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ABSTRACT In this research proposal, the disparity in stress severity is modeled using a deep learning
framework to determine mental stress. A wireless network sensor platform is used to monitor various
physiological signals, such as heart rate variation, skin conductance, and breathing pattern irregularities
that are activated by providing a challenging atmosphere inside a laboratory. A set of protocols is designed
using a range of cognitive experiments that engage participants in a series of mental activities with various
levels of challenges. The participant feels stress that varies in severity when undergoing these challenges.
To relax the mind and body from stress, a deep breathing technique is used that is performed before and after
each cognitive activity. Apart from the traditional physiological signals, cerebral features are also extracted
from the neural signals. To identify the stressed activities and their severity, a convolutional neural network
(CNN) framework is employed for training and validating the input datasets. It is found that the neural signals
significantly improve the efficiency of the proposed classification model in computing mental stress. The
study also supports the idea that the deep learning framework results in an improved estimate to determine

mental stress.

INDEX TERMS Mental stress, cognitive experiments, deep learning, convolution neural networks.

I. INTRODUCTION

It has been established that external forces play a key role in
causing the human body to respond. The response of the body
to these external forces is called stress [1], [2]. Various physi-
ological and psychological processes are triggered in stressful
conditions. The wear and tear on the body that occurs as a
person ages increase considerably with stress. Chronic stress
weakens the body’s defense mechanisms and decreases the
strength of immune and cardiovascular systems in a human
body. The immune system of the body becomes weaker,
and a stressed person is potentially less resistant to infec-
tions and chronic diseases such as hypertension, asthma or
diabetics [3].

In a stressful situation, the body’s hormonal system reacts
to stressors, and various physical and psychological changes
occur [4]. In times of stress, the defense system of the body
releases cortisol to activate muscles and joints. To determine
the change in hormone levels, lengthy and invasive laboratory
experiments are needed that are not very comfortable for
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a person. Various physiological variables that are associ-
ated with these hormones can be measured in an easy and
comfortable environment [5]. For determination of stress,
noninvasive measures including variation in heart rate,
changes in respiration patterns or skin conductance are more
convenient and accurate than physical marks that include
facial expressions, speech or vocal changes and variations in
gesture patterns [6].

Stress is caused by external environmental pressures that
exceed the tolerant capacity of a person [7]. Feelings of
depression or anxiety are the basic cause of stress. Chronic
stress produces permanent changes in the physiological sys-
tems of a person, and long term diseases are developed such as
asthma, diabetes and hypertension. In normal circumstances,
the autonomic nervous system controls hormones such as
catecholamine or cortisol that maintain the immune system
and cardiovascular activities of a human body [8]. Chronic
stress deregulates the activation of hormones, which results
in an increased risk of psychiatric and physical problems.
To measure and monitor the proper functioning of the hor-
monal system, invasive methods such as blood, urine and
saliva sample tests are performed. Alternatively, there are
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FIGURE 1. Sensors for skin conductance and respiration along with a
holster unit.

a number of noninvasive methods that involve the measure-
ment of biomedical signals which in turn are generated in
response to stress. These biomedical signals contain heart rate
pulsation, blood pressure, breathing patterns, skin conduc-
tance, pupil dilation, voice intonation and changes in body
postures [9]. The physiological measures used to monitor
stress in our research are based on the criterion that they
should be convenient in terms of comfort and should be avail-
able such that their measurement will not hinder daily rou-
tine activities. These measures include heart rate variations,
respiration patterns and changes in skin conductance. Other
physiological parameters, such as pupil dilation or gesture
recognition, whose measurement obstruct daily activities, are
ignored [10], [11].

In this research project, a protocol is followed that contains
a series of cognitive experiments which induce various levels
of stress in the participants. Considering convenience and
long term usage, a wearable sensor system is developed that
does not hinder a person’s daily routine jobs. It contains
lithium batteries and can record physical and biomedical
signals for up to a couple of days. In Figure 1, two sensors
are displayed that record the physiological parameters and
generate the biomedical data. The stress monitoring system
should be able to monitor and record the negative effects of
stress in a person and provide an objective assessment that
should assist physicians. This objective assessment should
describe stress in a person on a numeric format such as
blood pressure or sugar level. A person is considered healthy
when the range of measures is within prescribed limits, and
he or she is considered to be cautioned and treated medically
if the reading is outside the healthy range [12]. Blood pressure
below 120/80 mmHg is classified in normal range while
sugar level less than 140 mg/dL is considered to be normal.
The protocol for cognitive experiments was approved by a
team of physicians. There are two stages of experiments.
In stage 1, traditional physiological signals from a heart rate
monitor (HRM), electrodermal activity (EDA) and respira-
tory changes are recorded. In the second stage, cerebral and
neural signals from an EEG of the participants are monitored.
A comparison is drawn between the selected features and
their patterns in both stages, and an analysis is also performed
by combining all the features. It is found that accuracy metrics
are enhanced when traditional features are combined with
cerebral features.

The remainder of this paper is organized as follows. A dis-
cussion of the related work is given in the next section.

VOLUME 7, 2019

Section III presents the methodology with a brief discussion
of the proposed deep learning framework along with the
explanation of heart rate variations and skin conductance. The
experimental setup and formulation of the protocol sets are
described in Section IV. The results and the relevant discus-
sion is presented in Section V. Finally, the paper ends with
concluding remarks about the proposed model and future
directions for its extensions and potential applications.

Il. LITERATURE REVIEW

There have been a number of studies on the importance of
mental stress and its computations. The authors in [13] have
proposed to compute mental stress from electroencephalo-
gram (EEG) of stressed participants using the suggested
machine learning framework. Using EEG spectrum, five fea-
tures are extracted and after feature selection and employing
three classifiers SVM, naive Bayes and logistic regression,
94.6% classification accuracy is achieved. In [14], authors
have designed a lightweight EEG sensor that can be used in
our day to day routine. An algorithm for calibration of the
sensor is proposed that can be tuned by users and the setting
of electrodes can be adjusted. It is shown that chronic stress
can be detected using EEG non-linear features. The discrete
wavelength transform (DWT) and adaptive noise cancellation
(ANC) based algorithm achieves 90% classification accuracy.
In this research [15], Parkinson Disease (PD) is identified
by processing radio signals that show variation when a nor-
mal person is walking in comparison to a person who has
suffered from the disease. A leaky wave cable is used to
capture the phase and amplitude features of the radio signals
that are classified using the support vector machine (SVM).
The classification results demonstrate an accuracy of 90%
in closed monitored conditions. Similarly in [16], various
sensors are used to incorporate facial and posture information
in the proposed technique to compute mental stress.

The techniques in [17], [18] use heart rate variability
(HRV) analysis to determine mental stress. The authors
in [19] have identified wandering behavior of Dementia
patients using omnidirectional antennas and a few wireless
devices. The variations in the S band frequencies for phase
and amplitude signals are recorded. The classification of the
proposed system is performed with SVM that achieves 90%
accuracy for the input three patterns. It is suggested that the
early detection of dementia will assist in timely treatment of
the patients and the bad effects of the disease can be lim-
ited. In [5], it is proposed that electrodermal activity (EDA)
assists in differentiating stress from cognitive load in indoor
office conditions. Stress levels of a person is computed from
EDA signals by calculating its peak height and peak rate.
An accuracy of 80% is achieved using cross validation and
support vector machine (SVM).

The authors in [20] have proposed a breathing monitoring
system that is non-intrusive and based on sensing technique
for C-band wavelengths. The expansion of chest and its
contraction are recorded using a microwave sensing plat-
form. Applying a peak detection algorithm, normal breathing
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patterns are identified using variation in respiratory rates.
Similarly in [21], the abnormality in gait and tremors in hand
is detected using a framework containing a network interface
card, omnidirectional antenna and a router that records the
variance of amplitude and phase information with wireless
channel interface. In [22], a wearable sensor system that uses
EDA, ECG and EEG is designed to detect stress levels in
a person. The aim of the proposed system was to correlate
changes in salivary cortisol with changes in stress levels. The
differentiation between steadiness and tremor conditions are
identified in this research study [23]. Various features are
extracted from time domain signals and their spatial proxim-
ities of wireless spectrum band that produced 90% accuracy.
In [24], the authors have proposed that with fusion of near-
infrared spectroscopy (NIRS) and physiological parameters,
quality and accuracy for the assessment of mental stress
would enhance significantly.

In a research study [25], heart rate monitors (HRMs) were
used to detect changes in heartbeats that are proportional to
mental stress. As stress increases, heart rate increases and
their wavelength decreases. HRMs are used to capture heart
rate signals, and their results have shown to be equally good in
comparison to electrocardiogram (ECG). To extract features
and determine accuracy results, pulse density modulation
(PDM) technique is used for classification, and 83% accuracy
is reported. The authors in [26] used heart rate variability
with its spectral components. Ratios of the left and right
sides of spectral frequency bands are used. The ratio increases
with severity in stress. The experiments provided satisfactory
results, but there is room for improvement in classification
accuracy. In [3], the combination of heart rate (HR) and heart
rate variability (HRV) features were used to determine stress.
A small sample of 28 participants was used in the experi-
ments. To induce stress, pictures were used for recognition
in a short period of time. It was reported that short time HRV
is proportional to mental stress, but thorough investigations
are necessary to validate the results.

In [27], laboratory experiments were used to induce men-
tal stress. The cognitive experiments contain memory tests
for entering 6 digits on the screen. It was reported that the
frequency ratio for the left and right bands increases in pro-
portion to the severity of the stress levels. Blood pressure was
also monitored, and it was noted that during stress, blood
pressure remained high. A fuzzy clustering technique was
used [28] to perform HRV analysis. Wavelet transform was
used to extract features from heart rate variations. In exper-
iments, air traffic control-based simulations were used. The
stress was high, but the environment was not controlled, so the
study has limited practical applications. In [29], stress levels
were shown to be proportional to lower HR values, lower
oxygen saturation in fingers and higher body temperatures.
The test sample contains 25 female subjects and is classified
as small for general acceptance of the results. The authors
in [30] used deterministic fractals and a few basic properties
of chaotic systems on the ECGs of the total 26 participants.
A test system based on the ECG was designed that used
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fractal algorithms on HRV signal waveforms. In the various
phases of the test such as resting, early stress and late stress,
FD values was recorded that showed an increase in the
magnitude levels from the resting to the stress phase.
It has been reported that stress detection using fractal analysis
can be useful for the assessment of stress severity. In [31],
the authors used morphologic variability (MV) along with
other measurable characteristics including various heart rate
variability measures from ECG signals in both time and
frequency domains. In [32], ultra short term HRV analysis
was performed to compute mental stress. There were differ-
ent HRV measures including mean of RR intervals (mRR),
mean of heart rate (mHR), low frequency (LF), very low
frequency (VLF), high frequency (HF) power spectrum and
sympathovagal balance index (SVI) were used to detect stress
levels.

The authors in [33] used a microwave reflectometric car-
diopulmonary sensing instrument to detect mental stress
levels. They developed two techniques that record HRV
using dynamic motion signals on the body surface. Initially,
a cross-correlation function was used, which found similarity
between the recorded signal and a template signal that was
designed by locally averaging the periodic components of the
designed waveform. Second, the time variation of the heart-
beat frequencies in the recorded HRV were reconstructed
using an entropy method based on the maximum probability
function. In [34], time-dependent variation analysis of HRV
features was performed to compute chronic stress levels.
In a given day, three different time periods were chosen to
record HRV features. For classification, a logistic regression
technique was used, which provided 63.2% accuracy lev-
els. The authors in [35] used fuzzy clustering with machine
learning classifiers for the assessment of mental stress. Heart
rate variation analysis was performed online using continu-
ous wavelet transform functions for smoothing the extracted
signals. The experimental data were modeled using fuzzy
clustering techniques. Various irregularities and uncertainties
in the collected data were removed using fuzzy logic and
regression techniques.

lIl. METHODOLOGY

Our proposed system contains a stress monitoring cap with a
couple of embedded electrodes. There is an abdominal strap
for the holster unit that contains three major components,
a sensor hub, a data processing unit and a battery. For data
storage, a 2GB mini flash card is used. The motherboard
is made by Vertex Pro and can process at a 400 MHz pro-
cessing speed. A STMicroelectronics sensor hub using a
3D accelerometer is integrated with a GPS unit made by
Lynx Technologies, Inc. Wireless receivers and transceivers
are built into the sensor hub to communicate with the HRM.
The 3000 milli-Ampere-Hours Li-Po battery is charged by
the inbuilt charging module in the holster unit that can last
up to thirteen hours. In the following sections, the deep
learning framework and a brief description of physiological
parameters are presented.
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FIGURE 2. Convolutional neural network.

A. DEEP LEARNING

There are several deep learning approaches that have been
used in data mining and image processing applications.
CNN (convolution neural network), ANN (artificial neural
network) and RNN (recurrent neural network) are among the
more popular techniques in a deep learning framework. Deep
CNN is suitable for a large amount of nonlinear data that
learns variations and shows high-level feature discrimination
reflecting over the data [36]. In this research, deep CNN algo-
rithms with triplets loss function have been employed. The
convergence of the triplet loss function is difficult, and careful
sampling is performed to achieve an efficient convergence.
The characteristics of deep learning methods are such that
they learn classification and discrimination features recur-
sively. The new weights are computed in each subsequent
iteration, and the process is repeated until self-adjustment
of these weights are performed for a minimum threshold
using large amounts of input data. In the convolutional neural
network (CNN), the output data is convolved in a filtered
network, and the output layer contains feature maps from the
input. The entire convolution process is shown in Figure 2.

A fully connected network layer uses these feature maps
and labels the input data accordingly. In CNNs or recurrent
neural networks (RNN), three types of layers are generally
involved: a convolution layer, a max pooling layer and fully
connected layers. The basic advantage of CNN is that the
model becomes independent of manually crafted features
and its learning is based on start to end automated training
using input images only. The weights in the convolution
layer are shared among the pooling, and network layers and
their adjustments are performed in repeated iterations that
may iterate up to thousands or millions of times. In the
subsampling layers, spatial resolutions of feature maps are
reduced and lower dimensionality feature maps are produced.
Subsequently, the dimensions of the input data are reduced,
and the weights of the feature maps are tuned to produce
accurate class scores for the given test data [37].

In deep CNN, many convolution and pooling layers are
used to extract useful features from the input data. Training is
performed on hyper-parameters of the designed kernels, and
by iterating over the weights of forward and backward con-
volution layers, desired labels on the test data are achieved.
Convolution layers form the fundamental block on a CNN
framework. Kernel functions are designed using optimal win-
dow sizes. In CNN, feature extraction and classification are
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FIGURE 3. Recurrent neural network with LSTM.

performed together in one block. Several convolution layers
are followed by pooling layers to represent output data in
a hierarchy of sequential weights [38]. Features from the
convolution layers are passed to the predefined activation
functions of sigmoid or hyperbolic tangent kernels that result
in a nonlinear hyper-tuned neural networks. Feature vectors
are proportional to the kernel size which is always less than
the input data size. The function of the pooling layer is to
reduce the dimensionality of the input data by decreasing
the training time. A popular pooling technique is called max
pooling, and layers are named accordingly. The max pooling
layer chooses those convolution layers whose output labels
are in accordance with the desired labels. A one-dimensional
array is formed from the pooling layer and passed to the
fully connected layers where the training cycle restarts using
forward and backward propagations. The training is based
on the gradient descent and dropout filter parameters that
maintain the regularization of the training phase. In the itera-
tive training process, certain neurons are dropped based on
their low probability values, and in the next propagation,
this process continues in the input and hidden layers of the
neural network frame until the desired output label results are
achieved. In Figure 3, experimental data is convolved in the
recurrent neural network framework.

B. HEART RATE VARIATIONS

To monitor heart rate activity, ECG is considered to be the
gold standard. For ECG, cumbersome wiring and electrodes
are used which are not convenient for long term monitor-
ing [39]. Heart rate activity can also be monitored using
pulse oximetry, but it is prone to motion artifacts. A conve-
nient method for recording heart rate activity is to use heart
rate monitors (HRM) that capture variations in heart rate.
An HRM consists of a chest strap that is worn such that
the monitor is placed directly over the heart. A holster unit
records the signals transmitted from a wireless sensor. In our
experiments, a Polar Wearlink HRM from Polar Electro Inc.
is used. Figure 1 shows a complete set of hardware devices
that consists of respiratory and EDA sensors along with a
holster unit that contains auxiliary devices.

In heart rate variations, respirations perform a significant
part and must be monitored. To record respirations, a wide
range of devices can be used. Respiratory inductive plethys-
mography (RIP) is used to record the changes in a magnetic
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field of encapsulated coils for detecting respiration effects.
In impedance pneumography (IP), two electrodes are placed
on the rib cage. They monitor impedance changes due to
respiration and convert the changes to alternating current.
Considering convenience in long term monitoring, both RIP
and IP are potentially inappropriate as they are sensitive to
motion artifacts and postural changes. We used a respiration
sensor based on pressure signals made by Thought Technol-
ogy Ltd. containing an SA9311 M sensor. It can be easily
integrated into our chest strap and is not influenced by motion
artifacts [40].

C. SKIN CONDUCTANCE
To monitor electrodermal activity (EDA) or skin conduc-
tance changes, a small electrical voltage is applied to the
two electrodes that are placed on the adjacent fingers of a
person’s non-dominant hand. When a person is stressed, body
glands produce sweat in the fingers and palm that results
in an increase of conductance. To monitor EDA, palms of
the hands are not convenient for long term use and using
adjacent fingers is comfortable as one can freely use his/her
hands. Two electrodes, made up of Gal, are placed on the
central finger and its adjacent fingers of the non-dominant
hand to measure variations in skin conductance. We used
E243 electrodes that are made by Vivo Metric Systems Corp.

In EDA, SCR records the skin conductance at short time
intervals whereas SCL represents the impedance of conduc-
tance for larger time periods [41]. The features of EDA are
linearly proportional to stress levels as conductance increases
with high stress and decreases in low stress. In contrast,
HRYV parameters vary inversely with the levels of stress. In the
extracted components of EDA, SCL captures slowly chang-
ing offset, and SCR shows a continuous series of intermediate
peaks.

The mean factor of the SCL signal is derived as follows,

1 N .
MsL = 7 Zi:l Rsp(t — i)

In this equation, tis the time and pgy, is the average or base-
line EDA for the past N number of samples that is taken from
the Rgy distribution.

The standard deviation factor is defined as follows,

o= Roult =i}

In this equation, standard deviation is represented by o,
of the conductance signature signal that is denoted by Rgp..
Similarly, usr and osr are derived using transformation in
residual SCR. We have used the SCL signature signal in
our classification model as it linearly represents the levels of
perspiration on a human palm and fingers.

In the EEG technique, cortical circuitry and cerebral sig-
nals are explored. There are many artifacts in the EEG
signals such as eye blinking and muscle activities [42].
These artifacts distort the quality of neural signals. Generally,
ICA is used to remove these artifacts from pure brain signals.
Although minor data is lost in artifact suppression, the power
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spectrum of neural activity efficiently denotes the changes in
the brain state. The data for EEG is acquired using the ECL
electrodes with two electrodes placed according to the stan-
dard guidelines. The signals were filtered at a rate of 256 Hz
using band-pass filters in the range of 4-400 Hz.

IV. EXPERIMENTS

Cognitive experiments were designed to induce mental stress
in the participants. In our experiments, a total of 24 partici-
pants participated in the experiments in two stages. In stage 1,
traditional signals were obtained using a wireless sensor
platform from the heart, fingers and chest of the person.
In stage 2, ECL electrodes from the head of a person were
wirelessly connected to a sensor hub. Each subject was asked
to provide written consent for his/her participation. A partic-
ipant should be healthy and free from any physical or psy-
chological disease, and therefore, a doctor examined the
subject’s physical fitness. All the mental challenges were
explained before the experiments, and it was assured that
the participants should not be pre-trained for the activities.
A block diagram showing the cycle of the activities is pre-
sented in Figure 4. Before the experiments, a deep breathing
exercise was performed as well as after each cognitive activity
to relieve the effect of stress on the body.

The protocol for the experiments was designed to ensure
that participants feel stress when they undergo these chal-
lenges. There were five mental challenges and between each
challenge, the deep breathing exercise was performed. The
experiments started with the deep breathing activity, and
the devices were calibrated for each participant. The deep
breathing technique activity lasted for 3 minutes in which a
participant inhaled for 4 seconds and exhaled for 6 seconds.
The first mental challenge was memory search or retrieval.
It was followed by a deep breathing session. In the second
mental challenge, a color word test was performed for five
minutes. The participant had to answer with the right color
when he was confounded with sounds, display or letters of
the color. At the end of the challenge, a 3rd deep breathing
session was performed. The next mental activity required
tracing the mirror image of a sketch that lasted approximately
3 minutes. The fourth and fifth challenges were dual task and
public speech. Finally, the last session of deep breathing was
performed. Each participant was provided with a survey form
and he/she had to rate each activity on a Likert scale of 1 to 7
where 1 represented a minimum difficulty challenge, and
7 was rated as the most stressful activity. A screenshot of a
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TABLE 1. Selected features.

Signals Features
mean AVNN, med pNN25,
HRM | mean RMSDD, h HRV,1 HRV,
med HRV
RESP | Mean RSP, med RSP
mean SCL, mean SCR, med SCL,
EDA - - -
med SCR,
mean BVP, mean PTT, med BVP,
EEG - - -

med PTT

color word test (CWT) is shown in Figure 4. In CWT, fast
and random questions are asked to judge the color on sound,
typing or display of the color bar. The user becomes confused
as the sound, word and display all are depicting with different
colors, and the answer has to be provided in seconds. It was
developed on the Android platform and causes the user to feel
real stress while playing

In stage 1, the wireless sensor platform recorded various
biomedical signals from the lower part of the body. In stage 2,
neural signals were captured from the upper part of the body.
In stage 1, 12 features were extracted, and four features were
computed from the neural signals in stage 2. In stage 1,
heart signals were processed by a peak detection algorithm
at 500 MHz, and output signals were sampled at 4 Hz.
A band-pass filter in the range of 0.04 to 0.4 Hz was used
in heart rate monitor circuits to remove very low-frequency
components (VLF). Using variations in heart rate, four fea-
tures were extracted. AVNN is the first feature, which is
a mean of the elapsed time between heartbeats. The other
feature, pNN25 is used to identify the difference in the
percentage power of the signal that is greater than 25 m
seconds for adjacent beat intervals. The root mean square of
successive difference (RMSDD) constitutes the 3rd feature
whereas high-frequency power of HRV is the fourth extracted
feature. The fifth and sixth features are low-frequency power
density and the median value of heart rate variability. In res-
piration, mean_Resp represents a low-frequency respiratory
power signal while the median of the power density is denoted
by med_RSP. Extracted features from the lower body contain-
ing heart rate, respiration and EDA and cerebral parameters
derived from the neural signals are presented in Table 1. There
are two respiratory features that show chest compression in
the time of stress. Altogether 12 features were extracted in
stage 1 but four features were discarded due to redundancy.

In the second stage, the neural signals were analyzed to
monitor the brain states of the brain when a person is stressed.
Brain activity, if monitored, can assist in determining stress.
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There are some laboratory methods that are used to analyze
brain signals such as functional magnetic resonance imaging
(fMRI), electroencephalography (EEG) and positron emis-
sion tomography (PET). The most common technique for
analysis of brain signals is EEG as it contains a high temporal
resolution. Also, it is less expensive than other methods.
Neural activities in the brain trigger electrical signals. The
brain signals can be recorded in the form of complex electrical
waveforms using electrodes on the scalp. The charge on the
electrodes is maintained at 20 to 100 microvolts and are sim-
ilar to headphones; they are placed on both sides of the brain
hemispheres. Various features such as frequency, amplitude,
base length and shape of the scalp are used for the analysis
of brain waveforms. In emotional situations, activities in the
right hemisphere of the brain are more dominant then activi-
ties in the left hemisphere. Hence, for determining stress, it is
the right hemisphere of the brain that needs to be explored for
further analysis.

Analysis of the EEG waveforms was performed using
amplitude and frequency of the brain signals. The mental
state of a person is defined by Alfa («) and Beta (8) wave-
forms that are used to represent consciousness [43]. The
other state, or unconsciousness, is represented by Theta (6)
and Delta (6) waves. When a person is stressed, Beta waves
frequencies are more dominant, whereas Alfa waves show
little variations. To analyze brain signals, Fourier transform
and, band-pass filtering was used. Various features that deter-
mine identifiable patterns to show the presence of stress were
extracted. Wavelet packets can also be used to filter high-
frequency brain signals for extraction of features in the spatial
domain while Fourier transform is used for features in the
time domain. Mental stress is determined using these features
as densities of Alpha and Beta power spectral bands. These
ratios are quite significant because Alpha ratios denote the
presence of stress whereas Beta ratios determine the severity
of stress.

The ratios are defined as follows:

R — oL
g = —————
R + aL
BR — BL
g = —————
BR + BL

In these equations, o1, and ar are the lower filtered fre-
quencies, whereas B, and Br are the higher frequencies in
the left and right side of the brain, respectively. It is reported
that low frequency alpha (o) waves, slower (lower frequency)
and higher in amplitude, indicate a relaxed state while beta
(B) waves, high frequency and low amplitude, represent a
busy or concentrating mind which indicates a stressed situ-
ation if concentration of these waves is high. Theta waves
are even greater in amplitude from alpha waves and lower in
frequency and represent positive and relaxed state of mind.
Delta brain waves are greatest in amplitude and have lowest
frequency and represent a very relaxed mind condition such
as a deep dreamless sleep. If no stress or relaxation is to
be determined, then other measures including the integral

68451



IEEE Access

K. Masood, M. A. AlGhamdi: Modeling Mental Stress Using a Deep Learning Framework

summation of alpha and theta frequencies and the quotient
of alpha, beta and theta sums are used. We extracted four
features from these power spectral densities and used them
in the classification model to test the accuracy of the system.
In the second stage, these features were combined with the
lower body features and a comparison was made to investi-
gate the effect of neural features in enhancing the accuracy of
the proposed model that determines mental stress [44].

V. RESULTS

In our proposed model, tuning was performed on a number
of hyper-parameters used in the convolutional framework in
our input data. There were 500 filters, the fitter window size
was 5, the pooling strategy was softmax, the activation func-
tion was tangent hyperbolic with the dropout equal to 0.5 and
the number of epochs was 30 with a unit stride length. The
extracted data were divided into two sets, and 70% were used
in the training while 30% were used for validation and testing.
The test accuracy for labeling was almost 90%. This showed
that the proposed model accurately tagged the test data and
achieved reasonable performance.

The cognitive experiments followed a protocol such that
the difficulty level increased in each activity, and the level
of the stress increased gradually, which puts more stress on
the participants. At the beginning and in between the activ-
ities, the relaxation technique based on deep breathing was
performed to maintain the composure of the person. It has
been reported that the self-esteem and the mental strength
of a person is a guard against stress and makes him or her
non-vulnerable against anxiety or stress. In our experiments,
the activities were divided into two classes, stress class and
relax or non-stress class. The experiments were performed in
two stages. In stage 1, the lower body signals were recorded,
and in stage 2, brain signals were monitored. For classi-
fication, in the first phase, only the lower body features
were used. In the second phase, only cerebral features were
employed in CNN for the classification. Finally, both lower
body and cerebral features were combined, and their effect on
the quality metrics was determined.

Quality metrics are presented in Table 2 and are also shown
in Figure 5. Accuracy of the results discriminate subjects into
two classes, with and without stress. Sensitivity, proportion
of true positive subjects in the total group of subjects, show
probability for the participants who are in the stress class.
Specificity shows the probability of the subjects who do
not have stress and are in the relaxed conditions. Positive
predict value (PPV) represent proportion of subjects with
stress in the total of subjects with stress while negative predict
value (NPV) show proportion of subjects without stress in the
relaxed class. In our study, PPV and NPV show induction of
stress in the participants undergoing cognitive experiments.
Higher values of PPV show effectiveness of the experiments
in inducing stress among the subjects.

From Table 2, it is interpreted that the combined fea-
tures resulted in an increase in the accuracy levels com-
pared to the instances when features were used separately.
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TABLE 2. Quality indices.

Quality Metrics Lower body Cerebral Combined
Accuracy 84 87.5 90
Sensitivity 85.5 87.5 89
Specificity 81 84 86
PositivePredValue 82 85 87.5
NegativePredVaue 80 81.5 84.5

Quality Metrics

100
=® ag
o 107+ S L - 0
= | 59 p s 7 s— —
£ 80 = 51 \ 5 220’
70
Indices
=== | ower hody Cerebral Combinad

FIGURE 5. Quality indices for the selected features and their combination.

The stressful activities have to be differentiated from the
relaxing techniques during the breathing sessions. As evident
from Table 2, the accuracy was enhanced when features were
combined. Other measures such as specificity and sensitivity
also improved in the combined feature testing suggesting
that only a few breathing sessions were reported as stressful.
The reason for this was that some of the participants had
difficulty during breathing in and out in a relaxed situation.
In fact, the participants might have felt stressed during the
breathing sessions. This results in their physiological signals
depicted stress in a few breathing sessions. This phenomenon
produced a negative effect, and a decrease in the quality of
the metrics was reported. Using CNN with hidden layers,
reasonable classification performance was achieved, which
was enhanced further when the lower body features were
combined with cerebral features. Although breathing while
stressed lowered the quality metrics, the addition of neural
parameters improved the accuracy and almost nullified the
misclassified breathing patterns.

VI. CONCLUSIONS

We developed a wireless sensor model that records physio-
logical and neural signals from the brain, heart, respiration
and skin conductance of a human body. The participants
underwent a series of cognitive challenges that induced men-
tal stress varying in severity. Induced stress was computed
from the extracted features that were determined using power
spectral densities and logistic regression techniques that
were employed on the physiological and the neural signals.
The effect of inclusion of the brain signals in the traditional
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physiological parameters was determined in a detailed com-
parative analysis. Although computing stress with only the
lower body parameters depended on a number of factors and
it provided satisfactory quality levels, the addition of the
cerebral parameters improved the accuracy with a significant
margin. It was shown that under severe stress conditions,
induced stress was proportional to changes in the brain signal
patterns that could be monitored using the Laplace transform
and the filtering algorithms.

Including cerebral parameters reduced the convenience
of the wireless platform as a few electrodes were added
in the system. They were connected with the head of the
body through thin cords and terminated in the holster unit.
To reduce the complexity and inconvenience, only two elec-
trodes were attached that captured almost the same signal
strength as captured by five or six electrodes. In stress, there
were notable peaks in the brain waveforms that identified
them clearly from the relaxed and the casual states. The deep
learning strategy outperformed the other machine learning
algorithms and the same was true in our case as well.

The protocol for our cognitive experiments was well-
designed, but in the future, more challenging tasks on an
Android platform may be added. The number of the current
participants was medium, and in the future, more participants
have to be engaged for the experiments. Also, it is suggested
that real scenes of stress can be added in addition to the
laboratory experiments. One such situation may be an exam-
ination session where our wearable wireless sensor platform
can be worn by the students. In addition to that, a fire fighting
situation can be monitored as fire-fighters undergo real-time
stress. In the classification model, it is proposed that algo-
rithms based on shallow learning may be used for a possible
increase in classification accuracy. Finally, the design of the
electrodes can be modified to enhance the portability of the
system.
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