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ABSTRACT In this paper, an optimized first-order iterative learning control (OILC) scheme is explored for
a class of linear discrete-time-invariant systems with Markov parameters available and the system relative
degree being unity. For the OILC scheme, the iteration-time-variable derivative learning-gain vector is
argued by sequentially minimizing the sum of the tracking error energy and the learning effort intensity
amplified by an iteration-wise tuning factor. In virtue of the optimization criterion, the existence and the
uniqueness of the iteration-time-variable learning-gain vector is achieved. Then, by making use of the
elementary transformations which exchange the rows and columns of a matrix and by taking advantage
of the positivity relationship of the eigenvalues with the matrix-weighing quadratic function, the strictly
monotone convergence of the OILC scheme is derived, which conveys that the strict monotonicity is
guaranteed without any requirement to the systemMarkov parameters and the convergence rate is adjustable
by scaling the tuning factor. Furthermore, an optimized higher-order iterative learning control mechanism is
developed for the system relative degree is larger than unity, for which the existence and the uniqueness
of the optimized higher-order iteration-time-variable learning-gain vector are discussed and the strictly
non-conditional monotone convergence is analyzed. The numerical simulations demonstrate the validity and
effectiveness.

INDEX TERMS Iterative learning control, iteration-time-variable learning-gain vector, elementary
transformation, tuning factor, strictly monotone convergence.

I. INTRODUCTION
For trajectory tracking issue, the iterative learning con-
trol (ILC) has been acknowledged as an efficacious tech-
nique that fits for repetitive systems to operate over a fixed
finite time interval [1]–[4]. The fundamental mechanism is to
generate a sequence of upgraded control inputs in recursive
mode by modifying the control input of the current operation
with current or historical tracking errors integrated by a linear
operator. The conventional ILC is of proportional-derivative-
integral-type (PID-type) profile. One hand, owing to the sim-
ple algorithmic structure, less requirement prior to system
knowledge and significant performance, the ILC has been
attracted much attention to several applications as addressed
in references [5]–[10]. On the other hand, it is noticed that,
in the conventional PID-type ILC schemes, the learningmode
is passive as the learning gains are fixed without any adaption
to the systems parameters or the tracking error information.

The associate editor coordinating the review of this manuscript and
approving it for publication was Dong Shen.

As such, the learning performance with less utility of the sys-
tem knowledge may render poor improvement if the learning
gains are selected improperly.

Ideally, the learning performance might be the expected if
the system Markov parameters are available and utilizable.
For the regard, the earlier devotions have proposed opti-
mal learning control schemes by numerical techniques such
as steepest descending method, Newton-Raphson method
and Gauss-Newton method while minimizing a quadratic
criterion of the time-wise tracking error for discrete-time
or continuous-time systems [11], [12]. After that, by for-
mulating a finite-length discrete-time system in a lifted
vector-matrix form, the concept of the norm-optimal iter-
ative learning control (NOILC) has been innovated, where
the performance index is the sum of norms in terms of the
tracking error and the increment of two adjacent control
inputs and the argument is the control input for the next
operation [13]. Following up the NOILC profile, numer-
ous contributions have been done for the NOILC develop-
ments to kinds of systems [14]–[21].Moreover, the non-lifted
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data-driven approach has been adopted for the NOILC
schemes to reduce the computational complexity [18], [22].
For those NOILCs, in authors’ opinion, the profile is orig-
inated from the concept of the optimal control for reference
trajectory tracking. Thus, the so-called NOILC schemes have
inherited the characteristics of the optimal control mecha-
nism that the learning gain matrix of the NOILC scheme
is irrelevant to the reference trajectory, namely, independent
upon the tracking error. But it requires inversion computa-
tion of matrix. In the circumstance, the strictly monotonous
convergence is conditional, such as, the tracking error is
guaranteed if and only if when the Markov parameters matrix
is nonsingular as mentioned in reference [13].

For the sake of deducing the computation complexity,
Owens’ group has proposed the parameter-optimal iter-
ative learning control (POILC) scheme for discrete-time
systems [23], where the POILC updating law is D-type that
the iteration-variable-time-invariant learning gain is argued.
For this, the performance index is defined as a sum of the
tracking error measured in 2-norm and the learning effort
intensity amplified by a fixed tuning factor. Here the learn-
ing effort intensity is defined as the square of the learning
gain. The further POILC works have been involving the
optimization techniques, improvement of convergence rate,
as well as the robustness [24]–[33]. Perhaps because the
iteration-wise argument of the learning gain of the POILCs
is single-dimensional, its solution confines the learning per-
formance. For example, the monotone convergence is only
guaranteed under the assumption that the Markov parame-
ter matrix is positive definite [23]. The condition is critical
in deed. Progressively, a full-dimensional parameter-optimal
iterative learning control scheme has been exploited in
article [34], where the iteration-time-variable learning-gain
vector is adapted. Here the notion ‘‘full-dimensional’’ means
that the dimension of the argument in terms of the learning-
gain vector is equal to the sampling number. However, due to
the similar analytical technique that adopted for NOILCs and
POILCs, the strictly monotone convergence of the tracking
error is incomplete. Such as, in reference [34], the strict
monotonicity in Proposition 7 is beyond comprehension,
especially, for the case when part components of the current
tracking error are zero. Besides, the effect of the tuning factor
on the convergence rate has not been discussed. Motivated
by the significance of the full-dimensional parameter-optimal
mode and the incompleteness of the existing results, this
paper develops the optimized first-order and higher-order
iterative learning control (OILC) schemes for the first-order
and higher-order linear time-invariant systems, respectively.
For the OILC schemes, the iteration-time-variable learning-
gain vector is argued by minimizing a sum of the track-
ing error energy and the learning effort intensity tuned by
an iteration-variable factor. The strictly monotonous conver-
gence of the tracking error energy is rigorously derived and
the comparable results are remarked in detail.

The remainder of this paper is arranged as follows.
In section II, an optimized first-order iterative learning

control scheme is formulated and some necessary lemmas
are presented. Section III focuses on the strictly monotone
convergence analysis of the first-order optimized learning
scheme and Section IV involves of the optimized higher-
order iterative learning control strategy and the convergence.
Section V exhibits the numerical simulations and the last
section concludes the paper.

II. OPTIMIZED FIRST-ORDER ITERATIVE LEARNING
CONTROL SCHEME AND SOME LEMMAS
Consider a single-input-single-output (SISO) linear discrete-
time-invariant (LDTI) system whose dynamics is described
as follows.

x(n+ 1) = Ax(n)+ Bu(n),
y(n+ 1) = Cx(n+ 1),
x(0) = 0, n = 0, 1, · · ·, N − 1,

(1)

where N denotes the total sampling number, x(n), u(n) and
y(n) are p-dimensional state vector, scalar input and scalar
output, respectively.A,B andC are matrices with appropriate
dimensions, respectively. Assume thatCB 6= 0, which means
that the relative degree of system (1) is unity.

Let u∗ = ε1 = [1|0| · · · |0]T denote the N -dimensional
impulse signal sequence and stimulate system (1). Then the
output takes a form of

y∗ = g1 = [g1(1)|g1(2)| · · · |g1(r − 1)|g1(r)| · · · |g1(N )]T

=

[
CB|CAB|CA2B| · · · |CAN−1B

]T
.

Here, the vector g1 is assigned as the impulse response
sequence or Markov parameters of system (1).

Thus, for any input sequence u = [u(0)|u(1)| · · ·
|u(N − 1)]T, the output sequence of system (1) is expressed
as

y(n+ 1) =
n∑
l=0

g1(n+ 1− l)u(l), n = 0, 1, · · ·, N − 1.

(2)

Let

H =


g1(1) 0 0 · · · 0
g1(2) g1 0 · · · 0
g1(3) g1(2) g1(1) · · · 0
...

...
...

. . .
...

g1(N ) g1(N − 1) g1(N − 2) · · · g1(1)

 .
Here, the matrixH is termed as Markov parameters matrix of
system (1).

Denote

y = [y(1)|y(2)| · · · |y(N )]T .

Then system (1) or (2)becomes

y = Hu. (3)

Suppose that the operation of system (3) is repetitive
and attempts to track a predetermined desired trajectory
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yd = [yd (1)|yd (2)| · · · |yd (N )]T . Let u1 = [u1(0)|u1(1)| · · ·
|u1(N − 1)]T be an arbitrarily initial-iteration input and y1 =
[y1(1)|y1(2)| · · · |y1(N )]T be its output, respectively.
Denote e1 = yd − y1 as the tracking error between the

desired trajectory yd and the output y1. Then, by compensat-
ing for u1(n) with its output error e1(n + 1), the input u2(n)
for the second iteration is generated. Recursively, a D-type
iterative learning control updating law is generated as
u1(n) : given arbitrarily;

uk+1(n) = uk (n)+ 0k (n+ 1)ek (n+ 1),

n = 0, 1, · · ·, N − 1, k = 1, 2, · · ·, (4)

where the subscript k stands for the iteration or operation
index and 0k (n+ 1) is assigned as the iteration-time-variable
learning gain, respectively.

Denote lifted vectors as

uk = [uk (0)|uk (1)| · · · |uk (N − 1)]T ,

yk = [yk (1)|yk (2)| · · · |yk (N )]T ,

ek = yd − yk = [ek (1)|ek (2)| · · · |ek (N )]T ,

0k = [0k (1)|0k (2)| · · · |0k (N )]T .

Let

Ek = diag(ek (1), ek (2), · · · , ek (N )).

Then equation (3) is rewritten as

yk = Huk .

Analogously, the D-type ILC (4) becomes

uk+1 = uk + Ek0k . (5)

For the algorithm (5), 0k is termed as the iteration-time-
variable derivative learning-gain vector, which is optimized
by solving the following minimization problem.

Mind that the purpose of generating the ILC algorithm (5)
is to drive system (3) to follow the predetermined desired
trajectory yd as closely as possible, namely, to decrease the
tracking error as much as possible with some learning effort.

For this, define an iteration-wise performance index as

argmin
0k

J (0k) = ‖ek+1‖2 + wk · ‖0k‖2 , (6)

where wk > 0 is an appropriate iteration-wise tuning factor.
As the time index of the tracking error ek (n+ 1) in the

algorithm (4) is one sampling lagged than that of uk (n), thus
the ILC scheme (4) or (5) is termed as the optimized first-
order iterative learning control (OILC) scheme.
Remark 1: It should point out that the iteration-time-

variable learning-gain vector-based ILC (5) has been firstly
innovated in reference [34], where the optimal learning gain
vector (OLGV)0k is a solution of the optimization problem as

min
0k

J (0k) = ‖ek+1‖2 + w · ‖0k‖2 , (7)

where the parameter w is a fixed tuning factor.

In the investigation of [34], Proposition 5 has conducted
the monotone convergence of the algorithm (5) in virtue of
the relationship as

‖ek+1‖2 ≤ J
(
0∗k
)
= ‖ek+1‖2 + w

∥∥0∗k∥∥2 ≤ J (0) ≤ ‖ek‖2 ,
(8)

where 0∗k is the optimal solution of the optimization
problem (7).
In authors’ opinion, the last right inequality J (0) ≤ ‖ek‖2

of (8) is defaulted but not proved in a rigorous manner. In fact,
it is evident to yield that J (0) = ‖ek+1‖2 = ‖ek‖2 because
0k = 0 implies uk+1 = uk in algorithm (5). Therefore,
the inequality (8) conveys that

‖ek+1‖2≤J
(
0∗k
)
=‖ek+1‖2+w

∥∥0∗k∥∥2≤J (0)=‖ek+1‖2 .
(9)

This implies that Proposition 5 in reference [34] says noth-
ing. For the circumstance, the so-called monotonicity based
results need to be clarified in rigorous manner.
Nevertheless, reference [34] has raised the iteration-

time-variable learning-gain vector-argued optimal itera-
tive learning control profile and has provided algebraic
approach. By devotion, the authors have observed that the
strictly monotone convergence is ensured definitely. The rig-
orous derivation depends upon the elementary transforma-
tion of a matrix as addressed in Section III.

Before going to the convergence, some lemmas are
presented as follows.
Lemma 1 [35]: For a square matrix M, denoting λ (M) as

its eigenvalue and ρ (M) as its spectral radius. Then

(I−M)−1 =
+∞∑
k=0

Mk ,

if and only if ρ(M) < 1 .
Lemma 2: For given constants 0 < δ and 0 < a1 ≤ a2

define functions
f1(w) = 2

w+a2
−

δ

(w+a1)2
and f2(w) = 2

w+a1
−

δ

(w+a2)2
,

w ∈ (0,+∞) .
Then there exists at least a point w ∈ (0,+∞) so that 0 <

f1(w) ≤ f2(w) < 1 for 0 < w∗ < w < +∞.
Proof: By considering the assumptions 0 < δ and 0 <

a1 ≤ a2 into account, the relation f1(w) ≤ f2(w) is obvious.
What follows is to prove the fact that 0 < f1(w) and f2(w) < 1,
for 0 < w∗ < w < +∞.
Notice that

f1(w) =
2

w+ a2
−

δ

(w+ a1)2

=

(
w+ 2a1− δ

2

)2
+

(
w2
+ 2a21 − δa2 −

(
2a1 − δ

2

)2)
(w+a2) (w+a1)2

Therefore, there exists a sufficient larger w > 0 so that
0 < f1(w), for 0 < w < w < +∞.
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Besides

f2(w) =
2

w+ a1
−

δ

(w+ a2)2

=

(
w+ 2a2 − δ

2

)2
+

(
w2
+ 2a22 − δa1 −

(
2a2− δ

2

)2)
(w+ a1) (w+ a2)2

Then, we have

lim
w→+∞

f2(w) = lim
w→+∞

2 (w+ a2)2 − δ (w+ a1)

(w+ a1) (w+ a2)2
= 0.

This implies that there exists such a constant w̃ (w < w̃) that

f2(w̃) < 1. (10)

Further
df2(w)
dw

=
−2

(w+ a1)2
+

2δ

(w+ a2)3

=
−2 (w+ a2)3 + 2δ (w+ a1)2

(w+ a1)2 (w+ a2)3
.

Therefore, there exists a sufficiently larger 0 < ŵ so that
df2(w)
dw < 0, for 0 < ŵ < w < +∞, which means that f2(w) is

descending, for 0 < ŵ < w < +∞.
Together with the inequality (10), there exists an appropri-

ate w∗ (w∗ > max
{
w̄, w̃, ŵ

}
) so that the following inequality

holds.

0 < f1(w) < f2(w) < 1, for 0 < w∗ < w < +∞.

III. STRICTLY MONOTONE CONVERGENCE
AND CONVERGENCE RATE
Theorem 1: Assume that wk > λ

(
EkHTHEk

)
. Then there

exists a unique OLGV 0k for the minimization problem (6) so
that the OILC scheme (5) drives the system (3) satisfying

‖ek+1‖2 ≤ σk ‖ek‖2 with 0 < σk < 1.

Proof: Substituting (5) into system (3) gives rise to

ek+1 = ek −H (uk+1 − uk) = ek −HEk0k . (11)

Thus

‖ek+1‖2 = eTk+1ek+1 = (ek −HEk0k)T (ek −HEk0k)

= ‖ek‖2 − eTkHEk0k − 0T
kEkH

Tek
+0T

kEkH
THEk0k . (12)

From (6) and (12), we have

J (0k) = 0T
kEkH

THEk0k − 2eTkHEk0k + eTk ek + wk0
T
k0k .

Letting the gradient ∇J (0k ) be zero yields(
wkI+ EkHTHEk

)
0k = EkHTek . (13)

As the matrix EkHTHEk is nonnegative, the matrix(
wkI+ EkHTHEk

)
is positive definite and thus nonsingular

for wk > 0. Therefore, the solution 0k to the equation (13) is
existent and unique. It is evident that

0k =
(
wkI+ EkHTHEk

)−1
EkHTek . (14)

It should point that the solution (14) is existent only ifwk > 0.
But the convergence requires the assumption that wk >

λ
(
EkHTHEk

)
to ensure Theorem 1 holds, that is,

λ
(
w−1k EkHTHEk

)
= w−1k λ

(
EkHTHEk

)
< 1.

From Lemma 1, we have

ek+1 = ek −HEk0k

= ek −HEk
(
wkI+ EkHTHEk

)−1
EkHTek

= ek − w−1k HEk
(
I+ w−1k EkHTHEk

)−1
EkHTek

= ek − w−1k HEk
(
I− w−1k EkHTHEk

+ (−w−1k EkHTHEk )2 + · · ·
)
EkHTek

=

(
I− w−1k HEkEkHT

+(−w−1k HEkEkHT)2 + · · ·
)
ek

=

(
I+ w−1k HEkEkHT

)−1
ek .

Then

‖ek+1‖2 = eTk
(
I+ w−1k HEkEkHT

)−2
ek

≤
1(

1+ w−1k λmin
(
HEkEkHT

))2 ‖ek‖2 . (15)

What follows is to discuss the convergence factor qk =
1(

1+w−1k λmin(HEkEkHT)
)2 for the cases when Ek is nonsingular

and singular, respectively.
Case1:Matrix Ek is nonsingular.
Taking the assumption CB 6= 0 that means the Markov

parameters matrix H is nonsingular into account, it is confir-
mative that the matrix HEkEkHT is positive definite. There-
fore, λmin

(
HEkEkHT

)
> 0. This means that

0 < qk =
1(

1+ w−1k λmin
(
HEkEkHT

))2 < 1.

Thus inequality (15) becomes

‖ek+1‖2 ≤ qk ‖ek‖2 . (16)

Case2:Matrix Ek is singular.
Suppose that rank(Ek ) = sk < N with ek (im) 6= 0, for

m = 1, 2, · · ·, sk , and ek (lp) = 0, for p = 1, 2, · · ·,N − sk ,
respectively.

Denote an index set as

� = {1, 2, · · ·,N } \
{
l1, l2, · · ·, lN−sk

}
=
{
i1, i2, · · ·, isk

}
.

Here

i1 < i2 < · · · < isk ,

l1 < l2 < · · · < lN−sk .
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Let

ẽk =
[
ek (i1)|ek (i2)| · · · |ek (isk )

]T
,

êk =
[
ek (l1)|ek (l2)| · · · |ek (lN−sk )

]T
,

Ẽk = diag
(
ek (i1), ek (i2), · · ·, ek (isk )

)
,

Êk = diag
(
ek (l1), ek (l2), · · ·, ek (lN−sk )

)
,

ϒ̃k =
[
ϒk (i1)|ϒk (i2)| · · · |ϒk (isk )

]T
,

ϒ̂k =
[
ϒk (l1)|ϒk (l2)| · · · |ϒk (lN−sk )

]T
.

Then, êk = 0, Êk = 0 and Ẽk is invertible.
Denote

Pk =
[
εi1 |εi2 | · · · |εisk |εl1 |εl2 | · · · |εlN−sk

]T
,

where εj stands for the unity vector whose the j-th component
is unity and the others are zero. It is obvious that the matrix
Pk is orthogonal. Thus Pk is invertible and P−1k = PT

k .
Because the rows of the matrix Pk are the i1−th, · · · ,

is−th,l1−th, · ··, lN−s−th rows of the identity matrix I, it is
learnt that Pk is an elementary matrix which may exchanges
the rows positions of a matrix while pre-multiplied by Pk .
Thus its linear transformation to a matrix is termed as an
elementary transformation of a matrix. According to the
denotation of Pk , we have

PkHPT
k =



h1 0 · · · 0 ∗ · · · ∗

hi2−i1+1 h1 · · · 0 ∗ · · · ∗

...
...

. . .
...

... · · ·
...

hisk−i1+1 hisk−i2+1 · · · h1 ∗ · · · ∗

∗ ∗ · · · ∗ ∗ · · · ∗

...
...

. . .
...

... · · ·
...

∗ · · · ∗ · · · ∗∗ · · · ∗


,

where hj = g1 (j) and ‘‘*’’ remarks some elements of
matrix H.
Denote

PkHPT
k =

[
H̃k H̆k

Ĥk
_

Hk

]
.

Here

H̃k =


h1 0 · · · 0

hi2−i1+1 h1 · · · 0
...

...
. . .

...

hisk−i1+1 hisk−i2+1 · · · h1


is an sk × sk -dimensional square matrix an Ĥk , H̆k and

_

Hk
are matrices with appropriate dimensions, respectively. It is
obvious that H̃k is invertible as h1 = g1(1) 6= 0.
In specific,

Pkek =
[
ẽk
êk

]
=

[
ẽk
0

]
,

Pk0k =
[
0̃k

0̂k

]
,

PkEkPT
k =

[
Ẽk 0
0 Êk

]
=

[
Ẽk 0
0 0

]
.

Pre-multiplying Pk to equation (13) and considering the
property PT

k = P−1k makes

wkPk0k + (PkEkPT
k )(PkHPT

k )
T(PkHPT

k )(PkEkP
T
k )(Pk0k )

= (PkEkPT
k )(PkHPT

k )
T(Pkek ).

That is

wk

[
0̃k

0̂k

]

+

[
Ẽk 0
0 0

][
H̃T
k ĤT

k

H̆T
k

_

Hk

][
H̃k H̆k

Ĥk
_

Hk

][
Ẽk 0
0 0

][
0̃k

0̂k

]

=

[
Ẽk 0
0 0

]H̃T
k ĤT

k

H̆T
k

_

H
T

k

[ẽk
0

]
.

Equivalently, equation (13) becomes[
wkIsk + Ẽk

(
H̃T
k H̃k + ĤT

k Ĥk

)
Ẽk 0

0 wkIN−sk

][
0̃k

0̂k

]

=

[
ẼkH̃T

k ẼkĤT
k

0 0

][
ẽk
0

]
.

Therefore(
wkIsk + Ẽk

(
H̃T
k H̃k + ĤT

k Ĥk

)
Ẽk
)
0̃k = ẼkH̃T

k ẽk , (17)

wk 0̂k = 0. (18)

As wk 6= 0 equation (18) makes

0̂k = 0.

Notice that matrixwkIsk+Ẽk
(
H̃T
k H̃k + ĤT

k Ĥk

)
Ẽk is pos-

itive definite and thus invertible. Equation (17) therefore there
exists a unique solution

0̃k =
(
wkIsk + Ẽk

(
H̃T
k H̃k + ĤT

k Ĥk

)
Ẽk
)−1

ẼkH̃T
k ẽk .

Equivalently

Ẽk 0̃k = Ẽk
(
wkIsk + Ẽk

(
H̃T
k H̃k + ĤT

k Ĥk

)
Ẽk
)−1

ẼkH̃T
k ẽk .

(19)

Denote

Mk = Ẽk
(
H̃T
k H̃k + ĤT

k Ĥk

)
Ẽk , (20)

Qk =
(
wkIsk +Mk

)−1
. (21)

Then (19) is rewritten as

Ẽk 0̃k = ẼkQk ẼkH̃T
k ẽk . (22)
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Pre-multiplying equation (11) by Pk makes

Pkek+1 =
[
ẽk+1
êk+1

]
= Pkek −

(
PkHPT

k

) (
PkEkPT

k

)
(Pk0k)

=

[
ẽk
0

]
−

[
H̃k H̆k

Ĥk
_

Hk

][
Ẽk 0
0 0

] [
0̃k

0̂k

]

=

[
ẽk − H̃k Ẽk 0̃k
−Ĥk Ẽk 0̃k

]

=

[
ẽk − H̃k ẼkQk ẼkH̃T

k ẽk
−Ĥk ẼkQk ẼkH̃T

k ẽk

]
. (23)

Calculating 2-norm to the above equation (23) gives rise to

‖Pkek+1‖2

= ‖ek+1‖2 = ẽTk+1ẽk+1 + êTk+1êk+1

= ẽTk
(
I− H̃k ẼkQk ẼkH̃T

k

)T (
I− H̃k ẼkQk ẼkH̃T

k

)
ẽk

+ ẽTk (Ĥk ẼkQk ẼkH̃T
k )

T(Ĥk ẼkQk ẼkH̃T
k )ẽk

= ẽTk ẽk − ẽTk H̃k Ẽk (2Qk −QkMkQk) ẼkH̃T
k ẽk . (24)

Let

ηk = ẼkH̃T
k ẽk .

Mind that the matrix H̃k is invertible and all of components
of the vector ẽk are nonzero. Then∥∥ηk∥∥2 = ∥∥∥ẼkH̃T

k ẽk
∥∥∥2 = µk ∥∥ẽk∥∥2 6= 0.

In addition

λmin (Qk)
∥∥ηk∥∥2 ≤ ẽTk H̃k ẼkQk ẼkH̃T

k ẽk

= ηTkQkηk ≤ λmax (Qk)
∥∥ηk∥∥2 . (25)

And

ẽTk H̃k Ẽk (QkMkQk) ẼkH̃T
k ẽk =

(
Qkηk

)T
(Mk)Qkηk . (26)

From the denotations of Mk in (20) and Qk in (21), it is
easy to assert that the matricesMk andQk are symmetric and
positive definite. Therefore, equation (26) leads to

ẽTk H̃k Ẽk (QkMkQk) ẼkH̃T
k ẽk =

(
Qkηk

)T
(Mk)Qkηk

= δk · η
T
kQkQkηk , (27)

where δk is an appropriate constant satisfying 0 <

λmin (Mk) ≤ δk ≤ λmax (Mk) with λmin (Mk) and λmax (Mk)

respectively present the minimum and the maximum of the
eigenvalues of the matrix Mk .

Thus, equation (27) delivers

δk · λmin

(
Q2
k

) ∥∥ηk∥∥2 ≤ ẽTk H̃k Ẽk (QkMkQk) ẼkH̃T
k ẽk

≤ δk · λmax

(
Q2
k

) ∥∥ηk∥∥2 . (28)

Then equations (25) and (28) result in(
2λmim (Qk)− δkλmax

(
Q2
k

))
µk ‖ek‖2

≤ ẽTk H̃k Ẽk (2Qk −QkMkQk) ẼkH̃T
k ẽk , (29)

and

ẽTk H̃k Ẽk (2Qk −QkMkQk) ẼkH̃T
k ẽk

≤

(
2λmax (Qk)− δkλmin

(
Q2
k

))
µk ‖ek‖2 . (30)

From the expression (21), we have

λ (Qk) =
1

wk + λ (Mk)
,

λ
(
Q2
k

)
=

1

(wk + λ (Mk))
2 .

Denote

ξ∗k,min =

(
2λmim (Qk)− δkλmax

(
Q2
k

))
µk

=
2µk

wk + λmax (Mk)
−

δkµk

(wk + λmin (Mk))
2 , (31)

ξ∗k,max =

(
2λmax (Qk)− δkλmin

(
Q2
k

))
µk

=
2µk

wk + λmin (Mk)
−

δkµk

(wk + λmax (Mk))
2 . (32)

According to Lemma 2, there exists a constant wk > 0 so
that

0 < ξ∗k,min ≤ ξ
∗
k,max < 1. (33)

Let

vk = 1− ξ∗k,min.

Then

0 < vk = 1− ξ∗k,min < 1.

Thus, equations (24) and (29) reduce

0 ≤ ‖ek+1‖2 ≤ vk ẽTk ẽk = vk ‖ek‖2 . (34)

Let σk = max {qk , vk}.
Then inequalities (16) and (34) makes

‖ek+1‖2 ≤ σk ‖ek‖2 , with 0 < σk < 1.

This completes the proof.
Remark 2: It is no difficult to calculate that the matrix

HEkEkHT in this paper turns to be the matrix G̃e,k+1G̃T
e,k+1

in the reference [34]. It is recalled that Proposition 7 in
reference [34] has exhibited that the monotone convergence
is strictly ensured for the case when the smallest eigenvalue
of the matrix G̃e,k+1G̃T

e,k+1 or HEkEkHT are nonzero. But
the reference did not consider the insurance condition of the
tuning factor w for the following formula.(
I+ w−1k EkHTHEk

)−1
= I− w−1k EkHTHEk + (−w−1k EkHTHEk )2 + · · ·.

(35)
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In fact, from Taylor expansion, it is learnt that the equation
(35) holds if and only if ρ

(
w−1k EkHTHEk

)
< 1 .

Besides, for the case when some of the eigenvalues of
matrix G̃e,k+1G̃T

e,k+1 orHEkEkHT are zero, Proposition 7 in
reference [34] has presented that the projected tracking
error is strictly monotonously convergent. Here, as the refer-
ence mentioned, the projection of the tracking error means
to project the tracking error vector on the eigenvalues of
G̃e,k+1G̃T

e,k+1 that correspond to non-zero eigenvalues of
G̃e,k+1G̃T

e,k+1 . In authors’ opinion, the projection concept
here is beyond comprehension because the referencedid not
give an explicit formulation or explanation to express the
projection. Thus it is obscure that the projection of the track-
ing error vector isexactly to present the projection on the
nonzero components of the tracking error vector. Meanwhile,
as the projection operator is not an invertible transformation,
thus the monotonicity of the projected tracking error does
not definitely mean that the tracking error itself is strictly
monotonously convergent.
Remark 3: From the derivation of the case 2 which is equiv-

alent to that part components of the tracking error vector ek
are zero, it is noticed that the strictly monotone convergence
is guaranteed only if the tuning factor wk is chosen to ensure
the inequality (33) holds, though the derivation is quite dis-
tinct from the case 1. From the expression of ξ∗k,min in (31),
the range of wk is relevant to the eigenvalues of matrix Mk
that is expressed by nonzero components of the tracking error
vector ek and the corresponding Markov parameters. From
the proof of Lemma 2, it is worth y to emphasize that the
larger of the tuning factor wk guaranteeing (33) may yield the
smaller of the values ξ∗k,min . This is equivalent to the slower of

the convergent rate
(
1− ξ∗k,min

)
. This implies that we must

choose the tuning factor wk in an appropriate range neither
too small nor too large to ensure an expected convergence
rate

(
1− ξ∗k,min

)
. For the circumstance, it is evident that the

optimal learning gain vector 0k in (14) implies lim
k→∞

0k = 0.

IV. OPTIMIZED HIGHER-ORDER ITERATIVE
LEARNING CONTROL SCHEME
Consider a single-input-single-output (SISO) linear discrete-
time-invariant (LDTI) system whose dynamical description
is as follows.

x(n+ 1) = Ax(n)+ Bu(n),
y(n+ 1) = Cx(n+ 1),
x(0) = 0, n = 0, 1, · · ·, N − 1,

(36)

where N denotes the total sampling number, x(n), u(n) and
y(n) are p-dimensional state vector, scalar input and scalar
output, respectively.A,B andC are matrices with appropriate
dimensions, respectively. Assume that the system (36) satis-
fies the following conditions{

CAi−1B = 0, 1 ≤ i ≤ r − 1
CAiB 6= 0, i = r

(37)

Here, r is an integer larger than unity and Ai(i = 0, 1, · · · ,
r − 1) represents the i−th power of the matrix A. In the
circumstance, the relative degree of the system (36) is said
to be r . The definition can refer to reference [36].
From the assumption of (37), it is easy to acquire that

g1(i) = CAi−1B = 0, for 1 ≤ i ≤ r−1, and g1(r) 6= 0. Then,
for any input u = [u(0)|u(1)| · · · |u(N − 1)]T, equation (2)
makes

y(1) = y(2) = · · · = y(r − 1) = 0. (38)

For a predetermined desired trajectory
yd = [0| · · · |0|yd (r)|yd (r + 1)| · · · |yd (N )]T, formulate an
r-th-order D-type ILC as
u1(n), arbitrary given;

uk+1(n)

=

{
uk (n)+0k (n+ r)ek (n+ r), n=0, 1, · · ·,N − r;
uk (n), n = N−r+1, · · ·,N−1.

(39)

In algorithm (39), the subscript k , k = 1, 2, · · · denotes
the iteration index and 0k (n + r) is termed as the r-th-order
iteration-time-variable derivative learning gain, respectively.

For statement simplicity, denote

yN−rd = [yd (r)|yd (r + 1)| · · · |yd (N )]T ,

uN−rk = [uk (0)|uk (1)| · · · |uk (N − r)]T ,

urk = [uk (N − r + 1)|uk (N − r + 2)| · · · |uk (N − 1)]T ,

yN−rk = [yk (r)|yk (r + 1)| · · · |yk (N )]T ,

yrk = [yk (1)|yk (2)| · · · |yk (r − 1)]T .

From (38), we have

yrk = [yk (1)|yk (2)| · · · |yk (r − 1)]T = 0.

Then

yd =
[
0T|(yN−rd )T

]T
,

uk = [uk (0)|uk (1)| · · · |uk (N − 1)]T =
[
(uN−rk )T|(urk )

T
]T
,

yk = [yk (1)|yk (2)| · · · |yk (N )]T =
[
0T|(yN−rk )T

]T
.

Let

ek = yd − yk =
[
(erk )

T
|(eN−rk )T

]T
.

Here

erk = [ek (1)|ek (2)| · · · |ek (r − 1)]T = 0,

eN−rk = [ek (r)|ek (r + 1)| · · · |ek (N )]T .

Then ek =
[
0T|(eN−rk )T

]T
.

Meanwhile, equation (36) is reformed as

y = Hu, (40)
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where H =
[
011 012
HN−r 022

]
with 011, 012 and 022 being

nullity block matrices with appropriate dimensions and

HN−r

=



g1(r) 0 0 · · · 0
g1(r + 1) g1(r) 0 · · · 0
g1(r + 2) g1(r + 1) g1(r) · · · 0

...
...

...
. . .

...

g1(N ) g1(N − 1) g1(N − 2) · · · g1(r)

 .

Then HN−r is invertible.
Denote

0N−rk = [0k (r)|0k (r + 1)| · · · |0k (N )]T ,

0k = [0k (1)|0k (2)| · · · |0k (N )]T =
[
0T|(0N−rk )T

]T
,

8r
k = diag(ek (1), ek (2), · · · , ek (r − 1)) = 0,

8N−r
k = diag(ek (r), ek (r + 1), · · · , ek (N )),

8k = diag(ek (1), ek (2), · · · , ek (N )) = diag(0,8N−r
k ).

Then 8N−r
k is invertible.

The r-th-order D-type ILC (39) is thus rewritten as

uk+1 =
[(

uN−rk+1

)T
|
(
urk+1

)T]T
=

[
(uN−rk +8N−r

k 0N−rk )T|(urk )
T
]T
. (41)

According to the denotations, we have

ek+1

=

[
erk+1
eN−rk+1

]
=

[
erk

eN−rk

]
−

([
yrk+1
yN−rk+1

]
−

[
yrk

yN−rk

])
=

[
erk

eN−rk

]

−

[
011012

HN−r022

]([
uN−rk +8N−r

k 0N−rk
urk

]
−

[
uN−rk
urk

])
.

(42)

Then

ek+1 =

[
erk+1
eN−rk+1

]
=

[
0

eN−rk −HN−r8N−r
k 0N−rk

]
. (43)

Thus

‖ek+1‖2 =
∥∥∥eN−rk+1

∥∥∥2 = (eN−rk+1 )
TeN−rk+1

=

(
eN−rk −HN−r8N−r

k 0N−rk

)T
×

(
eN−rk −HN−r8N−r

k 0N−rk

)
=

∥∥∥eN−rk

∥∥∥2 − (eN−rk )THN−r8N−r
k 0N−rk

+ (0N−rk )T8N−r
k (HN−r )THN−r8N−r

k 0N−rk

− (0N−rk )T8N−r
k (HN−r )TeN−rk . (44)

According to the expressions of ek+1 and 0k , the mini-
mization problem (6) becomes

argmin
0k

J (0k) = argmin
0N−rk

J
(
0N−rk

)
=

∥∥∥eN−rk+1

∥∥∥2 + w̃k · ∥∥∥0N−rk

∥∥∥2 (45)

Substituting expression (44) into (45), we have

J
(
0N−rk

)
= (0N−rk )T8N−r

k (HN−r )THN−r8N−r
k 0N−rk

− (eN−rk )THN−r8N−r
k 0N−rk

− (0N−rk )T8N−r
k (HN−r )TeN−rk

+ (eN−rk )TeN−rk + w̃k (0
N−r
k )T0N−rk . (46)

The monotone convergence of the algorithm (41) is as
follows.
Theorem 2: Assume that the relative degree of the system

(36) is r > 1 and an appropriate tuning factor in (45) satis-
fies w̃k > λ

(
8N−r
k (HN−r )THN−r8N−r

k

)
. Then there exists

a unique OLGV 0N−rk for the minimization problem (45) so
that the ILOC law (39) drives the system (36) satisfying

‖ek+1‖2 ≤ σ̄k ‖ek‖2 , with 0 < σ̄k < 1

Proof: Calculating gradient of J
(
0N−rk

)
with respect to

argument 0N−rk in (46) reduces

∇J (0N−rk )

= 28r
k

(
(HN−r )THN−r8N−r

k 0N−rk − (HN−r )TeN−rk

)
+ 2w̃k0

N−r
k .

Letting ∇J (0N−rk ) = 0 results in

(w̃kIN−r +8N−r
k (HN−r )THN−r8N−r

k )0N−rk

= 8N−r
k (HN−r )TeN−rk .

Then

0N−rk =

(
w̃kIN−r +8N−r

k (HN−r )THN−r8N−r
k

)−1
·8N−r

k (HN−r )TeN−rk . (47)

Notice that the form of equation (47) is no other than
the form of equation (14) if neglecting the dimension dif-
ference and the superscripts. Analogous to the derivation of
Theorem 1, the conclusion of Theorem 2 is true.
Remark 4: As mentioned in Remark 1 that the matrix

HEkEkHT in this paper turns to be the matrix G̃e,k+1G̃T
e,k+1

in the reference [34]. From the derivations of Theorems 1 and
2 of this paper, it is observed that the nullity of eigenvalues of
the matrix HEkEkHT depends upon not only the singularity
of the system Markov parameters matrix H but also the sin-
gularity of the iteration-wise tracking error-relevant diagonal
matrix Ek . In particular, for the higher-order relative degree
of system (36), which implies the system Markov parameters
matrix H is singular, the order of the D-type ILC (39) must
match the relative degree of the system. For the circumstance,
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in virtue of rigorous derivation of Theorems 1 and 2, it is
significant that the strictly monotone convergence are guar-
anteed without any requirement to the systemMarkov param-
eters matrixH . Therefore, Theorems 1 and 2 in this paper are
regarded as non-conditional convergence conclusions. This
is the true essence what the ILC pursues as the learning-
gain vector is iteration-time-variable and full-dimensionally
adapted. Whilst the reference [34] has presented incomplete
monotone convergence, as remarked in Remark 2, under the
assumption that H+HT is positive definite.

FIGURE 1. Tracking behavior.

V. NUMERICAL SIMULATIONS
Example 1:Consider an SISO linear LDTI system as follows.

xk+1(n+ 1) =

 0.1 0 0
0 0.1 0
−0.04 −0.2 −1.8

 xk+1(n)
+

−20
0.4

 uk+1(n),
yk+1(n+ 1) =

[
0.04 0.2 0

]
xk+1(n+ 1); n ∈ S,

(48)

where the operation time samplings are set as S = {0, 1,
· · · , 49}, the initial state is set as [x1(0), x2(0), x3(0)]T = 0.
Obviously, the eigenvalues of the state matrix 0.1, 0.1
and−1.8, respectively. This means that system (48) is unsta-
ble as the modulus of eigenvalue −1.8 is greater than unity.
The desired trajectory is defined as yd (n + 1) = 1 − e−0.2n,
n ∈ S. It is testified CB = −0.08 6= 0, which implies that
the relative degree of the system (48) is unity. By impos-
ing the OILC (5) with the learning gain vector expressed
by (14) on system (48) and choosing the tuning factor as
wk = λmax

(
EkHTHEk

)
+ 10−6, the tracking behavior is

exhibited in Fig.1, where the solid curve stands for the desired
trajectory, the dash-dotted and dash ones are the outputs at
the third and sixth iterations, respectively. It is seen from
Fig.1 that the output tracks the desired trajectory very well.

FIGURE 2. Comparison of tracking error tendency.

Fig.2 displays a comparison of the tracking errors tenden-
cies of the proposed OILC (5) with the iteration-wise tuning
factorwk = λmax

(
EkHTHEk

)
+10−6 to that of with the fixed

tuning factor wk = 0.005. It is testified that the value wk =
0.005 does not satisfy convergence condition of Theorem 1
for some iterations but satisfies convergence condition in
reference [34]. In Fig.2, the solid curve is the tracking error
for the former case whilst the dash-dotted one is for the latter
case, respectively. The tracking error is measured in the form

of the 2-norm as ‖ek‖ =

√
50∑
n=1

(ek (n))2. From Fig.2, it is

noticed that the tracking error of the proposed OILC (5) with
the iteration-wise tuning factor converges much faster than
that of the fixed tuning factor.
Example 2: Consider an SISO LDTI system as follows.

xk+1(n+ 1) =
[
−0.1 −0.1
0.1 0.78

]
xk+1(n)

+

[
0
0.8

]
uk+1(n),

yk+1(n+ 1) =
[
0.5 0

]
xk+1(n+ 1); n ∈ S,

(49)

where the operation time interval is set as S =

{0, 1, · · · , 99} , the initial state is set as [x1(0), x2(0)]T = 0.
It is testified that CB = 0 and CAB = −0.4 6= 0, which
means that the relative degree of system (48) is r = 2.
For this, the desired trajectory is chosen as yd (1) = 0 and
yd (n + 1) = 0.5e(

n
100 )sin( 6n50 ), n ∈ S\ {0}, respectively.

It is testified that the symmetric matrix 1
2

(
H+HT

)
exists

negative eigenvalues, which implies that the system (49)
does not satisfy the convergence assumption addressed in
reference [34].

For comparison, the optimized second-order ILC (41) is
adopted. The iteration-variable tuning factor is selected as
w̃k = λmax(8

N−r
k (HN−r )THN−r8N−r

k ) + 10−6 and the
iteration-invariant tuning factor is fixed at w̃k = 0.01 that
fits to the circumstance w > 0 discussed in reference [34] but
does not satisfy convergence condition of Theorem 2 for some
iterations. The tracking behavior is depicted in Fig.3, where
the solid curve plots the desired trajectory, the dash-dotted
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FIGURE 3. Tracking behavior.

FIGURE 4. Comparison of tracking error tendency.

and the dash ones denote the outputs at the third and
sixth iterations, respectively. It is found that the OILC (41)
possesses perfect learning performance.

Fig.4 presents comparative tracking error tendencies of
the proposed OILC (41) with the selected iteration-variable
and iteration-invariant tuning factors, respectively, where the
solid curve remarks the tracking error for the former case
whilst the dash-dotted one is for the latter case, respectively.
It is observed that the tracking error produced by the OILC
(41) with the iteration-variable tuning factor possesses faster
convergence rate whist the tracking error made by the OILC
(41) with the fixed tuning factor renders weaker convergence.

VI. CONCLUSION
For linear discrete-time-invariant systems operated over
finite time length with relative degree being unity and
larger, respectively, two optimization criterions are respec-
tively investigated for the first-order and the higher-order
D-type iterative learning controls whose iteration-time-
variable learning-gain vectors are argued by minimizing the
sum of the tracking error energy and the learning effort
intensity proportioned by an iteration-variable tuning factor.

By solving the minimization problems, it is noticed that the
learning-gain matrices are strongly relevant to the tracking
error. This means that the addressed ILCs are nonlinear. This
is the key distinction from the existing NOILC and POILC.
Aiming at the explicit expressions of the achieved iteration-
time-variable learning-gain vectors, the strictly monotonous
convergences of the OILCs are arrived for the cases when
none of the components and part of the components of
the current tracking error is null, respectively. In particular,
the convergence derivations are quite complicated for the
case when part of the components is null. It needs to utilize
elementary transformations of a matrix to exploit the relation-
ship between the norm of the tracking error and the learning
gain matrices. From the derivations of Theorems 1 and 2,
it is acquired that when the order of the optimized ILC is
coincident to the relative degree of the system, the strictly
monotonous convergence is ensured without any additional
requirement to the system Markov parameter except the
range of the tuning factor. Besides, the convergence rate
is adjustable while scaling the tuning factor. Nevertheless,
it should point out that the solutions of the iteration-time-
variable learning-gain vectors and the monotonicity analysis
are based on the precision of the system Markov parameters
and the reset of the system initial state. For practical execu-
tions, the proposed OILCs must be robust to the parameter
uncertainty and the measurement perturbation. Meanwhile,
it is inspiring when the order does not match the relative
degree. In addition, it would become complicated when the
system dynamics is time-variable. The issues will be involved
in future works.
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