Our method performs very well
on ChestX-rayl4 dataset, that contains only frontal CXRs,
as well as on CheXpert dataset that provides frontal and
lateral CXRs.

Itis very likely that the presence of certain pathology could
determine if another is also likely to be present or not. For
this, we used CC and LP to exploit the correlation between
pathologies and overcome the label independence assumption
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FIGURE 11. The AUC results and ROC curves obtained by CC on
ChestX-ray14 dataset.

FIGURE 12. The AUC results and ROC curves obtained by BR on CheXpert
dataset.

of BR. However, in our case, these methods did not give us the
desired results because they did not provide any significant
improvement compared to BR.

C. COMPARISON TO THE STATE-OF-THE-ART METHODS
Here, we compare the results obtained by our proposed
method with the state-of-the-art results on the well-known
chestX-ray14 dataset. To be fair in our comparison, we used
the same train/test distribution as other methods with 70% for
training, 20% for testing, and we ignored the remaining 10%
because we did not need the validation process. As a result,
we noticed that this change did not affect the performance
results of our problem transformation methods.
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FIGURE 13. The AUC results and ROC curves obtained by LP on CheXpert
dataset.

FIGURE 14. The AUC results and ROC curves obtained by CC on CheXpert
dataset.

Our proposed method outperformed the current state-
of-the-art by an averaged AUC of 1.1%. As can be seen
in Table 5, the three proposed classifiers yield the best
per-class AUC in 12 pathology labels including Atelec-
tasis, Cardiomegaly, Infiltration, Mass, Pneumonia, Pneu-
mothorax, Consolidation, Edema, Emphysema, Fibrosis,
Pleural_thickening and Hernia, while the highest AUC
of 0.986 among all pathology labels is attained on Hernia.

More importantly, this comparison proves the valid-
ity of the basic assumption of our study, namely that
replacing the trainable classifier, the last fully connected
layer, of a CNN model by the powerful multi-label prob-
lem transformation methods will improve the classification
performance. The proof is that our method exceeds
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TABLE 5. Comparison to the state-of-the-art methods on ChestX-ray14 dataset.

Pathology Label CheXNet [23] AG-CNN [24] BR(LR) LP(LR) CC(LR)
Atelectasis 0.821 0.853 0.855 0.854 0.855
Cardiomegaly 0.905 0.939 0.952 0.948 0.952
Effusion 0.883 0.903 0.911 0.910 0.909
Infiltration 0.720 0.754 0.749 0.748 0.747
Mass 0.862 0.902 0.913 0.912 0.913
Nodule 0.777 0.828 0.810 0.809 0.810
Pneumonia 0.763 0.774 0.809 0.804 0.811
Pneumothorax 0.893 0.921 0.929 0.928 0.929
Consolidation 0.794 0.842 0.849 0.849 0.848
Edema 0.893 0.924 0.931 0.931 0.931
Emphysema 0.926 0.932 0.942 0.941 0.942
Fibrosis 0.804 0.864 0.867 0.861 0.865
Pleural_thickening 0.814 0.837 0.848 0.843 0.843
Hernia 0.939 0.921 0.986 0.977 0.986
Averaged AUC 0.842 0.871 0.882 0.880 0.881
NoFindng | = ——— | - 0.804 0.811 0.794

DenseNet-121 model [23] results on all pathology classes by
an average AUC of 4%.

VIIl. CONCLUSION

In this paper, we propose a new approach that combines
the effectiveness of CNN for image feature extraction and
the power of supervised multi-label classifiers in order to
tackle the task of thorax diseases detection on CXRs. The task
has been carried out with a pre-trained DenseNet-121 model
as feature extractor and different problem transformation
methods such as BR, LP, and CC. The evaluation process
was conducted using performance metrics like hamming
loss, micro-averaged f1 score, and average AUC. The results
showed that our method achieved great results and out-
performed current state-of-the-art on ChestX-ray14 dataset.
To further substantiate the results of this study, several
improvements could be made, such as the use of an attention
mechanism to improve CNN’s work and train our classifier
on a more balanced data set to avoid the problem of imbalance
label distribution.
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