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ABSTRACT Human motion synthesis technology has a very important position in computer animation,
and it is widely used in medicine, film and television, motion analysis, games, and other related fields. The
synthesis of human motion is the virtual of the action of the characters in the real world, the authenticity of
the action, and the natural smoothness is especially important to the user’s experience. Due to the complexity
of human structure, how to generate a high-quality movement is a challenging task. The data used in this
paper are all 3D human motion data in BioVision Hierarchical (BVH) format, which can be captured by
optical, inertial, mechanical or other video-based motion capture devices. In this paper, first, a three-layer
convolutional neural network was used to output mapping in the hidden unit of the input motion capture data.
Then, a one-dimensional convolution auto-encoder was connected; meanwhile, the bone length constraint,
position constraint, and trajectory constraint were added. It repaired the non-inertial joints of motion data
and removed the motion artifacts. To achieve the synthesis of the two motions, we extracted the style
transformation in the motion, added style and content constraints, and finally output the motion. To verify
the feasibility of the algorithm, we obtained the animation effect of the synthesized motion by testing the
input motion. The experimental results show that the motions synthesized by the proposed algorithm not
only look natural smooth in visual effect but also reduce the time consumed by about 42.6% compared with
the existing algorithms.

INDEX TERMS Convolutional neural network, convolution auto-encoder, human motion capture data,
motion synthesis.

I. INTRODUCTION
3D Human motion data is acquired by state-of-the-art motion
capture technologies which are widely employed to record
and archive high quality motion trajectories of a character in
three-dimensional space. Nowadays, there exist many differ-
ent Mo-cap technologies including the optical based, the sen-
sor based, the mechanical based, the depth image based, etc.
Along with the strong demand from the emerging consumer
field to the professional field, the booming technologies bring
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a lot of human motion data, which can be widely applied in
many fields, such as animation production, film and televi-
sion special effects production, robot control, sports training,
medical rehabilitation, virtual reality, electronic games and so
on. The biggest advantage of these data is that they can record
the movement details of various parts of the human body
faithfully, accurately and with high frequency. However, just
as coins have two sides, due to the strong individualization of
human movement, reusability of the data is lack of flexibility,
which means the existing human motion data often cannot
be applied directly to other objects, and resulting in an ever-
increasing amount of new data. In this case, many researchers
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FIGURE 1. Pipeline of human motion data synthesis.

have begun to pay attention to solve the problem of data
reuse, and tried to digmore potential information from human
actions. At present, the research directions of human motion
data reuse can be mainly divided into data cleaning, data
retrieval, data editing and data synthesis.

Humanmotion data synthesis is a technology of generating
new motion based on existing data. It combines science and
art as well as reality and abstraction, which is a comprehen-
sive and challenging leading-edge discipline. This technology
can not only reduce the expensive cost of motion capture, but
also extremely improve the reuse ofmotion data. In particular,
this technology can establish a good foundation for human
behavior cognition and prediction in one of the frontier
research areas of artificial intelligence. At present, following
the expansion of the application field, the technology has
received continuous attention from many researchers.

II. RELATED WORKS
Based on motion segments produced by methods of motion
segmentation [1] from motions that can be captured by
multi-camera systems or computed by multi-sensor fusion
method [2], human motion synthesis can obtain a newmotion
sequence from these existing segments, as shown in Figure 1.
The references cited in the paper can be divided into three
types: methods based on the autoregressive models [3]–[7],
methods based on statistical learning [8]–[13], and methods
based on the deep learning [16]–[25].

In recent years, many studies have been conducted on
human motion synthesis. Kwon et al. [3] proposed an
example-based on-linemethod. It models an unmarked exam-
ple motion through labeled motion segments, so that users
can perform motion mixing and motion transitions on-line.
This method generates motions without artifacts and seam-
less transitions between actions. Xia et al. [4] proposed a
real-time method which can automatically transform motion
data into new styles. By constructing a series of local mix-
tures of autoregressive models (MAR), relationships between
motions can be captured to generate high quality anima-
tions. To increase the total classes of motions in the motion
database, and reduce the workload and the cost of the

database, Yumer et al. [5] improved this algorithm by using
spectrum space instead to calculate the similarity between
motions and carry out the conversion between spectrum pat-
terns. Min et al. [6] proposed a model adopting multi-linear
analysis techniques for synthesizing, editing, and reposition-
ing human motion. While it can speed up the process of syn-
thesis and reduce the ambiguity of synthesis, it is not suitable
for free-style human behavior, such as disco dancing, and
requires the movements to be in a structured pattern, which
should be similar and semantically matched. Holden et al. [7]
introduced a method to quickly modify the movement path.
which requires no data alignment and little manual interven-
tion, but it is not easy to control the transfer of neural style.

The first type is to obtain the parameter model from the
sample data learning, and then use different parameters to
generate different motions, so as to achieve the control of the
generated results. By constructing an example of a motion
segment or a different autoregressive model, the motion data
is processed and synthesized. The advantage of this method
is that the synthesis of motion segments can be performed
online in real time, but the motion data needs to be struc-
turally similar, and has great limitations on some complicated
actions, and is not suitable for the processing of huge motion
data sets.

The traditional method of synthesizing human motion is
the second type which is based on statistical learning. This
method processes existing motion data and synthesizes new
motion data by obtaining special information. It uses statisti-
cal models to learn motion data, and then summarizes and
analyzes the motion data. Due to the regularity of human
motion data in time, the temporal correlation can be expressed
using a dynamic model. The motion data always was trained
to obtain motion information contained therein. The com-
monly used statistical learning methods include principal
component analysis (PCA) [8], [9], hidden Markov model
(HMM) [10] and mixed Gaussian model (GPDM) [11], [12].

In details, PCA is often used to reduce the dimensionality
of motion data in order to reduce the complexity of inverse
kinematics and motion editing. Shin et al. [9] used PCA
to simplify motion, K-means clustering to collect similar
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motions, and Markov model to simulate time constraints.
To eliminate the limits in effectiveness caused bt linear
assumption, a new type of PCA, nonlinear extended additive
component analysis (ACA) [13]has been developed. It can
effectively remove the noises and learn the local tangent
space of data manifold and replace other algorithms directly.
Therefore, ACA is suitable for dealing with large data sets.
HMM uses hidden variables to parameterize sports styles.
These hidden variables determined by learning can be used
to generate new sports with different styles. Fox et al. [10]
used Bayesian non-parametric methods to define HMM. This
approach allows data to drive the complexity of the learn-
ing model while allowing for efficient inference algorithms.
GPDM is a nonlinear hidden variable model, especially suit-
able for time series data. It considers the time correlation and
also considers the structure of data in time. Wang et al. [11]
regardedGPDMas a latent variablemodel. Themodelmargin
is parameterized in a closed form by using a Gaussian process
prior to mapping the dynamics to the observations. This
approach leads to a non-parametric model of the dynamic
system, which solves the uncertainty in the model.

In recent years, deep learning has been widely used in
image processing, speech recognition, human pose estima-
tion etc. Deep learning has made great achievements in static
images, and gradually expanded to time series human behav-
ior recognition for dynamic video [14], [15]. Fortunately,
human motion capture data have something in common with
human motion video in terms of dynamics. This commonal-
ity makes it possible to use deep learning methods to deal
with the motion capture data. The method based on deep
learning can be mainly divided into two categories. One is
the method based on automatic encoder which could train
large-scale human motion data by improving different auto-
matic encoders. It can generate a high quality motion data
according to user needs. The other is a neural network based
approach. The method is capable of synthesizing complex
human motion sequences through training data.

Tan et al. [16] proposed a framework called mesh vari-
ational auto-encoders (mesh VAE), which can flexibly rep-
resent 3D animation sequences. The mesh VAE is repre-
sented by the invariant features of the discernible automatic
encoder and mesh rotation, which can control the variation
of potential variables. This framework can be used to analyze
three-dimensional mesh problems, such as shape geometry,
analysis and the generation of novel shapes. It is easy to
be trained, and only a small amount of training data is
needed to generate high quality deformable models with rich
details. Habibie et al. [17] applied the general framework of
mesh variational automatic encoder to human motion data,
and established a long-term memory mesh variational auto-
encoders (VAE-LSTM) model structure. The model can learn
the diversity of human motion by training motion capture
data. In the absence of existing sequence frames, high-quality
motion can also be generated, allowing the user to generate
animation from advanced control signals. Tan et al. [18]
proposed a novel mesh-based variational auto-encoders

architecture to deal with irregular topological grids. They
added sparse regularization in the framework, which can be
used to locate deformation with convolution operations. This
framework can extract local deformation components from
large-scale mesh data and is robust to noise.

In terms of human motion synthesis, deep learning tech-
niques can be used to train and learn on existing motion cap-
ture data, and exercise models can be generated by training
motion data to synthesize new sequences that meet the user’s
needs in a flexible manner. Zimo et al. [19] developed a
new real-time training method to synthesize complex human
motion, using an auto-conditioned recurrent neural network.
Martinez et al. [20] adopted recursive neural networks to
simulate human motion, where the network was used to learn
tasks such as short-term motion prediction and long-term
human motion synthesis. Human motion data can also be
used to control a robot [26], Josh et al. [21] used a deep
learning approach to train high-dimensional humanoid robots
and extended the generation of antagonistic mimic learning to
enable them to train general neural networks. Zhou et al. [22]
used a deep convolutional neural network (CNN) to treat 2D
joints as potential variables, and changed human data directly
from 2D appearance to 3D geometry, demonstrating the abil-
ity to deeply learn 2D appearance features. Harvey et al. [23]
used Recurrent Neural Networks (RNNs) based on Long
Short Term Memory (LSTM) to identify and classify motion
capture data. It is a semi-supervised learning process that
can effectively reduce overfitting. Fragkiadaki et al. [24]
proposed the Encoder-Recurrent-Decoder (ERD), which can
be used to identify the pose of a human being in a video and
in motion capture.

As an effective method treating temporal data, RNN can
be also used to process motion data with little efforts. While
this model always treat input motions as a whole, changes
will occur everywhere in outputmotions, which is not suitable
for cases that only minor changes is allowed, such as motion
editing. For this reason, in this paper, the Convolutional
Neural Network (CNN) is adopted and improved to generate
motion. The motion capture data is treated as data stored in
time series, and at each point in time, the pose of the character
can be described by the angle of each joint in the skeleton,
and the data is input into the multi-channel of the convolution
model. Each channel represents the angle of a joint with
respect to an axis. Through the network model constructed by
training, the unique characteristics of the motion data can be
effectively learned. Therefore, this paper will use the method
of constructing convolutional neural networkmodel to realize
the synthesis of human motion data.

III. ALGORITHM DESCRIPTION
When a motion is input, a feature representation can be
obtained through the hidden unit layer, that is, the automatic
encoder generates a Motion Manifold. In the algorithm, a
three-layer convolutional neural network was added to the
automatic encoder to generate a mapping of high-level con-
trol parameters T and hidden units. When the parameter T
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FIGURE 2. The overall structure of the network for 3D human motion synthesis.

was mapped to the hidden unit, it corresponded to the motion.
In order to control the range of motion generation, three
constraints including bone length, position, and trajectory
were added to achieve motion constraints. And, two more
constraints of motion style and motion content were used
to achieve a synthesis of stylized motion data. The overall
structure is as follow:

In Fig.2, there are two networks used in the synthesis sys-
tem. The left (red) transform network is a three-layer convo-
lutional neural network that performs the synthesis of motion.
The right (blue) network is a convolution auto-encoder with
three features: the first is to help training the loss between the
motion content and the style, the second is to repair the non-
inertial detail error that exists in the motion style conversion
process, and the third is to remove the artifact problem that
exists in the movement.

A. STRUCTURE OF CONVOLUTIONAL NEURAL NETWORK
The feedforward convolutional neural network is used to
achieve the regression between high-level parameters T and
human motion X . The high-level parameters defined here
represent the ones that are abstracted to describe the motion
trajectory.

The construction of the feedforward convolutional network
advanced parameter T to the hidden layer self-encoding net-
work, such that the final system outputs of the motion char-
acteristic is X ∈ Rn×d . The deep feedforward network will
use a three-layer convolution network, and the core formula

is as follows:

0 = RELU (9(RELU (RELU (γ (T) ∗W1

+b1) ∗W2 + b2) ∗W3 + b3)) (1)

where W1 ∈ Rh1×l×w1 , b1 ∈ Rh1 ,W2 ∈ Rh2×h1×w2 , b2 ∈
Rh2 ,W3 ∈ Rh2xm×w3

2 , b3 ∈ Rm, h1, h2 are hidden units,
w1,w2,w3 are three filter widths, l is the degree of freedom
of the high-level parameters, the parameters are set to 64, 128,
45, 25, 15 and 7, m is the number of hidden units set to 256,
and 8 = {W1,W2,W3, b1, b2, b3}.

In order to train the regression mapping between high level
parameters and output motions, we used the same stochastic
gradient descent method to minimize the loss function. The
cost function is defined as follows, consisting of two terms:

Loss(T ,X ,8) =
∥∥X −8+(0)∥∥22 + a ‖8‖1 (2)

The first is to calculate the mean square error of regression,
and the second is a sparse item to ensure that the minimum
numbers of hidden units are used to perform regression, a set
to 0.1.

In Figure 3, the black boxes in the figure indicate the
network structure. Each layer of the convolutional network
structure corresponds to the internal structure of the color
box below it. In the figure, there are three layers of convo-
lutional networks corresponding to three internal structures,
and the last layer of the network is the output layer. The white
squares represent the motion features extracted by each layer
of the network. As the number of network layers increases,
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FIGURE 3. The internal structure of a convolutional network.

FIGURE 4. Comparison of training result of different layer networks from
3 layers to 6 layer.

the motion characteristics become more and more obvious,
and the more motion information is extracted.

In the experiment, the length of the input sample was set
to 240. Since the number of hidden units is directly related
to the complexity of the problem, in theory, it should be an
integer power of 2, such as 64, 128 and 256. In order to
verify the effectiveness of the three-layer network, the net-
work models were increased to four, five, and six layers and
perform experimental verification. The performance of the
training results of the four models is compared as shown
in Figure 4. When setting epochs = 20, Figure 4 shows the
results of training time and error rate in different network
layers. Obviously, more network layers will lead to more
training time. And, when the number of network layers is 3, 4,
and 5, the error convergence speed is equivalent, but the value

gradually fluctuates. When the number of network layers
reaches 6, the error distribution appears disordered and does
not converge. So, the three-layer’s error is the smallest, and
under the same error, the three-layer network takes the least
training time. Therefore, as a result, a three-layer networkwas
chosen in our model.

B. MOTION MANIFOLD NETWORK
The feedforward network is trained together with the motion
manifold network. The motion manifold in this section
was constructed by encoding the input motion data by
equation (3):

8(X) = PRELU (9(X ∗W4 + b4)) (3)

where (∗) is the convolution operation, W4 ∈ Rm×d×W4

represents the weight matrix, W4 is the filter width, m is
the number of hidden units in the automatic coding layer,
b4 ∈ Rm indicates bias, 9 represents the maximum pool
operation, and PRELU is the activation function.

The output of the encoding of input data X is H , which is
decoded as follows:

8+ (H) =
(
9+ (H)− b4

)
×W ′4 (4)

where H is the hidden unit,9+ is the inverse pool operation,
b4 is the offset, andW

′

4 is the weight matrix. Training the data
by (5):

cos (X , θ) =
∥∥X − φ+ (φ (X))∥∥22 + α ‖θ‖1 (5)

where θ = {W4, b4}, the first term represents the squared
error, the second term represents an additional sparse term;
α is a constant, set to 0.1, and θ is a network parameter.
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FIGURE 5. Comparison of motion errors.

Position Constraint: Given the initial input motion in hid-
den cell space H , the cost function for calculating the viola-
tion position is as follows:

Pos (H) = α
∑
j

∥∥∥VH
r +W

H
× PHj + V

H
j − V

′

j

∥∥∥2
2

(6)

where V
′

j ∈ R
n×2 is the target speed of joint j in the human

coordinate system, VH
r , PHj , V

H
j ∈ R

n×2, WH
∈ Rn are the

velocity of the root, the position and velocity of the joint, and
the angular velocity of the body around the axis, respectively.

Bone length constraint: The cost function is as follows:

Bone (H) = β
∑
i

∑
b

∣∣∣∥∥∥PHibj1 − PHibj2∥∥∥− lb∣∣∣2 (7)

where b is the bone index of the human body, PHibj1 and PHibj2
are the three-dimensional position of the joint reconstruction
at both ends of coordinate b in the coordinate system i , and
lb is the length of the b bone;

Trajectory constraints: The constraint objective function is
as follows:

Traj (H) = γ
∥∥∥WH

−W
′
∥∥∥2
2
+

∥∥∥VH
r − V

′

r

∥∥∥2
2

(8)

Themotion produced by the auto-encoder is adjusted in the
space of the hidden unit by the gradient descent until the total
constraint converges to a threshold:

H
′

= argmin
H Pos (H)+ Bone (H)+ Traj (H) (9)

C. MOTION STYLE CONSTRAINTS
In this section, the character style constraint network was
trained before the output of the three-layer convolutional
neural network, and minimized the loss function to extract
the motion content and style.

The method used in this section is a parametric approach
to constraints on human motion, including human motion
content constraints and style constraints. The Gram matrix

was used to represent the sum of the inner product of the
motion in the hidden unit on the time axis i, which is:

Gram(H ) = 6
i
HiHT

i (10)

Style Constraints: To ensure that the output style of the
motion contains the style of the input, the constraint cost
function is:

LossStyle (I ) = α ‖Gram(8(s))− Gram(8(0(I )))‖ (11)

where s is the style of the input action, and α is a small
constant, set to 0.01.
Content Constraints: To ensure that the output of the

motion contains the input content, the constraint cost function
can be written as follows:

LossContent (I ) = β ‖8(I )−8(0(I ))‖ (12)

where I is the input action content, and β is a small constant,
set to 0.1 here.
Then a gradient descent was used to adjust the space of the

hidden unit until the total constraint converges to a threshold:

I
′

= argmin
I LossStyle (I )+ LossContent (I ) (13)

We then minimized both constraints of human motion data
used in the hidden unit in 3.2 and motion constraints in this
section as follows:

S = argmin I
′

+ H
′

(14)

This section used some of the motion data sets in [25], such
as walking, go, jogging, and running, as training sets, and the
training was carried out in 100 stages, which took about six
hours. After the network was trained, a realistic sequence of
actions was obtained.
Figure 5 shows the 100-stage error after the training of

the network. The error comparison was carried out with the
method of [25]. The MSE was used to measure the change
of the error. The left of Figure 5 is the error trend of the two
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FIGURE 6. Comparison of joint motion.

methods, and the right is a partial enlarged view of iteration
within 60 to 100. It can be seen that with the increase of the
number of iterations, the value of errors gradually converges
to stability and the value approaches to zero. When the model
is carried out for 100 generations, the error value of the
method is minimized.

In Figure 6, the left picture shows the result of the fitting
curve of the synthetic joint of the old man running action,
and the right is the result of the synthetic joint fitting curve
of the monkey running action. In the two figures, the abscissa
indicates the offset and rotation angle of the elbow joint data
in the three directions of X, Y, and Z, which are recorded
as Xpositon, Ypositon, Zpositon, Xrotation, Yrotation,
Zrotation. A frame action is represented by the above six
parameters in sequence. These discrete data change with
time. In order to better reflect the continuity of the elbow joint
point trajectory, the discrete data was fitted. In the figure,
the movements of the two elbow joints with large changes
in angle are selected, and each frame selects three frames of
motion data. It can be seen from the fluctuation trend of the
curve in the figure that the joint motion of themethod is closer
to the original elbow joint.

IV. VERIFICATION AND ANALYSIS OF
EXPERIMENTAL RESULTS
In this section, the experimental environment was firstly
introduced, and then the animations based on the synthetic
motion data were evaluated.

A. EXPERIMENTAL ENVIRONMENT
In this paper, under Ubuntu 16.04 system, python 2.7 was
chosen as the development platform. In the Theano frame-
work based on deep learning, the data of locomotion and
misc databases were synthesized respectively. All motion
data were in BVH format. All experiments were carried out
on a server which has two GeForce GTX 1080ti, one Intel
i7-8700 processor and 32GB memories.

B. EXPERIMENTAL RESULTS AND ANALYSIS
This section mainly shows the animation effect of six groups
of test data. Each group input two kinds of character motion at

the same time. By using this algorithm model, the animation
of composite motion was output. In the display of the render-
ings in this section, for each set of actions, they were inter-
cepted respectively in four different time states. In a certain
moment, the rectangle (red box) in the left (green) character
indicates the main action content used for the synthesis. The
rectangle (red box) in the middle (yellow) character indicates
the path information to be extracted in the composition action.
The right (white) character is the final composite image that
contains both the left character action content and the middle
character path information.

It can be seen from the synthetic animation diagrams of
Figure 7 to Figure 12, the present method can better synthe-
size new actions.When themotion state of the green character
is the same as that of the yellow character, the direction of the
synthesized motion state is the same as the direction of the
yellow character. When the motion state of the green charac-
ter is different from that of the yellow character, the direction
of motion and the state of motion in the combined motion
are the same as those of the yellow. Therefore, regardless of
the content of the action and the transformation of the path of
the action, in the animation effect of the two, the content of the
motion is the same as the action of the green character, and the
state and direction of the motion are always consistent with
those of the yellow character, and the synthesized animation
looks smooth and natural.

C. EXPERIMENTAL COMPARISON
In order to verify the advanced nature of the proposed algo-
rithm, we compared it with the method of Holden [25]. The
comparison results are shown as below. In the figure, five
combinations of animation effects were randomly selected.
Each group shows the animation effect when the left (green)
inputs action 1, the middle (yellow) input action 2 and the
right (two white) input actions 1 and 2 at the same time.
The right 1 represents the synthesis effect of this method,
and the right 2 the result of Holden’s method synthesis. The
rectangle box (blue) in the Holden method represents the
difference from the right 1 effect.

From the above animation, we can see that when the same
set of actions are input, the method in this paper can better
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FIGURE 7. Effect diagram of the two movements of the old man walking (green) and walking (yellow).When the old man walks,
the waist is curved, so the waist of the new character will be slightly curved. The direction of the walking movement determines the
direction of the synthesized character, so the direction of the synthesized character is consistent with the direction of the walker.

FIGURE 8. Effect diagram of the combination of zombie walking (green) and walking (yellow).When the zombie is walking, its two
arm joints are standing up, so the joints of the synthetic characters should also be the same as the actions of the zombies. The
walking direction of the walking character is the direction of the synthetic movement. Therefore, when the character walks to the
right, the synthetic character faces the right side, and when the walking character moves to the left, the synthetic character also
has a tendency to go to the left.

FIGURE 9. Effect diagram of the two movements of the old man walking (green) and running (yellow). Before synthesis, the state
of one movement is walking and that of the other is running. In the synthetic action, it includes not only the walking action of the
elderly, but also the running, generating a new running action of the old man.

learn the content and path of the action. Holden’s method can
also learn the path of the action, but in the action of synthe-
sized characters, the movement of the characters is distorted.

For example, the blue rectangular box in Figure 13 shows a
difference from the original motion in action 1, which is not
well synthesized, and the hand joints are not well learned.
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FIGURE 10. Effect diagram of the combination of monkey walking (green) and running (yellow). The two movement states of this
figure are also different, and the final synthetic action should be the action of the monkey running.

FIGURE 11. Effect diagram of the combination of zombie walking (green) and running (yellow). Similarly, the action in this composition
should be a zombie running, and the content of the action is determined by the green character.

FIGURE 12. Effect diagram of the combination of gorilla running (green) and running (yellow). The movement of the gorilla is
more complicated than the previous movement. In the synthetic movement, the yellow character determines the direction in
which the gorilla runs.

As for the method in this paper, although there is no com-
plete match between the motion and motion 1, compared
with Holden’s method, our network structure is relatively
simpler, and the synthetic effect looks more natural and
realistic.When the motion path changes, the joint coordinates

of the characters may also change accordingly, this makes
the motion consistent with the real character’s inertia
requirements.

We performed experiments on the six sets using the
Holden’s method and our method. In the actions of generating
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FIGURE 13. Comparison of synthetic animation effects. It can be seen from the above animation effect diagram that when
inputting the same set of actions, the method of this paper can better learn the content and path of the action, and the Holden
method can also learn the path of the action well. In the action of the synthesized character, however, the action is distorted
compared to the method of the present invention.

TABLE 1. Description of important parameters in the motion manifold
network.

TABLE 2. Time comparison for motion synthesis.

six sets of experiments, the total time consumed by the two
methods is as shown in table 1. It can be seen that the actions
synthesized by the proposed method consumed less time,
a decrease about 42.6%.

V. CONCLUSIONS
The presented method mainly introduces the algorithm of
human motion synthesis based on convolution auto-encoder.
The algorithm is mainly based on a three-layer feed-forward
convolutional neural network and the constraints of motion
style. In the paper, the re-input of the convolutional self-
encoder is used to solve the artifacts and noise problems of
the three-dimensional human motion data itself. The experi-
mental results show that the human body motion synthesized
by the presented algorithm is natural. And, the human motion
trajectory is smooth. Compared with the existing literature,
the method performs better in visual effect, and the whole
time required for the synthetic action is less.

In future work, we will continue to extend the method to
synthesize more types of motion data, especially to synthe-
size the detailed flexible human motion data, such as hand
motion or face motion. In addition, the data mentioned here
is limited to human motion data. In the future, we will extend
the model to suitable for processing other types of motion
data with a different topology than the human skeleton.

SUPPORTING VIDEO
The experimental video can be downloaded from Google
Drive:

https://drive.google.com/open?id=12NZoNQJHlCKgHE-
yGU1 pcixn2gLJ8WHg

Or it can be downloaded from Baidu Pan:

https://pan.baidu.com/s/1KTMuDIauWesx3tpmX2yE5A
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