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ABSTRACT In this paper, we present a novel deep model named coarse-fine convolutional neural net-
work (CFCNN) for person re-identification in camera sensor networks, which jointly learns global and
multi-scale local features simultaneously. To this end, we design the CFCNN as a multi-branch network,
which is composed of one coarse and two fine branches. Specifically, the global feature is learned from the
coarse branch, and the two fine branches are developed to extract two kinds of local features with different
scales. Afterward, each branch is followed by a classification loss to make the identity prediction. Finally,
we obtain completed pedestrian representations via concatenating the learned global and all local features.
We conduct a number of experiments to evaluate the effectiveness of the CFCNN on three datasets. The
CFCNN achieves high rank-1 and mAP accuracy with 94.0%/81.2%, 64.6%/58.4%, and 85.7%/72.4%
on Market-1501, CUHK03, and DukeMTMC-reID, respectively. These results significantly outperform the
prior state-of-the-art methods.

INDEX TERMS Person re-identification, convolutional neural network, camera sensor networks.

I. INTRODUCTION
Given a probe, person re-identification (Re-ID) aims to spot
the specific person in camera sensor networks. It has been
widely applied in several subfields of video security mon-
itoring system, such as multi-camera activity analysis [1],
cross-camera tracking [2] and so on. Person Re-ID is a
challenging issue because of complex pedestrian images
caused by variances in posture, viewpoint, illumination,
background, etc.

The traditional methods for person Re-ID usually
employ hand-crafted features, such as color, edge and
shape, to describe the appearance of pedestrian [3]–[7].
Recently, with the prosperity of deep learning, many
approaches [8]–[16] employ convolutional neural net-
work (CNN) and obtain the breakthrough in cumulative
match characteristic (CMC) curve and mean average preci-
sion (mAP). Several CNN-based methods [17]–[19] extract
global features from entire pedestrian images which could
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FIGURE 1. The two pedestrians with different identities have quite similar
appearance in clothing. It is difficult to distinguish them only using the
global feature because of neglecting the detail information in the head
region.

represent the macroscopic clues of pedestrian. However,
these methods ignore detail information of pedestrian, which
is very important to discriminate different identities. The two
pedestrian images in Figure 1 are with different identities,
while the general appearances of them are quite similar.
Hence, the global feature is difficult to distinguish them due
to neglecting the discriminative region, e.g., head region.

Different from global feature learning, many researchers
extract local features using different strategies in order
to obtain the detail information of pedestrian. Some
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FIGURE 2. From left to right, the detail information of pedestrian
increases with more local parts being partitioned. Left: the entire
pedestrian image contains the global information of pedestrian
appearance. Middle: the pedestrian image is partitioned into three local
parts from which detail information can be extracted. Right: more local
parts reflect more detail information. Completed pedestrian information
exists in combination of different scales.

approaches [20], [21] directly partition pedestrian images into
several fixed regions, and then learn the local feature from
each region. In addition, several methods [22], [23] employ
external clues, e.g., human pose estimation [24], to discover
meaningful local regions, but these methods require extra
supervision which is prone to error accumulation.

In this paper, a CNN-based model named Coarse-Fine
Convolutional Neural Network (CFCNN) is proposed for
person Re-ID in camera sensor networks, which jointly
learns global and multi-scale local features simultaneously.
To this end, we design CFCNN as a multi-branch network
which is composed of coarse and fine branches. Specifically,
the global feature is learned from the coarse branch, and the
fine branch is developed to extract the local feature. From
Figure 2, we can see that the detail information of pedestrian
exists in different scales, and therefore we develop several
fine branches to mine completed local features from various
scales. In the process of learning completed local features,
we directly divide convolutional activation maps into differ-
ent scales, which is simple and efficient. Afterwards, each
branch is followed by a classification loss for the enhance-
ment of feature discriminative ability.

We make the following three contributions in this paper.
• Firstly, a deep model is proposed to fuse global and

multi-scale local features.
• Secondly, we illuminate that learning multi-scale local

features is beneficial to the enhancement of discriminative
ability for pedestrian representation.
• Thirdly, experimental results on three person Re-ID

datasets, i.e., Market-1501 [25], CUHK03 [26] and
DukeMTMC-reID [27], show the effectiveness of CFCNN.

II. RELATED WORK
With the development of CNNs, it has been broadly used
in many subfields of image classification [28], [29], such
as person Re-ID and vehicle re-identification [30]. Person
Re-ID has experienced a revolution from hand-crafted fea-
tures to deep features. Hence, we introduce both of them in
this section.

A. HAND-CRAFTED FEATURES
There was a period of prosperity for hand-crafted
features [3]–[5] before deep learning methods became main-
stream in person Re-ID. Gheissari et al. [3] utilized normal-
ized color and salient edge histograms to represent pedestrian
images, which is robust to the changes of environment and
appearance. To extract discriminative features, Ma et al. [31]
converted each pixel of a pedestrian image into a 7-dim vector
containing information of coordinates, intensity, the 1st and
2nd order derivative of pixel, and then encoded them using
the Fisher Vector. Hu et al. [32] proposed three kinds of local
features, i.e., Hierarchical Weighted Histograms (HWH),
Gabor Ternary Pattern HSV (GTP-HSV) and Maximally
Stable Color Regions (MSCR), for pedestrian representation,
which could impose the structural constraints on part-level,
pixel-level and blob-level, respectively. Bazzani et al. [33]
presented the Symmetry-Driven Accumulation of Local Fea-
tures (SDALFs) to extract three complementary features for
pedestrian images based on the symmetry and asymmetry
perceptual principles. Yang et al. [34] designed the Salient
Color Names based Color Descriptor (SCNCD) to compute
color names distributions over different color models for
addressing the illumination changes. The Local Maximal
Occurrence (LOMO) [6] algorithm integrating HSV color
histograms and SILTP descriptors aims to overcome the
viewpoint variances by maximizing the occurrence of feature
vectors of horizontal regions.

B. DEEP FEATURES
Recently, deep features [35]–[37] outperform hand-crafted
features in CMC andmAP, and therefore they play a dominant
role in the person Re-ID community. We catalog the deep
features into three types: (1) global features, (2) local features
and (3) fusion of them.

Many approaches are proposed to learn global features
using entire pedestrian images. For example, Ding et al. [17]
fed the triplet entire images into CNN, and maximized
the relative distance to learn discriminative global features.
In addition, Zheng et al. [18] presented the Pedestrian Align-
ment Network (PAN) to address misalignment problem by
finding the optimal affine transformation when learning
global features. To enhance the global feature discrimination,
Geng et al. [19] combined the contrastive loss and the identi-
fication loss for the CNN model optimization.

Compared with the global feature, the local feature pays
more attention to the detail information of pedestrian.
Varior et al. [10] presented the Matching Gate function to
compare local features along the horizontal stripe so as
to learn the finer detail information of pedestrian. Usti-
nova et al. [38] learned local features by training each
part of pedestrian image in a multi-region bilinear subnet-
work. In order to overcome the pose variation and the back-
ground noise, Zheng et al. [23] introduced three types of
PoseBoxes for local feature extractions from different body
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FIGURE 3. The structure of CFCNN. The input pedestrian image is firstly processed by the modified
ResNet-50 to produce a 3D tensor T . The coarse branch takes the tensor T as input and outputs the global
feature g. As for local features f 1

i and f 2
j , they are extracted from the fine branches when T is divided into n1

and n2 uniform horizontal stripes respectively. Afterwards, g, f 1
i and f 2

j are respectively fed into the
independent classifier and the loss function.

regions, such as arms, legs and so on. Sun et al. [39] directly
split the feature maps of CNN into several fixed stripes, and
then learned local features from them.

Some researchers fuse global and local features to take
advantage of their strengths. Cheng et al. [40] fused global
full body and local body region features via the improved
triplet loss in the parts-based CNN model which contains
multiple channels. Li et al. [41] exploited detail informa-
tion of full body and local body regions in the Multi-Scale
Context Aware Network (MSCAN) to mine discriminative
features, andmeanwhile they utilized the Spatial Transformer
Networks (STN) for spatial constraints on local part-based
features. Zhao et al. [42] captured the macro and micro-body
features using Spindle Net, and merged them using the Fea-
ture Fusion Network (FFN). Zhang and Si [43] employed
the verification model and the identification model for local
part-based and global body-based feature extractions, and
combined them using a weighted strategy.

III. APPROACH
In this section, we detail the architecture of CFCNN and the
way to fuse global and multi-scale local features.

A. THE STRUCTURE OF CFCNN
1) BACKBONE NETWORK
CFCNN can take any CNN-based network as backbone, e.g.,
VGG [44] and ResNet [45]. Since the ResNet-50 [45] has
excellent characteristics as well as the relatively succinct
structure, we utilize it as backbone.

2) FROM BACKBONE TO CFCNN
We make some slight modifications on the ResNet-50.
Specifically, the global average pooling and subsequent lay-
ers are removed, and meanwhile the stride of Conv5_1 layer

is reset to 1 for higher spatial size. Except for the
above-mentioned modifications, the rest parts of ResNet-50
remain the same as shown in Table 1. Hence, when the
pedestrian image is resized to 480 × 160, the output is a 3D
tensor T with the size of 2048 × 30 × 10. Here, there are
2048 convolutional activation maps in T , and each of them is
with the size of 30× 10.
In order to jointly learn global and multi-scale local fea-

tures simultaneously, CFCNN is designed as a multi-branch
network including one coarse branch and two fine branches as
shown in Figure 3. Note that we define the vector composed
by activation values along the channel axis as a column
vector. We utilize the coarse branch to learn the global fea-
ture. Specifically, we directly apply a global average pooling
layer on T , and then employ a convolutional layer containing
256 kernels with the size of 1 × 1 to reduce the dimension
from 2048 to 256. Hence, we obtain the global feature g ∈
R256×1. Meanwhile, we employ the fine branches to learn
local features. Concretely, CFCNN divides T into n1 and n2
uniform horizontal stripes respectively, and produces a single
column vector using a local horizontal average pooling layer
to average all column vectors in the same stripe. Afterwards,
for each stripe we apply a convolutional layer including
256 kernels with the size of 1×1 for the dimension reduction
to 256. Hence, we obtain two types of local features with
different scales. We denote the local features from the fine
branch with n1 stripes as f 1i ∈ R256×1(i = 1, 2, · · · , n1).
Similarly, the local features from another fine branch are
denoted as f 2j ∈ R256×1(j = 1, 2, · · · , n2). It should be
noticed that in order to learn different scale local features,
we set n1 and n2 with different values. Finally, for each local
feature or global feature, we make the pedestrian identity
prediction by applying a FC layer followed by the softmax
function independently.
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TABLE 1. The architecture of the modified ResNet-50.

B. LOSS FUNCTION
In the training phase, the global feature and local features are
respectively fed into the independent classifier and the loss
function. Hence, they do not share the weights. Specifically,
each classifier is designed to contain a FC layer followed by
the softmax function, and we utilize the cross-entropy loss
as the loss function in all branches. The loss function in the
coarse branch is defined as:

Lg = −
C∑
c=1

pc(g) log qc(g) (1)

where C denotes the number of pedestrian identities, qc(g) ∈
[0, 1] indicates the identity prediction values that the global
feature g belongs to the c-th identity, and pc(g) is the target
label value of g. When g belongs to the s-th identity, then
ps(g) = 1; otherwise pc(g) = 0. We utilize the softmax
function to compute the prediction probability qc(g):

qc(g) =
eac∑C
m=1 e

am
(2)

where ac denotes the activation value of the c-th neuron in the
FC layer.

The total loss function in the fine branch with n1 stripes is
formulated as:

L1 = −
n1∑
i=1

C∑
c=1

pc(f 1i ) log qc(f
1
i ) (3)

where qc(f 1i ) ∈ [0, 1] indicates the prediction values that f 1i
belongs to the c-th identity, and pc(f 1i ) is the target identity
label of f 1i . Note that f

1
i is the local feature, and it is assigned

to the same label with the global feature. If f 1i belongs to the
s-th identity, then ps(f 1i ) = 1; otherwise pc(f 1i ) = 0. Similar
to f 1i , the total loss of the fine branchwith n2 stripes is denoted
as L2.

In a word, the loss function of CFCNN is formulated as:

Loss = Lg + λL1 + µL2 (4)

where λ and µ are the coefficients to control the weight
of local features. In the process of optimization, CFCNN
could consider the global feature and the local features with
different scales simultaneously. We update CFCNN param-
eters with the back-propagation and the stochastic gradient
descent (SGD) algorithm.

C. FEATURE FUSION
The global and multi-scale local features extracted from
CFCNN are fused to characterize the pedestrian image as
shown in Figure 4. In the test stage, CFCNN produces com-
pleted descriptor by concatenating the global and all local
features:

D = [g, f 11 , f
1
2 , · · · , f

1
n1 , f

2
1 , f

2
2 , · · · , f

2
n2 ] (5)

D. HYPERPARAMETERS
The proposed CFCNN has several key parameters, for exam-
ple, the number of uniform horizontal stripes, the number of
convolutional kernels, input pedestrian image size, and the
coefficients of CFCNN loss. In the experiments, the hyper-
parameters of CFCNN are set as follows.

(1) To learn local features, we divide the tensor T into 3 and
6 uniform horizontal stripes for two fine branches, i.e., n1 = 3
and n2 = 6.
(2) The number of kernels in the convolutional layer for the

coarse and fine branches is set to 256 for dimension reduction.
(3) The pedestrian image is resized into 480×160 with the

aspect ratio of 3 : 1.
(4) The coefficients λ and µ in Eq. 4 are both assigned to

the value of 1.
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FIGURE 4. The feature representation of pedestrian image using CFCNN. The global feature g and all local
features, i.e., f 1

i and f 2
j , are concatenated to form the final descriptor D.

IV. EXPERIMENTS
This section mainly includes four aspects. We first introduce
Market-1501, CUHK03 and DukeMTMC-reID datasets, and
then detail the experiment settings. Afterwards, the results are
reported. Finally, several key hyperparameters are analyzed in
Section IV-D.

A. DATASETS
Market-1501 is composed of 32,668 images of 1,501 iden-
tities which are captured in the Tsinghua University. The
pedestrian images are observed by at most six camera
views. Hence there are multiple images for the same iden-
tity under different cameras. Each identity has about an
average of 17 images. Concretely, the training set contains
12,936 images of 751 identities, and the test set includes
19,732 pedestrian images of 750 identities where the query
set consists of 3,368 pedestrian images. Instead of manual
labeled operation, the Deformable Part Model (DPM) [46] is
adopted to detect all pedestrian images with consideration of
the acceptable misalignment error.

CUHK03 contains 14,097 pedestrian images of 1,467
identities. Each identity is captured by two different cameras
and includes about 5 pedestrian images in average for each
camera. CUHK03 is divided into two parts, that is, one is the
training set including 767 identities and the other is the test
set containing 700 identities. The manually labeled operation
and automatically labeled operation by DPM are adopted
in this dataset. We evaluate CFCNN under the setting of
automatically labeled operation by DPM.

DukeMTMC-reID consists of 36,411 pedestrian images
from 8 high-resolution cameras. Concretely, there are
1,404 identities captured by at least 3 cameras and 408 iden-
tities (distracter identity) captured by only one camera. The
training set is composed of 702 randomly selected identities,
and the test set contains the rest 1,110 identities (702 iden-
tities and 408 distracter identities). In the query set, each

FIGURE 5. Some pedestrian images from (a) Market-1501, (b) CUHK03,
and (c) DukeMTMC-reID.

identity under each camera view has 1 pedestrian image, and
the remaining images are treated as the gallery. As a result,
we obtain 16,522 training images, 2,228 query images and
17,661 gallery images.

These datasets are challenging for CFCNN evaluation due
to complex pedestrian images caused by variances in posture,
viewpoint, illumination, background and so on. Figure 5
shows some pedestrian images from them, and Table 2 lists
the statistical information. In order to evaluate CFCNN,
we report the CMC at rank-1 and mAP on these datasets.

B. EXPERIMENT SETTINGS
CFCNN takes the pre-trained ResNet-50 as backbone. For
each pedestrian image, we do not apply external data argu-
mentation except random horizontal flip and normalization.
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TABLE 2. The statistical information of three datasets. A/B indicates
identities/images.

Concretely, the normalization is implemented by subtracting
the mean values 0.486, 0.459, 0.408 and then dividing by
the variance values 0.229, 0.224, 0.225 in RGB channels,
respectively. In the training phase, we set the epoch number
and the batch size to 80 and 64, respectively. As for the
basic learning rate, we keep it at 0.1 before 40 epochs and
then decayed to 0.01. Meanwhile, we set the learning rate
of the pre-trained layers to 0.1 times as large as the basic
learning rate during the whole training stage. The weight
decay and momentum are set to 0.0005 and 0.9, respectively.
It should be noticed that we adopt the same parameters on
three datasets.

C. PERFORMANCE EVALUATION
We make comparison with the prior art on three datasets.
Experimental results in detail are given as follows.

1) MARKET-1501
The detailed results on Market-1501 are summarized
in Table 3. Concretely, the compared methods are catego-
rized into three types, i.e., global deep features, local deep
features and fusion of them. From Table 3, we can see
that CFCNN obtains 94.0% and 81.2% in rank-1 and mAP
accuracy respectively which exceed the other methods by
a large margin. CFCNN surpasses the first type methods
because it considers the structure information of pedestrian,
and also outperforms the second type methods due to learn-
ing the global features. Specifically, CFCNN obtains +1.7%
in rank-1 accuracy and +3.8% in mAP accuracy improve-
ments on PCB which learns local features from convolu-
tional activation maps, because CFCNN extracts global and
multi-scale local deep features simultaneously. The perfor-
mance of CFCNN is better than that of ICNN [48] by+1.9%
and +2.2% improvements in rank-1 and mAP accuracy,
respectively. Although ICNN also integrates global and local
features, it only learns single local features, while the pro-
posed CFCNN fuses multi-scale local features.

2) CUHK03
Table 4 shows experimental results where CFCNNobtains the
highest accuracy with 64.6% and 58.4% in rank-1 and mAP,
respectively. It strongly proves that jointly learning global and
multi-scale local features in a unified framework is beneficial
to improvement of features discriminative ability.

TABLE 3. Comparison of CFCNN with prior art on Market-1501.
We categorize these methods into 3 types. The first type: global deep
features; the second type: local deep features; the third type: fusion of
them. We list rank-1 (%) and mAP (%) accuracy.

TABLE 4. The detailed results on CUHK03. We list rank-1 (%) and
mAP (%) accuracy.

3) DUKEMTMC-REID
The same experiment settings are applied on DukeMTMC-
reID. We list the experimental results in Table 5 where
CFCNN achieves the highest values with 85.7% and 72.4% in
rank-1 and mAP accuracy which demonstrate the superiority
of CFCNN once again.

D. PARAMETERS ANALYSIS
In this section, four hyperparameters of the proposed CFCNN
are analyzed on the Market-1501 dataset, i.e., the number
of uniform horizontal stripes, the number of kernels in the
convolutional layer, input pedestrian image size, and two
coefficients of the CFCNN loss. It is noted that we apply the
same parameters on three datasets if they are optimized.
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TABLE 5. Comparison with other methods on DukeMTMC-reID. We list
rank-1 (%) and mAP (%) accuracy.

TABLE 6. The influence of the number of uniform horizontal stripes for
the proposed CFCNN. 3 and 7 indicate using and no using, respectively.
Both rank-1 (%) and mAP (%) accuracy are listed.

1) THE NUMBER OF UNIFORM HORIZONTAL STRIPES
In order to learn completed local features, we try several
different combinations of n1 and n2, such as n1 = 2 and
n2 = 6, n1 = 6 and n2 = 10 and so on. In addition,
we evaluate the performance of CFCNN when only use the
coarse branch and one fine branch, or just two fine branches
without the coarse branch. From the 2nd row to the 7th row
in Table 6, we can see that with the increase of the number
of uniform horizontal stripes, the dimension of D increases
higher, but the performance in rank-1 and mAP accuracy
gradually declines. When using the coarse branch, n1 = 3
and n2 = 6, CFCNN obtains the highest accuracy in rank-1
and mAP. Furthermore, when comparing with the last three
rows, i.e., fusion of global and single scale local features,
and fusion of multi-scale local features without the global
feature, CFCNN achieves better performance owing to jointly
learning global and multi-scale local features in a unified
framework.

2) THE NUMBER OF KERNELS IN THE CONVOLUTIONAL
LAYER
As introduced in Section III, we apply the convolutional
layer to reduce the dimension after the operation of average
pooling for each branch.We vary the number of convolutional
kernels from 64 to 1024. The detailed results are illustrated

FIGURE 6. The influence of the number of convolutional kernels for the
proposed CFCNN. Both rank-1 (%) and mAP (%) accuracy are listed.

FIGURE 7. The influence of pedestrian image size for the proposed
CFCNN. Both rank-1 (%) and mAP (%) accuracy are listed.

TABLE 7. The influence of λ and µ of the CFCNN loss. Only rank-1 (%)
accuracy is listed.

in Figure 6 where the proposed CFCNN achieves the best
performance when the number of kernels is set to 256.

3) THE SIZE OF INPUT PEDESTRIAN IMAGE
We resize the pedestrian images from 192× 64 to 576× 192
with the aspect ratio of 3 : 1 and report their performance
in Figure 7. From Figure 7, we can see that both rank-1 and
mAP accuracy show a trend of gradual increase with the
pedestrian image size until reaching a stable state. Specif-
ically, the pedestrian image with the size of 480 × 160
obtains almost the same performance with that of 576× 192.
With the consideration of memory, 480 × 160 image size is
recommended.

65192 VOLUME 7, 2019



Z. Zhang et al.: CFCNN for Person Re-Identification in Camera Sensor Networks

4) THE COEFFICIENTS OF CFCNN LOSS
We set λ andµwith different values to control the importance
of local features f 1i and f 2j . The results are shown in Table 7
where CFCNN achieves the highest value with 94.0% in
rank-1 accuracy when λ and µ are both set to 1.

V. CONCLUSION
In this paper, we have proposed a CNN-based model
named CFCNN. The proposed CFCNN extracts global
and multi-scale local features simultaneously using a
multi-branch network structure. We employ the independent
identity loss for each branch to enhance the discrimination
of features. Finally, we obtain completed pedestrian repre-
sentations via concatenating the learned global and all local
features.We have proved that the proposed CFCNNhas better
performance than prior art on three person Re-ID datasets.
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