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ABSTRACT Class imbalance is a serious problem that plagues the semantic segmentation task in urban
remote sensing images. Since large object classes dominate the segmentation task, small object classes are
usually suppressed, so the solutions based on optimizing the overall accuracy are often unsatisfactory. In the
light of the class imbalance of the semantic segmentation in urban remote sensing images, we developed the
concept of the Down-sampling Block (DownBlock) for obtaining context information and the Up-sampling
Block (UpBlock) for restoring the original resolution. We proposed an end-to-end deep convolutional neural
network (DenseU-Net) architecture for pixel-wise urban remote sensing image segmentation. The main
idea of the DenseU-Net is to connect convolutional neural network features through cascade operations
and use its symmetrical structure to fuse the detail features in shallow layers and the abstract semantic
features in deep layers. A focal loss function weighted by the median frequency balancing (MFB_Focalloss)
is proposed; the accuracy of the small object classes and the overall accuracy are improved effectively
with our approach. Our experiments were based on the 2016 ISPRS Vaihingen 2D semantic labeling
dataset and demonstrated the following outcomes. In the case where boundary pixels were considered (GT),
MFB_Focalloss achieved a good overall segmentation performance using the same U-Net model, and the F1-
score of the small object class ‘‘car’’ was improved by 9.28% compared with the cross-entropy loss function.
Using the same MFB_Focalloss loss function, the overall accuracy of the DenseU-Net was better than that
of U-Net, where the F1-score of the ‘‘car’’ class was 6.71% higher. Finally, without any post-processing,
the DenseU-Net+MFB_Focalloss achieved the overall accuracy of 85.63%, and the F1-score of the ‘‘car’’
class was 83.23%, which is superior to HSN+OI+WBP both numerically and visually.

INDEX TERMS Class imbalance, deep convolutional neural networks, median frequency balancing,
semantic segmentation, urban remote sensing images.

I. INTRODUCTION
The semantic segmentation task of remote sensing images
classifies each pixel in remote sensing images. When deal-
ing with very-high spatial resolution (VHR) remote sensing
images, the spectral resolution and spatial resolution are
mutually constrained [1], so the sensor makes a trade off
with the spectral resolution to gain a high spatial resolution.
Therefore, when analyzing the spectral information of single
pixels, the spatial context needs to consider the spatial fea-
tures, such as those that are textural [2] or morphological [3].
These features consider the neighborhood around a pixel as
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part of its own features and allow for the placement of spectral
features in context.

The above spatial features need manual extraction, and the
aim of deep learning is to train a parametric system for feature
extraction jointly with classifiers in an end-to-end manner
to avoid the manual extraction of the spatial feature. With
the development of deep learning, the Convolutional Neural
Networks (CNN) has been pioneered by Krizhevsky et al. [4].
Researchers have alsomade a series of breakthroughs in com-
puter vision, such as image classification, object detection,
semantic segmentation, and other tasks. The great success of
CNNs is mainly due to their excellent feature description for
visual data. Deep networks extract features better than arti-
ficial feature engineering [5]. The development of hardware
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technology and the increasing number of pre-training models
have increased the influence of CNNs in the field of remote
sensing research.

Remote sensing images are often characterized by com-
plex data properties in the form of heterogeneity and class
imbalances, as well as overlapping class-conditional distri-
butions [6]. Class imbalance is a public issue of the semantic
segmentation task of urban remote sensing images [7]. The
classes of land cover in remote sensing images are often
highly imbalanced, and some land cover classes are relatively
small, which is a challenge to the semantic segmentation
task. Since the small object classes are usually suppressed,
the solutions based on optimizing the overall accuracy are
often unsatisfactory [8].

II. RELATED WORK
In 2012, the classic deep CNN, AlexNet [4], was devel-
oped and achieved the best results of the year in the image
classification task of ImageNet image recognition competi-
tion. Subsequently, the deeper ZFNet [9], VGGNet [10], and
GoogLeNet [11] were successively proposed.

These CNNs are quite effective for extracting deep
features and classifying scene images, but do not have
much effect on the pixel-level semantic segmentation tasks.
In 2015, Long et al. [12] proposed that full convolutional
network (FCN) achieved the best results in the image seg-
mentation task of the PASCAL VOC visual recognition com-
petition. The FCN consists of an encoder and decoder. The
encoder is similar to the traditional CNN in that it extracts
deep abstract features, and the decoder restores these features
to dense prediction maps of the same size as the input images.
In the same year, Ronneberger et al. [13] designed a multi-
scaleU-Net based on FCN. The architecture not only achieves
the consistency of the input and output image resolution, but
also fuses shallow and deep features; U-Net was successfully
applied to biomedical images. U-Net achieved the best results
of segmentation at that time and was applied to medical
images and natural scene images.

In recent years, deep learning has been applied to the
semantic segmentation of remote sensing images. In 2012,
Mnih andHinton [14] used deep neural networks for semantic
segmentation in aerial images, two kinds of loss functions
were proposed to reduce the influence of omission noise and
registration noise on classifiers. This method achieved better
results than traditional methods and showed the potential of
applying deep learning technology for semantic segmentation
in remote sensing images. In 2013, Mnih [15] assembled
two datasets released by the state of Massachusetts and a
dataset released by the state of New York, the target maps
for all three datasets were generated using data from the
OpenStreetMap project, and published the first public dataset
of large roads and buildings detection. It further promoted
the development of semantic segmentation in remote sensing
images. In 2016, Kampffmeyer et al. [6] adopted 2 different
structures: the first was a patch-based pixel classification
that used 65 × 65 pixel blocks for dense segmentation, and

the second was pixel-to-pixel segmentation, where the con-
volutional layers of the contracting path are followed by a
deconvolutional layer, and the features are directly upsampled
back to the original image resolution. The disadvantage of
the second approach is that some details of the images are lost.
In the same year, Saito et al. [16] proposed a new channel-
wise inhibited softmax (CIS) function instead of the original
softmax function, which effectively solved the multi-object
semantic segmentation in remote sensing images. In 2017,
Volpi and Tuia [17] proposed a CNN-FPL model based
on U-Net for generating dense labeling maps, which had
the advantage of the convolutional layers of the contracting
path being followed by multi-layer deconvolutional layers
to restore the features back to the original image resolution
layer by layer. This approach helps to retain the details of
the images. In the same year, Iglovikov et al. [18] applied
the idea of a skip connection to the U-Net and concatenated
the features of the shallow and deep layers to improve the
utilization of the feature information. Liu et al. [19] proposed
an Hourglass-Shape Networks (HSN) and introduced the
Inception module to provide the network with multi-scale
receptive areas with rich context. In 2018, Gao et al. [20]
proposed a multiple feature pyramid network (MFPN), which
is used for road extraction of remote sensing images, and
given a weighted balance loss function is presented to solve
the class imbalance problem caused by the sparseness of
roads.

We propose an end-to-end fully convolutional network,
DenseU-Net, which is based on the work of U-Net [13].
DenseU-Net connects the CNN features through cascade
operations and through its symmetrical structure composed
of continuous DownBlocks and UpBlocks. The features in
the shallow layers, such as color and texture, are merged with
the abstract semantic features in the deep layers through the
skip connection. This approach alleviates the problem with
the accuracy, which degrades as the network depth increases.
MFB_Focalloss, which is a focal loss weighted by the median
frequency balancing, is given. MFB_Focalloss improves the
overall segmentation accuracy, especially the segmentation
accuracy of small object classes. The main contributions of
this paper are as follows:

1) A focal loss functionweighted by themedian frequency
balancing (MFB_Focalloss) is given. The loss of the
classes is weighted by the ratio of the median class fre-
quency in the training set and the actual class frequency,
and a factor is introduced based on the standard cross
entropy loss function to reduce the relative loss for
well-classified examples, putting more focus on hard-
misclassified examples. In the case of using the same
U-Net, the overall accuracy ofMFB_Focalloss is better
than CEloss. In particular, the F1-score of the ‘‘car’’
class increases by 9.28%.

2) Based on the U-Net structure and the idea of dense
connection, the concept of the down-sampling block
(DownBlock) for obtaining context information and
the up-sampling block (UpBlock) for restoring the
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FIGURE 1. DenseU-Net network architecture.

original resolution are given, and an end-to-end deep
convolutional neural network (DenseU-Net) architec-
ture is proposed. In the case of using the same
MFB_Focalloss, the F1-score of each class, average F1-
score, and overall accuracy of DenseU-Net are better
than those of U-Net. In particular, the F1-score of the
‘‘car’’ class is 6.71% higher.

3) Without any post-processing, DenseU-Net+MFB_
Focalloss achieves an overall accuracy of 85.63%,
which is still better than the 85.39% of HSN+OI+
WBP. The F1-score of the ‘‘car’’ class for DenseU-
Net+MFB_Focalloss exceeds 7.28%.

III. PROPOSED METHODS
DenseU-Net consists of a contracting path for obtaining con-
text information and an expanding path for precise posi-
tioning, as shown in Figure 1. The contracting path of
DenseU-Net is composed of 5 consecutive downsampling
blocks (DownBlocks), and the expanding path is also com-
posed of 5 consecutive upsampling blocks (UpBlocks). Each
DownBlock is connected to the corresponding UpBlock from
the expanding path by a connected channel. After eachDown-
Block, the number of feature dimensions doubles, and after
each UpBlock, the number of feature dimensions is halved.
The network does not use any fully connected layers, and
the Softmax layer is used for the dense prediction of the
features of the output. The network input images consist
of 3 channels of true ortho photo images (TOP images). The
detailed parameters of each layer are shown in Table 1.

A. DOWNBLOCK
The DownBlock structure was inspired by Dense connec-
tions [21], and the structure is shown in Figure 2. The input
x of the DownBlock are feature maps of the D-dimensional
H×W. The input feature maps for feature extraction occur
through 2 densely connected convolutional layers. The 2 con-
volutional layers both useD-dimensional convolution kernels
with a filter size of 3×3 and stride size of 1 × 1. The output

TABLE 1. Detailed parameters of each layer of DenseU-Net.

y2 of the second convolutional layer, input x of DownBlock,
and output y1 of the first convolutional layer are connected by
a cascade operation. The connected 3D-dimensional feature
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FIGURE 2. Details of the DownBlock.

maps are reduced toD-dimensions by theD-dimensional con-
volution kernels with a filter size of 1×1. There is a Rectified
Linear Unit (ReLU) layer and a Batch Normalization (BN)
layer that come after the convolutional layers. The reduced
dimensional features not only serve as the input of the max
pooling layer, but also pass the reduced dimensional features
to the corresponding UpBlock.

The formal definition of the DownBlock structure is as
follows:

DownBlock = < x, Wi, σ (·), yi, cas, Wd , z, mp, o>
The structure is defined as a tuple with the following

components:
x: x indicates the input of the DownBlock;
Wi: Wi indicates the i-th 3 × 3 convolution operation,

x = 1, 2;
σ (·): σ (·) indicates a composite function, i.e., Rectified

Linear Unit and Batch Normalization;
yi: yi indicates the output of the i-th 3 × 3 convolution

operation, i= 1, 2;
cas: cas indicates the cascade operation;
Wd :Wd indicates the 1×1 convolutional dimension reduc-

tion operation;
z: z indicates the reduced dimensional features;
mp: mp indicates the max pooling operation; and
o: o indicates the output of the DownBlock.
Suppose x represents the D-dimensional input features of

the DownBlock; the outputs y1 of the first convolutional

layer are

y1 = σ (W1 · x), (1)

where W1 indicates the first convolution operation and
σ (·) indicates a composite function, i.e., the Rectified Linear
Unit and Batch Normalization.

The outputs y1 of the first convolutional layer are con-
nected to the inputs x of the DownBlock by the cascade oper-
ation. The connected 2D-dimensional feature maps serve as
the inputs of the second convolutional layer, and the outputs
y2 of the second convolutional layer are

y2 = σ (W2(σ (W1 · x)+ x))

= σ (W2(y1 + x)), (2)

where W2 indicates the second convolution operation.
Similarly, the outputs y1 of the first convolutional layer,

outputs y2 of the second convolutional layer, and inputs x
of the DownBlock are connected by the cascade operation.
The connected 3D-dimensional feature maps are reduced to
D-dimensions by theD-dimensional convolution kernels with
a filter size of 1× 1. This approach is beneficial for improv-
ing the computational efficiency. The reduced dimensional
features z are

z = Wd (σ (W2(σ (W1 · x)+ x))+ σ (W1 · x)+ x)

= Wd (y2 + y1 + x). (3)

Finally, the reduced dimensional features z not only serve
as the input of themax pooling layer, but also pass the reduced
dimensional features to the corresponding UpBlock.

B. UPBLOCK
UpBlock helps to integrate more accurate output, and its
structure is similar to the DownBlock, as shown in Figure 3.
The input x1 of the UpBlock structure contains the feature
maps of D-dimensional H×W. The input feature maps are
upsampled by transposed convolution with a stride size of
2× 2, and the size of the feature maps is restored to 2H×2W.
Then, the upsampled features are fused with the same-sized
feature maps of the corresponding DownBlock from the
contracting path. The fused feature maps are reduced to
D-dimensions by theD-dimensional convolution kernels with
a filter size of 1 × 1. The reduced dimensional features for
feature extraction through 2 densely connected convolutional
layers occur through 2 convolutional layers that both use
D-dimensional convolution kernels with a filter size of 3× 3
and stride size of 1 × 1. The output features y4 of the sec-
ond convolutional layer, input y2 of the 2 densely connected
convolutional layers, and output y3 of the first convolutional
layer are connected by the cascade operation. The connected
3D-dimensional feature maps are reduced to D-dimensions
by the D-dimensional convolution kernels with a filter size
of 1 × 1. There is a Rectified Linear Unit (ReLU) layer
and a Batch Normalization (BN) layer that come after the
convolutional layers.
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FIGURE 3. Details of the UpBlock.

The formal definition of the UpBlock structure is as
follows:

UpBlock = < x1, W T
t , σ (·), x2, Wi, yi, cas, Wd , o>

The structure is defined as a tuple with the following
components:
x1: x1 indicates the input of the UpBlock;
W T
t : W

T
t indicates the transposed convolution operation;

σ (·): σ (·) indicates a composite function, i.e., the Rectified
Linear Unit and Batch Normalization;
x2: x2 indicates the feature transmitted by the correspond-

ing DownBlock;
Wi: Wi indicates the i-th 3 × 3 convolution operation,

i = 1, 2;
yi: yi indicates the output of the i-th convolution operation,

i = 1, 2, 3, 4;
cas: cas indicates the cascade operation;
Wd :Wd indicates the 1×1 convolutional dimension reduc-

tion operation; and
o: o indicates the output of the UpBlock.
Suppose x1 represents the D-dimensional input features of

the UpBlock, and the outputs y1 of the transposed convolu-
tional layer are

y1 = σ (W T
t · x1), (4)

whereW T
t indicates the transposed convolution operation and

σ (·) indicates a composite function, i.e., the Rectified Linear
Unit and Batch Normalization.

The outputs y1 of the transposed convolutional layer are
cascaded to the features x2 transmitted by the correspond-
ing DownBlock. The cascaded feature maps are reduced to
D-dimensions by theD-dimensional convolution kernels with
a filter size of 1 × 1. The reduced dimensional features y2
are

y2 = Wd (σ (W T
t · x1)+ x2)

= Wd (y1 + x2). (5)

The reduced dimensional features y2 are used as the inputs
of the 2 densely connected convolutional layers, and the
outputs y3 of the first convolutional layers are

y3 = σ (W1 · y2), (6)

where W1 indicates the first convolution operation.
The outputs y3 of the first convolutional layer are con-

nected to the inputs y2 of the 2 densely connected con-
volutional layers by the cascade operation. The connected
2D-dimensional feature maps serve as the input of the second
convolutional layer. The outputs y4 of the second convolu-
tional layer are

y4 = σ (W2(y3 + y2)), (7)

where W2 indicates the second convolution operation.
Finally, the outputs y3 of the first convolutional layer,

outputs y4 of the second convolutional layer and inputs y2 of
the 2 densely connected convolutional layers are connected
by the cascade operation. The connected feature maps are
reduced to D-dimensions by the D-dimensional convolution
kernels with a filter size of 1×1. The outputs o of theUpBlock
are

o = Wd (y4 + y3 + y2). (8)

C. LOSS FUNCTION
Due to the skewed distribution of the ground objects, remote
sensing samples encounter the class imbalance problem. The
class imbalance problem typically occurs when, in a clas-
sification problem, there are many more instances of some
classes than others. In such cases, the standard classifiers
tend to be overwhelmed by the larger classes and ignore
the smaller ones [22]. Class imbalance causes 2 problems:
(1) training is inefficient, as most locations are easy nega-
tives that contribute no useful learning signals; (2) en masse,
the easy negatives can overwhelm training and lead to degen-
erate models [23].

1) MEDIAN FREQUENCY BALANCING
At present, the common method used in the image semantic
segmentation task is to utilize the cross-entropy loss function
to train the model. The cross-entropy loss function CEloss is
as follows:

CE loss = −
1
N

N∑
n=1

C∑
c=1

l(n)c · log (p
(n)
c ), (9)
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where N is the number of samples in a mini-batch, p(n)c is
the softmax probability of sample n being in class c, l(n)c
corresponds to the label of sample n for class cwhen the label
is given in one-hot encoding, and C is the set of all of the
classes.

However, as this loss is computed by the summation over
all of the pixels, it does not account well for the imbalanced
classes [6]. In order to consider the imbalanced classes,
a common method is to introduce a weighting factor. Inspired
by Eigen and Fergus [24], the loss of the classes is weighted
using the median frequency balancing. Median frequency
balancing weights the class loss by the ratio of the median
class frequency in the training set and the actual class fre-
quency. The cross-entropy loss function weighted by the
median frequency balancing MFB_CEloss is as follows:

MFB_CE loss = −
1
N

N∑
n=1

C∑
c=1

wc · l(n)c · log (p
(n)
c ), (10)

where

wc =
median(fc | c ∈ C)

fc
. (11)

wc is the class weight for class c, fc is the frequency of
pixels in class c, andmedian(fc) is themedian value of each fc.

2) MFB_Focalloss LOSS FUNCTION
Although the introduction of a weighting factor balances
the importance of positive and negative samples, it does not
distinguish between the easy and hard samples. Inspired by
Lin et al. [23], the focal loss function was introduced to
reduce the burden of the easy samples, thus putting more
focus on the hard samples. The focal loss introduces a factor
(1-p(n)c )2 based on the standard cross-entropy loss, and the
focal loss function weighted by the median frequency bal-
ancing MFB_Focalloss is as follows:

MFB_Focalloss = (1− p(n)c )2 ·MFB_CEloss (12)

The factor (1 − p(n)c )2 reduces the loss contribution from
the easy samples and extends the range in which an example
receives a low loss. For instance, when p(n)c = 0.9, the factor
(1-p(n)c )2 = 0.01, MFB_Focalloss would have a 100× lower
loss compared with that of MFB_CEloss. However, when
p(n)c = 0.1, the factor (1-p(n)c )2 = 0.81, so MFB_Focalloss
would put more focus on the hard samples.

IV. EXPERIMENTS AND ANALYSIS
The International Society for Photogrammetry and Remote
Sensing (ISPRS) meets every 4 years. The dataset used to
evaluate our proposed method was the 23rd ISPRS Vaihingen
2D semantic labeling contest dataset [25]. The DenseU-Net
proposed in this paper was compared with the U-Net [13] and
Hourglass-Shaped Network (HSN) [19]. It is worth noting
that the original U-Net was designed and tested on biomed-
ical images. We strictly followed the U-Net design and
used the Vaihingen dataset to train our model from scratch.

The HSN uses the cross-entropy loss function weighted by
the median frequency balancingMFB_CEloss for experimen-
tation. By using the overlap inference (OI) to systematically
improve the accuracy of each class, post-processing using
weighted belief propagation (WBP) further improved the
overall accuracy. According to the rules of the contest, the
F1-score of each class, average F1-score, and overall accu-
racy were selected for evaluation.

A. DATASET
We used the Vaihingen dataset [25] for our experiments. The
dataset consists of 33 high resolution true ortho photo (TOP)
images of varying size, ranging from approximately 3 million
to 10 million pixels each. The image patch was taken of
Vaihingen with a ground sampling distance of 9 cm. The
ground truth images (GT images) were available for 16 of
the 33 images, in which all of the pixels were labeled
by 1 of 6 classes, namely Impervious Surfaces, Building,
Low Vegetation, Tree, Car, or Clutter/Background. The
‘‘Clutter/Background’’ class includes water bodies and other
objects (e.g., containers, tennis courts, and swimming pools),
and it only accounted for a very small number of pixels,
as shown in Table 2 and Figure 4. Therefore, just as with the
HSN [19], we ignored the ‘‘Clutter/Background’’ class when
evaluating the results.

TABLE 2. The pixel number of each class in the training set.

FIGURE 4. The proportion of pixels for each class in the training set.

We found that the Vaihingen dataset provided 16 ground
truth images that ignored the boundary pixels (erGT images)
corresponding to the GT images. To reduce the effect of the
class boundaries, the class boundaries were erodedwith a disk
of radius 3 and ignored during evaluation, as specified by the
ISPRS.

For fairness, and to follow the example of HSN [19], 16 GT
images were divided into a training and test set. The training
set consisted of 11 images (area: 1, 3, 5, 7, 13, 17, 21, 23, 26,
32, and 37) and the test set consisted of 5 images (area: 11,
15, 28, 30, and 34).

In this paper, 11 TOP images from the training set and
corresponding GT images were cut into 256 × 256 images,
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TABLE 3. Performance of the different models.

and 50% of the neighboring images overlapped. Each cut
image and its corresponding GT image were rotated (0◦, 90◦,
180◦, and 270◦), and then each rotated image was horizon-
tally flipped, yielding 8 augmentations per cut image.

B. EVALUATION INDEX
To evaluate our method, we used the F1-score as an evalua-
tion criterion for measuring the accuracy of each class and
used the percentage of pixels that predict the correct class
as the overall accuracy. Both values were between 0 and 1.
The closer the value was to 1, the higher its accuracy. The
2 parameters used to calculate the F1-score involve precision
and recall, which are respectively defined as

precision(c) =
TP
P
× 100%, (13)

recall(c) =
TP
C
× 100%, (14)

where TP indicates that the model correctly predicts the pixel
number of class c, P represents the total pixel number in
which the model predicts the samples as class c, and C is the
total pixels number of class c in the sample.
The precision is the percentage of the correct results in

the total results predicted by the model. The recall is the
percentage of the correct results predicted by the model in the
truth label of the sample. The F1-score also takes into account
the precision and recall of the model, and its definition is as
follows:

F1 =
2× precision(c)× recall(c)
precision(c)+ recall(c)

× 100%. (15)

The overall accuracy is the percentage of pixels that predict
the correct class, defined as

Accuracy =
T
A
× 100%, (16)

where T represents the pixels number of the predict correct
class, and A is the total number of all of the pixels.

C. RESULTS
In the Vaihingen dataset, the ‘‘car’’ class is difficult to handle
because the ‘‘car’’ class is a relatively small object compared

to other classes. As shown in Table 2 and Figure 4, the pixel
number of the ‘‘car’’ class is much smaller than that of other
classes, and there are large differences between the classes.
The diversity of the car color in the images also leads to
large differences within the class. Table 3 shows the exper-
imental results of different models in the Vaihingen dataset.
As shown in Table 3, DenseU-Net+MFB_Focalloss is supe-
rior to other models in terms of its F1-score for each class,
average F1-score, and overall accuracy. In order to verify
the validity of MFB_Focalloss, we did a comparative experi-
ment using U-Net+CEloss and U-Net+MFB_Focalloss. In the
case where the boundary pixels were taken into account,
U-Net+MFB_Focalloss shows an increase of 9.28% in the
‘‘car’’ class compared to U-Net+CEloss, while still main-
taining a good overall accuracy. In order to verify the per-
formance of DenseU-Net, we retrained DenseU-Net+CEloss
and DenseU-Net+MFB_Focalloss. As shown in Table 3, the
F1-score of the ‘‘car’’ class for DenseU-Net+CEloss
increased by 15.97% compared with that of U-Net+CEloss.
The F1-score of other classes improved to varying degrees,
while the average F1-score and overall accuracy increased by
4.63% and 1.82%, respectively. The F1-score of the ‘‘car’’
class for DenseU-Net+MFB_Focalloss increased by 6.71%
compared with that of U-Net+MFB_Focalloss, while the
average F1-score and overall accuracy increased by 3.23%
and 2.42%, respectively.

Compared with HSN+OI+WBP, DenseU-Net+MFB_
Focalloss does not use any post-processing and achieves an
overall accuracy of 85.63%, which is still better than the
85.39% of HSN+OI+WBP. The F1-score of each class
improved to varying degrees, especially the ‘‘car’’ class. The
F1-score of the ‘‘car’’ class for DenseU-Net+MFB_Focalloss
exceeds 7.28%.

In the case where the border pixels were ignored (erGT),
all models performed better than in the case in which the
border pixels were taken into account (GT). This result
is due to the ambiguities around the object boundaries.
As shown in Table 3, in the case where the border pixels
were ignored (erGT), DenseU-Net+MFB_Focalloss achieves
an overall accuracy of 88.92%, which is still better than
HSN+OI+WBP.
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FIGURE 5. Visual comparison of the overall semantic segmentation results in the Vaihingen dataset. (a) TOP. (b) GT. (c) erGT.
(d) HSN+OI+WBP. (e) U-Net+CEloss. (f) U-Net+MFB_Focalloss. (g) DenseU-Net+CEloss. (h) DenseU-Net+MFB_Focalloss.

DenseU-Net architecture extracts CNN features using con-
tinuous DownBlocks during the contracting path, which
enables the architecture to obtain context information, and
restores the resolution of image layer by layer using con-
tinuous UpBlocks during the expanding path, which enables
the architecture to obtain position information. Meanwhile,
DenseU-Net applies its symmetrical structure to fuse the
detail features in shallow layers and the abstract semantic
features in deep layers, which contributes to feature extraction
of small object class.MFB_Focalloss balances the importance
between positive and negative samples by means of median
frequency balancing, and a factor is introduced to reduce
the relative loss for well-classified examples, putting more
focus on hard-misclassified examples, optimizing the training
process and helping feature extraction of hard-misclassified
examples.

Figure 5 shows a visual comparison of the overall seman-
tic segmentation results in the Vaihingen dataset for dif-
ferent models. The overall accuracy for DenseU-Net+
MFB_Focalloss is better than that of the other models.

Figure 6 shows a visual comparison of the local semantic seg-
mentation results in the Vaihingen dataset for different mod-
els. DenseU-Net+MFB_Focalloss performs better than other
models in the ‘‘car’’ class. The segmentation effect is more
accurate and the boundaries are smoother than what is found
in other models. For instance, for the ‘‘Low vegetation’’ class
in the upper right corner of image, HSN+OI+WBP and
U-Net (U-Net+CEloss and U-Net+MFB_Focalloss) are mis-
classified as ‘‘Tree’’, but the results of DenseU-Net (DenseU-
Net+CEloss and DenseU-Net+MFB_Focalloss) have been
greatly improved. For the ‘‘Building’’ class in the cen-
ter of image, the segmentation results of DenseU-Net
(DenseU-Net+CEloss and DenseU-Net+MFB_Focalloss) are
significantly better than that of U-Net (U-Net+CEloss and
U-Net+MFB_Focalloss). It is proved that DenseU-Net can
effectively improve the segmentation performance. For the
‘‘Low vegetation’’ class in the upper left and lower left cor-
ners of image, DenseU-Net+CEloss and U-Net+CEloss are
misclassified as ‘‘Tree’’, but DenseU-Net+MFB_Focalloss
and U-Net+MFB_Focalloss get more accurate segmentation

65354 VOLUME 7, 2019



R. Dong et al.: DenseU-Net-Based Semantic Segmentation of Small Objects in Urban Remote Sensing Images

FIGURE 6. Visual comparison of the local semantic segmentation results in the Vaihingen dataset. (a) TOP. (b) GT. (c) erGT.
(d) HSN+OI+WBP. (e) U-Net+CEloss. (f) U-Net+MFB_Focalloss. (g) DenseU-Net+CEloss. (h) DenseU-Net+MFB_Focalloss.

results. It is proved that MFB_Focalloss can effectively
improve the segmentation performance. For the small object
class ‘‘Car’’, it can be clearly seen that the segmen-
tation performance of DenseU-Net (DenseU-Net+CEloss
and DenseU-Net+MFB_Focalloss) are better than U-Net
(U-Net+CEloss and U-Net+MFB_Focalloss). Meanwhile,
compared with HSN+OI+WBP, DenseU-Net+MFB_
Focalloss gets more accurate segmentation results and
smoother boundary.

V. CONCLUSIONS
To address the class imbalance problem of semantic segmen-
tation in urban remote sensing images, an end-to-end deep
convolutional neural network (DenseU-Net) architecture for
pixel-wise urban remote sensing image segmentation is pro-
posed in this paper. The DenseU-Net applies the continuous
DownBlocks in the contracting path to extract the CNN fea-
tures, and applies the continuous UpBlocks in the expanding
path to restore the resolution of the image. This method
preserves the details such as the color and texture of the
images. DenseU-Net applies its symmetrical structure to fuse
the detail features in shallow layers and the abstract seman-
tic features in deep layers. A focal loss function weighted
by the median frequency balancing (MFB_Focalloss) is pro-
posed that facilitates the feature extraction of small object
classes. The experiment on the Vaihingen dataset shows that
DenseU-Net+MFB_Focalloss can identify the small objects
class ‘‘car’’ well, while still maintaining good overall accu-
racy, which is superior to the other models tested both
numerically and visually.
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