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ABSTRACT Microbe-RNAs (miRNAs) play an important role and are associated with human diseases.
However, considering the high cost and time-consuming biological experiments, using effective computa-
tional methods to discover the underlying association between the miRNAs and diseases would be valuable.
This study presents a novel computational prediction model based on multiple-similarity and arbitrarily-
order proximity network embedding.We obtain the Gaussian similarity from the disease–miRNA interaction
matrix for the miRNA and disease. Then, considering the Gaussian similarity, disease semantic, phenotype
similarity, and the miRNA functional similarity, we compute the miRNA–miRNA similarity matrix and
the disease–disease similarity matrix. Most importantly, we improved the SVD matrix decomposition to
extract the primary feature vector. We called it arbitrarily-order proximity network embedding method.
By multiplying the feature vectors together, we calculate the final miRNA–disease association score matrix.
According to the ranking scores, we can know which miRNA is mostly relevant to a disease. This process
proved that our method achieved better prediction performance than other methods. In the experiment,
after adding arbitrarily-order proximity network embedding to the inductive matrix completion method [1],
the AUC of our method in leave-one-out cross-validation increased dramatically from 0.8034 to 0.92306.
Meanwhile, the studies of three cases, namely, prostate neoplasms, breast neoplasms, and lung neoplasms,
of the top 50 potential miRNAs predicted by our method were validated by the database of dbDEMC and
mir2disease. This finding indicated that our method can effectively obtain the potential disease miRNA
candidates. Comparison of our work with other algorithms reveals its reliable performance.

INDEX TERMS Bioinformatics, biomedical informatics, biological interactions, prediction methods.

I. INTRODUCTION
Microbe RNAs (miRNAs) in the human body have a
substantial effect and are associated with various and
miscellaneous human diseases [2]. MiRNAs are a set
of single-stranded and short noncoding RNAs, including
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approximately 22–25 nucleotides [3]–[6]. When binding to
the 3’-untranslated regions of the target mRNAs, miRNA
affects the post-transcriptional and regulation level of gene
expression [7]. miRNAs are also involved in many impor-
tant biological processes, such as cell cycle control [8],
growth [9], differentiation [10], development [11], aging,
apoptosis [12], infection, and viral infection [13]. Humans
have detected tens of thousands of various organismmiRNAs
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that have reached to 28,645 (2588 for human) in the latest
release of miRBase [JCMM]. Consequently [14]–[17], dys-
regulation and mutation of miRNAs can cause various com-
plex human diseases, including neoplasms and cancer [18],
because miRNAs have specific secondary structures and con-
served sequences. The first miRNA lin-4 was found in the
early 1990s by Lee et al. [8]. Heegaard et al. developed
a method to measure the circulating levels of 30 miRNAs
and found that the expression levels of miR-146b, miR-221,
let-7a, miR-155, miR-17-5p, miR-27a, and miR-106a were
greatly reduced in the serum of nonsmall cell lung neoplasm
cases [19]. In addition, miRNA-17–92 cluster was found to
be upregulated in polycystic kidney disease (PKD) and can
be identified as a therapeutic target in PKD [20]. Increas-
ing miRNAs have been discovered and were important to
human disease. However, the biological experimental meth-
ods used to discover the association between miRNA and
disease are expensive and time consuming. Therefore, numer-
ous researchers are paying attention to the computational
methods employed to predict potential miRNA–disease asso-
ciation to guide the biological experiments [21]–[29].

In the past few years, several computational models have
been exploited to predict potential miRNA–disease associa-
tion [30], [31]. Jiang et al. [32] have presented a hypergeomet-
ric distribution method by building a heterogeneous network
based on the notion that functionally similar miRNAs tend to
be associated with phenotypically similar diseases and vice
versa [33]. However, this model only uses the information
of the direct network neighbors of miRNAs, ignoring those
indirectly linked to miRNAs. In addition, Xuan et al. [34]
have developed a method named HDMP by considering the
weighted k most similar neighbors of miRNAs, wherein
the members in the same miRNA family or cluster were
assigned with high weight. However, this model cannot be
applied to new diseases without any known related miRNAs
because it needs neighbors of miRNAs and its prediction
accuracy is limited. Consequently, this model depends on
the algorithm adopting local similarity measure [35], [36].
RWRMDA is the first global network-based method, which
uses random walk method to infer miRNA–disease asso-
ciations [25]. Subsequently, Chen et al. proposed another
method called WBSMDA [27], which calculates a final
score for potential miRNA–disease associations by inte-
grating miRNA functional similarity, disease semantic sim-
ilarity, known miRNA–disease associations, and Gaussian
interaction profile kernel similarity of miRNAs and diseases.
In addition, Xuan et al. [37] devised another computational
model based on randomwalk onmiRNA functional similarity
network. They exploited the miRNA similarity, the disease
similarity, the knownmiRNA–disease associations, the topol-
ogy information of the bilayer network, and the informa-
tion from different layers of network to predict disease
miRNA candidates. In particular, this method is adoptable
to predict potential miRNAs for diseases without known
related miRNAs. Yu Qu et al. have proposed an approach
named KATZLDA [38] to calculate the miRNA similarity

and disease similarity, and then it integrated multiple data
sources to construct a reliable heterogeneous network to
predict miRNA–disease associations. Although the existing
methods have made remarkable contributions, improvements
are still needed [39].

All mentioned methods have their own strengths, and
the existing methods can be categorized into five aspects:
(i) neighborhood-based methods, such as HDMP [34] and
CPTL [40]; (ii) random walk-based methods, such as
RWRMDA [25], Shi’s method [37], MIDP, and MIDPE [37];
(iii) machine learning-based methods, such as Xu’s
method [41] and RLSMDA [26]; (iv) path-based methods,
such as KATZ [42] and PBMDA [43]; and (v) matrix com-
pletion, such as MCMDA [23] and IMCMDA [1].

Inspired by matrix completion-based and multiple-
similarity approaches, we propose a model based on
multiple-similarities and arbitrarily-order proximity network
embedding (MSAOPNE) to predict miRNA–disease asso-
ciations. First, we obtain the Gaussian similarity from the
disease–miRNA interaction matrix for miRNA and dis-
ease. Second, we integrate the disease Gaussian similarity
and semantic similarity together. Similarly, we integrate
the miRNA Gaussian similarity and functional similarity
together. Fourth, we extract the primary feature vectors
by using arbitrarily-order proximity network embedding.
Finally, we can calculate the final miRNA–disease associ-
ation score matrix. According to the ranking scores, we can
know which miRNA is mostly relevant to a disease.

In the experiment, we used two evaluation meth-
ods, namely, leave-one-out cross-validation (LOOCV) and
five-fold cross-validation (five times CV), to verify the
performance of our method. Our approach has achieved
outstanding results in identifying potential miRNA–disease
associations compared with existing methods. In the exper-
iment, after adding arbitrarily-order proximity network
embedding to the inductive matrix completion method [1],
the area under curves of our method in global and local
leave-one-out cross-validation increased by 11% achieves
AUC(area under curve) of 0.91956 and 0.92306. For further
verification, we used case studies to analyze the MSAOPNE
performance. Experimental results show that the method has
reliable performance in detecting new associations. We also
found that some specific associations and corresponding
miRNAs require further attention.

II. MATERIALS
This chapter will introduce the materials we use, consisting
of four parts, namely, the initial miRNA–disease association
network, Gaussian interaction profile kernel similarity, dis-
ease semantic and phenotype similarity, and miRNA function
similarity.

A. HUMAN MIRNA-DISEASE ASSOCIATION NETWORK
This study used the known human miRNA–disease asso-
ciation data downloaded from HMDD V2.0 database [44]
containing 5430 experimentally human miRNA–disease
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associations between 383 diseases and 495 miRNAs.
A disease–miRNA interaction matrix A ∈Rnd×nm from
known disease–miRNA associations was used, where nd
and nm are the number of diseases and miRNA, respectively,
and each row corresponds to a disease and each column
represents a miRNA. If a disease di has an association with a
miRNA mj, then Aij equals to 1, otherwise 0. We can define
A matrix as follows: {

Aij = 1
Aij = 0

(1)

B. GAUSSIAN INTERACTION PROFILE
KERNEL SIMILARITY
The Gaussian kernel, also known as the radial basis function,
is a commonly used kernel function. Based on the assumption
that functionally similar miRNAs show the same behavior
interaction with similar diseases, we use KD ∈R383×383 to
define the Gaussian interaction kernel similarity matrix for
diseases, and KM ∈R495×495 is used to define the Gaussian
interaction kernel similarity matrix for miRNAs. The inter-
action profile of miRNA i is the ith row vector of interaction
association matrix A ∈Rnd×nm. We denoted vector IP(d i) and
IP(miRNAi) to represent the i

th row vector and the jth column
vector. Then, the distance between any two row vectors is
computed as the Gaussian interaction profile kernel of their
corresponding diseases, similar to miRNAs.We can calculate
them separately as follows:

KD = Gkl
(
di, dj

)
= exp

(
−γd

∥∥IP(d i)− IP(d j)∥∥2)
KM = Gkl

(
miRNAi,miRNAj

)
(2)

= exp
(
−γm

∥∥IP(miRNAi)− IP(miRNAj)∥∥2) (3)

The adjustment coefficient kernel bandwidth γm and γd is
computed as follows:

γm =
γ
′

m[
1
nm

∑nm
i=1

∥∥miRNAi − miRNAj∥∥2] (4)

γd =
γ
′

d[
1
nd

∑nd
i=1

∥∥di − dj∥∥2] (5)

where γm′ and γ ′d are the original kernel bandwidth.

C. DISEASE SEMANTIC AND PHENOTYPE
SIMILARITY MODEL
According to several computing models [27], [38], [45]–[47],
we can construct all the diseases to a Directed Acyclic Graph
(DAG). We can download these diseases based on the Med-
ical Subject Headings descriptors from the National Library
ofMedicine (http://www.nlm.nih.gov/).We use the following
computing models to finally obtain a weighted disease simi-
larity network containing 146,689 similar associations among
383 diseases.

1) MODEL 1
The contribution values of disease d in DAG(D) [45] to the
semantic value of disease D can be measured as{

D1D(d) = 1 if d = D
D1D(d) = max

{
ε ∗ D

(
d ′
)
|d ′ ∈ children of d

}
if d 6= D

(6)

where ε is the impact factor that if the children of D is
far away, the impact factor is smaller than the nearest one.
The semantic value of disease D is added in all the diseases
in the DAG together, denoted as DV. Then, DV1 (D) =∑

d∈T (D) D2D(d). The semantic similarity score between dis-
ease di and dj can be defined as

SS1
(
di, dj

)
=

∑
t∈T (di)∩T (dj) (D1di (t)+ D1dj (t))

DV 1 (di)+ DV 1(dj)
(7)

2) MODEL 2
Considering that if a specific disease was less, DAGs should
contribute a high value to the semantic similarity of disease
D. According to the model proposed by Xuan et al. [34],
the semantic value of disease D can be measured

D2D (d) = − log
[
the number of DAGs including t

the number of diseases

]
(8)

Similar to model 1, the computed disease phenotype
semantic similarity can be calculated as follows:

SS2
(
di, dj

)
=

∑
t∈T (di)∩T (dj) (D2di (t)+ D2dj (t))

DV 2 (di)+ DV 2(dj)
(9)

3) INTEGRATING TWO MODELS TOGETHER
Consequently, we can combine these twomodels together and
obtain the final disease semantic similarity value as

SS =
SS1+ SS2

2
(10)

Obviously, if the value is large, two diseases are likely to
be similar with each other. In addition, the similarity of two
diseases is closely related to their semantic similarity and the
phenotype similarity.

4) MIRNA FUNCTIONAL SIMILARITY MODEL
The members of miRNA family or cluster that have
functional similarity are probably associated with sim-
ilar diseases and vice versa. Wang et al. (2010) pro-
posed a method to calculate the miRNA functional
similarity. We can download the miRNA functional similarity
data from http://www.cuilab.cn/files/images/cuilab/misim.zip.
We denoted the matrix FS to represent the miRNA functional
similarity. The element FS(mi,mj) represents the similarity
value between the miRNA mi and the miRNA mj.

III. METHODS
In this section we will introduce our whole method. First of
all, we will introduce the method overview. Then you can
see how to integrate all multiple similarity data together and
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FIGURE 1. Main Structure of The MSAOPNE Method.

whywe use the arbitrary-order proximity network embedding
to extract the feature. Then finally introduce how to get the
matrix scores.

A. METHOD OVERVIEW
As shown in Fig. 1, MSAOPNE consists of five steps.
In Step 1, we use the known associations between the dis-
ease and miRNA to complete the initial interaction matrix.
Then, MSAOPNE computes the Gaussian interaction profile
kernel similarity for disease and miRNA from the known
miRNA–disease interaction matrix. We inferred the miRNA–
miRNA similarity matrix KM and disease–disease similarity
matrix KD. In Step 2, considering the disease phenotype and
semantic similarity matrix SS, we combine it with KD, which
has been broken down by the Gaussian interaction profile
kernel matrix that contains the known miRNA–disease inter-
action information as mentioned in the previous step. Bymul-
tiplying it with the weight SSP, we added them together. The
details are illustrated in Section 3.2. In Step 3, similar to
the second step, we can multiply the weight FSP with the
miRNA function similarity matrix FS and then add it with the
Gaussian interaction profile kernel similarity matrix KM con-
taining the known miRNA–disease interaction information.
In Step 4, considering the contribution of the arbitrarily-order
proximity neighbors, we use the arbitrarily-order proximity
network feature embedding algorithm to extract the feature
for miRNA and disease. Then, we can obtain the disease
feature embedding matrix SDD and the miRNA similarity
feature embedding matrix SMM. Finally, in Step 5, by mul-
tiplying the disease feature embedding vector SDD and the

miRNA similarity feature embedding vector SMM,we obtain
the final disease–miRNA similarity associate score matrix.
According to the ranking scores, we can know which miRNA
is mostly relevant to a disease.

B. INTEGRATION SIMILARITY FOR DISEASE AND MIRNA
To effectively compute the disease similarity, we have inte-
grated the Gaussian similarity and the disease semantic and
phenotype similarity together. We use the following formula
to incorporate the information content of Gaussian kernel
similarity matrix KD and disease semantic and phenotype
similarity matrix SS, wherein SSP is the integrated weight.

SD = SS� SSP+ KD� (1− SSP). (11)

At the same time, we integrate the Gaussian kernel similar-
ity matrix KM and the miRNA functional similarity matrix
FS together, by the following formula, wherein FSP is the
integrated weight.

SM = FS� FSP+ KM� (1− FSP). (12)

C. ARBITRARY-ORDER PROXIMITY NETWORK
EMBEDDING
1) ARBITRARY-ORDER PROXIMITY DEFINITION
Probably, we have integrated all the similarities, including the
Gaussian similarity, the disease semantic and phenotype simi-
larity, andmiRNA function similarity together. Then, both the
disease–disease similarity matrix and the miRNA–miRNA
similarity matrix are symmetric matrixes. Here, A indicates
a symmetric adjacency matrix, where n is the order and
w1 . . . . . .wn are the weights. An refers to the nth order of the
symmetric adjacency matrix A, which is a high-order prox-
imity matrix. Then, we define the arbitrary-order proximity
matrix function ϕ (A) as

S = ϕ (A) = w1A+ w2A2 + · · · · · · + wnAn (13)

wherewi = β i, β ∈ (0, 1), and β iis convergent. Thus, we can
limit the weights in 0–1. Moreover, the weight is continu-
ously decreasing, indicating that distant nodemeans small the
weight, guaranteeing that the function is convergent. Notably,
we refer a proximity of order n as the weighted combination
of all the orders from the 1st to the nth rather than the nth order
alone. The matrix S is called the arbitrary-order proximity
matrix.

2) EIGEN-DECOMPOSITION REWEIGHTING
Matrix A is a symmetric matrix. Matrix A2 and matrix An

are also symmetrical, similar to matrix S. According to the
definition of an eigenpair, if matrix A has an eigenvalue λ and
feature vector x, we can obtain the eigenpair of A2, [λ2, x].
Then, [ϕ(λ), x] is an eigenpair of S = ϕ(A). According to the
following definition of an eigenpair:

Ax= λx(14) (14)

Then, we can easily obtain the following formula:

A2x= Aλx = λAx = λ2x(15) (15)
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FIGURE 2. SVD Dimension Reduction.

By repeating the above process, we have:

ϕ (λ) = (w1λ+ w2λ
2
+ · · · + wnλn)

= βλ+ λ2λ2 + · · · + λnλn) =
βλ

1− βλ
(16)

3) SVD DIMENSION REDUCTION
How to get the feature embedding for the arbitrary-order
proximitymatrix S? The size of the disease–disease similarity
matrix SD and the miRNA–miRNA similarity matrix SM is
383× 383 and 495× 495, respectively. Supposing that the
size of the matrix is very large, it needs to be compressed
and converted to two low-rank feature matrix U∗ multiplied
by V∗. In addition, we can use SVD dimension reduction,
as shown in Fig. 2.

From the SVD dimension reduction figure, we can see the
following process:

S = U
∑

V T
= (U
√
6)
(√
6V T

)
= U∗V ∗T (17)

where U∗ = U
√
6, V ∗T =

√∑
V T . The eigenvalue must

be positive, forming the covariance matrix
∑

. Thus, we will
obtain the absolute value of each eigenvalue.

According to the Eckart–Young theorem: S =
∑
σiuivTi .

If we select the top d eigenvalues to form the new covariance
matrix

∑
, the following matrix S∗ must be closest to S.

S∗ =
d∑

i=1

σiuivTi , (σd > σd+1) (18)

Then, we have to minimize the following objective
function:

min
U∗,V ∗

∥∥∥S − U∗V ∗T∥∥∥2
F

(19)

To prevent U∗ and V ∗T items from being too large,
we added the regularization terms. Then, we can form them
as follows:

min
U∗,V ∗

ϕ =

∥∥∥S−U∗V ∗T∥∥∥2
F
+
λ1

2

∥∥U∗∥∥2F+ λ22 ∥∥∥V ∗T∥∥∥2
F

(20)

FIGURE 3. Main Process of The AOPNE Algorithm.

4) FEATURE EXTRACTING AND NETWORK EMBEDDING
The main process of AOPNE algorithm is shown in Figure 3.
First, we will perform SVD eigen decomposition on matrix
A. Then, we will rank the eigenvalues and select the top-r
eigenvalues in decreasing order. Second, for the top-r eigen-
values of A matrix, we transform them with the following
equation. Then, λ′i is the eigenvalues of the arbitrary-order
proximity matrix S. Third, we sort the eigenvalues λ′i in
descending order and then take the absolute value because
SVD dimension reduction requires that covariance matrix

∑
must be positive. Fourth, we select the top-d eigenvalues λ′i to
reform the covariance matrix of S. Finally, we will calculate
the main feature matrix U∗ for the arbitrary order matrix S.
We will explain why we add an absolute value in step 3 and

not change our results. We prove the theorem by showing that
any eigenvalue except the top-r cannot be larger in absolute
value than the d positive eigenvalues after ϕ

(
λj
)
. Assuming

|λi| ≥
∣∣λj∣∣ and λi > 0, we have

|ϕ (λi)| =
∣∣w1λi + . . .+ wnλ

n
i

∣∣ = w1 |λi| + . . .+ wn |λi|
n

≥ w1
∣∣λj∣∣+ . . . + wn

∣∣λj∣∣n ≥ ∣∣w1λj

+ . . .+ wnλj
n∣∣ = ∣∣ϕ (λj)∣∣ (21)

If we enter the similarity matrix of the symmetric matrix,
we will obtain its arbitrary order feature matrix. Using
disease–disease similarity matrix SD instead of A, we will
achieve the arbitrary order similarity matrix for SD to achieve
the purpose of compressing the matrix and extracting the
feature, similar to the miRNA–miRNA similarity matrix SM.
Then, we will finally obtain the feature extract and network
embedding matrix of SDD and SMM. Here, SDD was used
to denote the feature embedding vector of disease–disease,
and SMM was used to signify the feature embedding vector
of miRNA–miRNA.

D. FINAL SCORE MATRIX
We will use the arbitrary-order proximity network embed-
ding matrix SDD and SMM to calculate the prediction score
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FIGURE 4. Global LOOCV.

between disease and miRNA by the following equation:

Score Matrix = SDD� SMM (22)

The element Score di ∗ mj is calculated to denote
the predicted association possibility between disease di
and miRNA mj.

IV. EXPERIMENT
In the follow section, we will introduce the evaluation metric
we used, and the good performance of our method, then three
case studies of our method.

A. EVALUATION METRIC
The important criteria for evaluating the model are the
receiver operating characteristic (ROC) curve and the area
under curve (AUC) indicator. The ROC curve can reflect the
classification effect of the classifier to a certain extent but is
not intuitive enough. AUC intuitively reflects the classifica-
tion ability of the ROC curve expression, which is defined as
the area enclosed by the ROC curve and the coordinate axis.
High AUC value means classification effect. AUC equals to
1 indicates that the model has perfect prediction performance.
AUC equals to 0.5 indicates that the model only has random
accuracy. The x-coordinate of ROC is a false positive rate
(FPR, 1-specificity), and the y-coordinate is true positive rate
(TPR, sensitivity). FPR is simply the possibility of predicting
a positive sample, which was misclassified. TPR refers to the
percentage of the positive test samples with higher ranks than
the specific threshold. The computational formulae of FPR
and TPR are as follows:

specificity :FPR =
FP

TN + FP
(23)

sensitivity :TPR =
TP

TP+ FN
(24)

where TP denotes the number of true samples with scores
higher than the specific threshold. Meanwhile, FN denotes

FIGURE 5. 5-FOLD MSAOPNE Performance.

FIGURE 6. 5-FOLD IMCMDA Performance.

the number of true samples with scores lower than the spe-
cific threshold. TN denotes the number of false samples
with scores lower than the specific threshold. FP denotes the
number of false samples with scores higher than the specific
threshold.

Another important criterion used for evaluating a model is
whether it can predict potential associate miRNAs for new
diseases. Some articles use this metric to evaluate. The moti-
vation for this performance is to sort the probability of true
associations in the prediction for a new disease. Moreover,
we selected the TOP-N miRNAs with the highest probability
of association, indicating that these miRNAs are most likely
to have a relationship with the distinct disease. In the case
studies, we use the TOP-N analysis method and select the
largest N scores from the sorted score list. This method is cur-
rently widely used in disease–miRNA association prediction
and some other recommendation systems.
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FIGURE 7. All Method Performance.

TABLE 1. Top 50 mirnas associated with prostated neoplasms predicted
TY MSAOPNE.

B. PERFORMANCE
We implement three types of cross validation, namely, Global
LOOCV (Figure 4), and 5-FOLD cross-validation (Figure 5),
to show the perfect performance of our method. In Global
LOOCV, each known miRNA–disease association was left
out in turn to be taken as test sample, and the other remain-
ing known associations were treated as training samples.
The AUC value of our approach has achieved 0.91956.

TABLE 2. Top 50 miRNAs associated with breast neoplasms predicted TY
MSAOPNE.

Different from Global LOOCV, the Local LOOCV only
considered the ranking of the score generated by the test
association among the candidate associations, which were
merely related to the investigated disease. Then, our AUC
value is also as high as 0.92306. To further prove our experi-
mental results, we also made a 5-FOLD cross-validation. The
5-FOLD cross-validation, as the name implies, divides the
data set into five parts, taking four of them as the training
data and one part as the test data for experimentation. The
result of 5-FOLD cross-validation AUC value and the accu-
racy have reached 0.9232∓ 0.0024 (Figure 5) and 0.9253∓
0.002. Compared with the IMCMDA methods, if we ignore
the arbitrarily-order proximity neighbor contribution in the
network, we only can receive the mean AUC value and the
mean accuracy of 0.8356 ∓ 0.0106 (Figure 5) and 0.8117 ∓
0.002, respectively, as shown in the following figures. This
finding also validates our hypothesis and reveals the impor-
tance of considering the arbitrarily-order proximity neighbor
contribution.

We have compared our method with BNPMDA,
PBHMDA, and HDMP based on the LOOCV framework.
The known miRNA–disease association dataset used for this
comparison was the same, i.e., the 5430 known associa-
tions between 495 miRNAs and 383 diseases in the HMDD
V2.0 database. As for other input datasets required by these
six methods, we either downloaded the corresponding data
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TABLE 3. Top 50 miRNAs associated with lung neoplasms predicted TY
MSAOPNE.

from the supplementary files in the methods’ literatures or
collected the data from the sources specified in the literatures.

C. CASE STUDIES
To further verify the prediction accuracy of MSAOPNE,
we performed case studies for three complex popular dis-
eases of human beings, namely, prostate neoplasms, breast
neoplasms, and lung neoplasms. We observed the number of
miRNAs verified at the three diseases in the top 10, top 20,
and even top 50.

Prostate neoplasm is one of the greatest threats to
men’s health worldwide. The miRNA expression levels can
help treat patients suffering from prostate neoplasms. For
example miR-488 inhibits androgen receptor expression in
prostate carcinoma cells. These miRNAs were detected by
MSAOPNE and are shown in the table below. In addition,
we can see that the top 50 miRNAs in the correlation detec-
tion were all verified in the HMDD and dbDEMC database
(Table 1).

Breast neoplasm is a common malignant tumor in women.
Understanding the association between miRNA and breast
neoplasm will help us detect, diagnose, and treat early breast
neoplasms. MiRNA is widely involved in key indicators,

such as breast neoplasm cell proliferation [48], invasion, and
lymph node metastasis, because it plays an important role
in the occurrence and development of breast neoplasms. For
example, in some tumors, miR-142 regulates the properties of
BCSCs at least in part by activating the WNT signaling path-
way and miR-150 expression. These miRNAs were detected
by MSAOPNE, and 46 out of the top 50 predicted breast
neoplasm-related miRNAs were confirmed by HMDD and
dbDEMC. Although 302e was not confirmed in the HMDD
database, other members of the 302 series (302a, 302b, 302c,
302d, and 302f) were confirmed to be associated with breast
neoplasms in the HMDD database. Probably, we can make
a biological test about whether they are related based on the
results of this score.

Lung neoplasm is one of the largest threats to men’s health
worldwide. Themortality rate of lung neoplasms is extremely
high, and approximately 1.3 million people die every year
due to the lung diseases worldwide. Neoplasms account for
approximately one-third of all neoplasm deaths in the United
States [49]. The detection of miRNA markers is of great
significance for the early diagnosis of lung neoplasms [50].
Studying the characteristic miRNA expression profiles in
tumor tissues may become an important means for early diag-
nosis, targeted therapy, and prognosis evaluation of tumors.
The miRNAs detected by MSAOPNE and confirmed in the
HMDD database are all illustrated in the following table. As a
result, 48 of top 50 predicted miRNAs were confirmed by
HMDD and dbDEMC.

V. CONCLUSION
In this study, we proposed MSAOPNE method for miRNA–
disease association prediction. We have improved the pre-
vious methods, which are not suitable for the prediction of
diseases without any known associated miRNAs. We have
considered all similarity association and integrate all the
similarity matrices together, including the Gaussian interac-
tive kernel similarity, miRNA functional similarity, and two
types of disease semantic similarity. In addition, we also
considered the arbitrary-order proximity for disease–disease
similaritymatrix, andmiRNA–miRNA similarity matrix. The
accuracy rate is also improved by nearly 10 points than when
the arbitrary order neighboring matrix was not considered
previously. Based on the specificity of eigenpair to the sym-
metric matrix, we use the SVDmatrix factorization to extract
miRNA feature and disease feature. Finally, we multiply
the disease feature matrix and the miRNA feature matrix to
obtain the score matrix. In addition, we have implemented
three cross-validations and several case studies on important
human diseases. Moreover, MSAOPNE performed well in
cross-validation and case studies.

The excellent performance of MSAOPNE is mainly
attributed to the following important factors. First,
the increasing numbers of disease–miRNA association data
have been discovered these years due to the rapid develop-
ment of the biological experiment technology. Several data
are combined to predict the association between diseases and
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miRNAs, resulting in an accurate model. Second, we use the
known associations between the disease and miRNA to com-
plete the initial interaction matrix and then integrate multiple-
similarity network. We build a network, which integrated
the miRNA functional similarity network, disease phenotype
similarity network, and known miRNA–disease network.
We also consider the Gaussian kernel similarity. Finally, most
importantly, we take the advantage of the contribution of
the arbitrarily-order proximity network embedding to obtain
the potential relationships in miRNA matrix and disease
matrix. Then, we use it to extract the feature, which ultimately
determines our scores.

However, some limitations are still observed in this model.
First, although known miRNA–disease association data have
been more than before, they are still in small quantity for the
prediction to obtain enough accurate results. Second, given
that the calculation of the arbitrary degree of proximity is only
for undirected graphs, our method is not valid for directed
graphs. These shortages limit the application range of the
MSAOPNE. These factors will be our future work directions.
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