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ABSTRACT The concept of a system, generally defined as an organized set of detailed methods, procedures,
and routines that are created to carry out a specific activity or solve a specific problem, has been successfully
applied to many domains, ranging from mechanical systems to public health. System health monitoring and
management (SHMM) refers to the framework of continuous surveillance, analysis, and interpretation of
relevant data for system maintenance, management, and strategic planning. This framework is essential to
ensure that an entire system is stable and under control. A fundamental problem in SHMM is the optimal
use of correlated active and passive data in tasks including prediction and forecasting, monitoring and
surveillance, fault detection and diagnostics, engineeringmanagement, and supply chainmanagement. In this
paper, we provide a new perspective on SHMM in a big data environment, discuss its relationship with other
disciplines, and present several of its applications to complex systems.

INDEX TERMS Active and passive data, big data, complex systems, system health monitoring and
management.

I. INTRODUCTION
With the rapid development of information technology, social
media, data collection capacity, and data storage, the field
of big data analytics is now rapidly expanding into all sci-
ence and engineering domains. Real-world applications such
as telecommunications, health care, pharmaceuticals, and
finance generate massive amounts of data round the clock [1].
Taking online social media alone, for instance, today’s cus-
tomer base is estimated to generate 2.5 quintillion bytes of
data per day in the form of tweets, likes, comments, blogs,
videos, and images [2]. These big data streams contain abun-
dant information stored in the form of hidden patterns and
unknown correlations. Analyzing big data streams that were
previously untapped or inaccessible will enable new insights
resulting in better and faster decisions.

The process of examining big data to uncover hidden pat-
terns, unknown correlations, and other insights is referred to
as big data analytics [3]. Its primary goal is to help make
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intelligent decisions through analyzing large data streams
from multiple sources. Big data analytics has benefited many
industries in various aspects, and created many opportunities
for research [4]–[6]. At the same time, many challenges have
been raised along with these opportunities, such as increased
noise in large data, and under-developed policies for protect-
ing individual privacy and security [7].

Systems health monitoring and management (SHMM)
presents a new opportunity for big data-related research.
SHMM refers to the framework of continuous surveillance,
analysis, and interpretation of relevant data for system main-
tenance, management, and strategic planning. This frame-
work is essential to ensuring that an entire system is stable
and under control. The concept of the ‘‘system’’, generally
defined as ‘‘an organized set of detailed methods, procedures,
and routines created to carry out a specific activity or solve
a specific problem’’, has been successfully applied to
many domains, ranging from mechanical systems to public
health [8]–[10]. A fundamental problem in SHMM is the opti-
mal use of correlated active and passive data in tasks includ-
ing prediction and forecasting, monitoring and surveillance,
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fault detection and diagnostics, engineering management,
supply chain management, and many more. A promising
aspect of research into SHMM is a focus on complex systems,
which can be either machine or human. In complex human
and engineering systems, challenging research problems may
arise in various domains driven by big data analytics, such
as syndromic surveillance [11], [12], electronics-rich sys-
tem management [13], simulation and optimization of emer-
gency departments in medical systems, [14] and mass transit
planning [15].

This paper reviews the issues facing big data analytics
associated with SHMM in a general sense, by discussing
the evolution of big data analytics, categorizing data types
based on data sources and collection processes, and providing
specific insights into the research opportunities and chal-
lenges brought about by big data. Specifically, we propose
a general framework of SHMM, discuss its relationship with
other disciplines, and provide several application examples
of SHMM for complex systems and critical components in
a big data environment. The rest of this paper is organized
as follows. In Section II, the evolution of big data analytics
is reviewed. In Section III, the various sources and types
of big data are introduced. In Section IV, the formulation
and general framework of SHMM are presented. The rela-
tionship between SHMM and other disciplines is clarified
in Section V. In Section VI and VII, SHMM for complex
systems in a big data environment is introduced. Further
discussions of SHMM are presented in Section VIII. Finally,
Section IX concludes the paper.

II. EVOLUTION OF BIG DATA ANALYTICS
The origin of big data analytics can be traced back to
the 1970s or before, when research communities in com-
puter science (CS) and statistics, working in fields such as
machine learning and statistical computing, began to play a
major role in data mining. In the following decade, the scale
and volume of data grew dramatically due to the increasing
capability of computing power and automation. To distin-
guish these large datasets from conventional data, they were
referred to as ‘‘very large databases’’ (VLDBs) or ‘‘massive
data’’ (MD) sets among the CS and statistics communities.
The 1990s witnessed an unprecedentedly fast development
and maturation of the methodology and theoretical foun-
dations of data analytics across various disciplines from
data mining, statistical learning, to knowledge discovery in
databases (KDD), and we will label this as the first wave
of big data analytics. In this period, the development of data
analytics fell primarily in the realm of academia.

Humanity has never stopped pushing the boundary of
knowledge. After the first wave, the huge success in
methodological and theoretical development of data analytics
quickly spread to every corner of the research world, and even
industry. The value of big data was increasingly recognized
as its potential to change and improve society and human
lives became apparent. Since 2000, big data analytics has
been successfully adopted in many more disciplines, such as

FIGURE 1. A brief history of big data analytics.

business analytics in business and management schools, and
informatics in the fields of science and engineering, including
bioinformatics, health informatics, systems informatics, etc.
We label this period as the second wave, which was accompa-
nied by a parallel development in the fundamentals of big data
analytics in academia, education, and industry. Fig. 1 briefly
depicts the history we have outlined above, to provide a clear
picture of the evolution of big data analytics.

III. BIG DATA SOURCES AND TYPES
A. QUALITY DATA AND USEFUL DATA
Data quality is a prerequisite for effective big data analytics.
Although practitioners and researchers may boast of having
good data or improving data quality, definingwhat these qual-
ities represent is a real challenge. Traditionally, data quality
refers to the overall utility of a dataset as a function of its
ability to be easily processed and analyzed for other uses,
usually by systems for databasing, data warehousing, or data
analytics. To be of high quality, data must be consistent
and unambiguous. Quality data are characterized by various
attributes, such as accuracy, timeliness, objectivity, complete-
ness, reliability, etc. The appropriate set of attributes and their
acceptable levels may differ depending on research purpose
and setting. Judging a dataset’s quality requires an exam-
ination of its attributes and then weighing those attributes
according to their importance for the task at hand.

In reality, quality data of key performance indicators are
often expensive, unavailable, or time-consuming to collect.
Data that arrive too late, e.g. cases of clinically confirmed
infectious disease, or take too long to gather, e.g. failures of
systems or key components, will no longer be effective for
intelligent decision-making and operations. However, corre-
lated data are often available and can be highly useful for
problem-solving. Such data are referred to as ‘‘useful data’’
in this context. Useful data can be correlated with specific
research purposes or work tasks and are often available from
multivariate sources. For example, data on internet-based
search queries can be correlated with infectious disease pat-
terns, and thus utilized for outbreak forecasting. For another
example, meteorological data collected at observatories can
be correlated with wind power outputs, and thus used as
covariates for wind power prediction.
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Quality data can be easily processed and analyzed, while
useful data that are also high-quality can further lead to
insights that facilitate better decision-making. Such data are
essential to SHMM intelligence efforts and other types of data
analytics, as well as better operational efficiency.

B. ACTIVE DATA AND PASSIVE DATA
Reliable data sources are crucial to the effectiveness of data
analytics. Depending on the data source and collection man-
ner, we divide useful data into twomain categories: active and
passive.

Active (or primary) data are collected to study scien-
tific, health, engineering, or business problems, through data
generation or collection mechanisms that are specifically
designed or planned for the purpose of research. This is
analogous to design of experiment (DOE) studies in manu-
facturing applications. Examples of active data can be found
in many applications, such as digital surveying of the sky
in astronomy, monitoring and surveillance in risk manage-
ment in finance and banking, sensor data for prognostics and
systems health management (PHM), transportation manage-
ment, computer and communications management, etc.

In contrast, passive (or secondary) data are readily avail-
able or have been previously collected for other, unrelated,
purposes, but may still be useful for addressing the cur-
rent questions of interest. This is analogous to production
data in manufacturing applications. Examples of passive data
include customer transactions, electronic medical records,
web searches, social media data, etc.

In real applications, active and passive data are comple-
mentary to each other. The most effective approach is there-
fore to make use of both in applications of real-world data
analytics. In the next section, we will present some examples
of data analytics that follow this approach.

C. GRAY AREAS BETWEEN ACTIVE DATA AND
PASSIVE DATA
Note that there is no clear distinction between active and pas-
sive data in certain scenarios, or ‘‘gray areas’’. This ambiguity
is especially likely when the study designs and objectives
are uncertain. Complex systems usually involve numerous
components that interact among themselves, which compli-
cates the definition of health indicators for system monitor-
ing. To determine effective health indicators, it is necessary
to collect relevant data and examine their correlations with
system health at an early stage. For example, tracking experi-
ments have been widely conducted to collect relevant data for
monitoring high-speed train systems in China [16]. In these
experiments, thousands of sensors were deployed to collect
real-time data. However, how to most effectively correlate
these collected data with component/system health is still a
topic of debate.

Besides categorizing data sources into active and passive
data, other types of data classification may also be useful.
For example, depending on whether data are generated by
DOE analysis or collected from manufacturing processes

and other applications, they can be categorized into lab and
field data. Alternatively, data sources can be categorized into
observational vs. survey data, sensor-based vs. non-sensor-
based data, etc.

D. SOME PRACTICAL EXAMPLES
The availability of useful active and passive data in many
new areas introduces new research opportunities in statis-
tical modeling. In particular, enormous and detailed data
at various locations and spatiotemporal domains have the
potential to be used for model development at both population
and individual levels. For example, [17] provides a thorough
discussion on the feasibility and challenges of data analytics
in personalized medicine. A possible global approach to data-
driven personalized medicine would be to model population
heterogeneity in real time, as well as to integrate and manage
various data sources and types to improve patient treatment.
An example from another field is to develop in-situ auto-
motive prognostics by tracking and analyzing user-specific
driving records over the lifetime of an automobile [18].

The integration of active and passive big data leads to a
new challenge in big data analytics. Instead of solely relying
on active data, researchers are now trying to incorporate
existing passive data to enhance models for data analytics,
prediction, and decision-making. For example, in wind tur-
bine applications, engineers have attempted to improve wind
power prediction by integrating wind speed (active data) with
environmental factors (passive data), such as wind direction,
air density, humidity, turbulence intensity, etc. [19]. In public
health applications, one would like to improve the predictive
accuracy of cases of influenza-like illness (ILI) by integrating
ILI activity reports (active data) from the Centers for Disease
Control and Prevention (CDC) with data on internet searches
(passive data) [20].

Among the many other research opportunities to recently
appear are the optimization of sensor locations, development
of new modeling methods for incorporating web data into
predictor variables and scaling datasets with large size and
dimensionality, and improvement of forecasting with process
parameters, etc.

IV. FORMULATION AND GENERAL FRAMEWORK
OF SHMM
A. FORMULATION OF SHMM
SHMM is a potentially broad topic, covering everything from
experimental design and data collection phases, all the way
to data analysis and the inevitable decision-making phase at
the very end of the process. As a growing number of systems
become data-rich, the theoretical foundation of SHMM is
likely to fit into the ‘‘data to knowledge to action’’ paradigm,
and therefore to benefit from future developments in data
science. Data science shows all the signs of growing into a
discipline in its own right, with a strong theoretical foun-
dation at its heart, such foundations being paramount in the
development of any new scientific field. It is anticipated that
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theoretical research relevant to SHMM will also boom in the
near future.

Theoretical research on the foundation of SHMM will
therefore build on theoretical foundational research in data
science, which is intrinsically inter-disciplinary (in the sense
that many different scientific domains will need to work
together and develop novel theories that transcend disci-
plinary boundaries). In particular, establishing the theoretical
basis of SHMM is likely to involve interdisciplinary collab-
orations between computer scientists, mathematicians, and
statisticians, as these three disciplines are at the heart of
the theoretical foundation of SHMM’s closest relative, data
science.

The importance of SHMM in a range of real-world applica-
tion domains is undoubted. Domain experts must keep a keen
eye on developments in SHMM with potential implications
for their own field. This will require strong communication
mechanisms between SHMM researchers and practitioners.
Algorithms developed ‘‘in a vacuum’’ for theoretical pur-
poses only will likely fail to take into account the peculiarities
and incompleteness of real data in real problems. The success
of SHMMwill strongly depend on the trade-offs between sta-
tistical accuracy and quality-of-approximation necessitated
by the various computational constraints imposed by modern
computing infrastructure.

We believe that much of the theoretical foundation of
SHMM lies at the intersection between computer science,
statistics, and mathematics. Each of those disciplines, how-
ever, has been built around particular ideas and in response
to particular problems that existed several generations ago.
Thus, building a foundation for SHMM requires rethinking
not only how those three foundational areas interact with
problems in SHMM and with each other, but also how each
interacts with implementations and applications. For exam-
ple, historically, computer science and scientific computing
have each carved out different realms of application, leading
to differences in the formalization of models, questions to
consider, and computational environments (such as single
machines versus distributed data centers versus supercomput-
ers). In the contemporary framework of SHMM, the design
requirements of business, internet, and social media applica-
tions lead to questions that tend to be very different from those
in scientific and medical applications. Both the similarities
and differences between these areas are striking. Designing
the theoretical foundations of SHMM requires paying appro-
priate attention both to the problems of researchers imple-
menting SHMM in specific fields and to the environments
and platforms where computations are to be done.

B. GENERAL FRAMEWORK OF SHMM
A general framework of SHMM is summarized in Fig. 2,
introducing a division into six main steps. In the first step,
the specific problems and objectives of concern are defined,
which can be either human or engineering systems. The sec-
ond step involves selecting appropriate sensors for collection
of the specific data to be further investigated and analyzed.

For example, for engineering systems and critical compo-
nents, the relevant sensor types may include thermal, elec-
trical, mechanical, humidity, chemical, optical, and magnetic
sensors, etc. The third step, corresponding to studies in phases
from I-1 to I-3, is the monitoring of conditions and fault
detection. Specifically, given the availability of historical
data, a Phase I-1 study conducts exploratory data analysis
to summarize the main characteristics of the system’s data
under normal health conditions. In a Phase I-2 study, data
preprocessing, feature extraction, feature selection, dimen-
sionality reduction, and associated models with their
parameter-estimation procedures are selected to improve the
data mining of normal health characteristics. In a Phase I-3
study, the rules and acceptable limits for monitoring data
are determined so that the criteria for any abnormal health
condition can be defined in advance. Following this, in the
fourth step, a Phase II study is conducted to ensure the timely
monitoring of any abnormal health condition and address
any specific concerns. In the fourth step, assuming no sud-
den and unexpected failures, fault diagnostics are utilized
to find the causes of abnormal conditions. Here, the avail-
able approaches include model-based, signal processing-
based, and physical-based fault diagnosis, etc. In the fifth
step, to minimize economic losses and maximize the life-
time of specific engineering system and critical components,
the remaining useful life (RUL) is predicted before any main-
tenance decision-making is made. RUL prediction is highly
relevant to prognostic modeling and requirements, uncer-
tainty quantification, predictive performance evaluation, etc.
Finally, based on both the fault diagnostic and prognostic
results, a maintenance model can be built to realize optimal
decision-making with minimized economic loss and unex-
pected risks.

C. POTENTIAL RESEARCH TOPICS ON THE THEORETICAL
FOUNDATION OF SHMM
Statistics are expected to play a major role in the theoretical
foundation of SHMM. Recent work on the trade-off between
computation and statistics may have immediate applications
in SHMM. Statistics uses data (also known as information)
as a resource, with the goal of developing inferential pro-
cedures to minimize population risk (or maximize popula-
tion entropy). In contrast, in computational science, time is
considered as the resource and the goal is to develop effi-
cient algorithms to solve computational tasks with minimal
CPU time and memory space. Traditionally, the statistics
community focuses mainly on inferential aspects, while the
theoretical computer science (TCS) and mathematics com-
munities focus more on computation. A recent impactful area
of research is to integrate statistics with computation in a
united theoretical framework. This in some cases requires a
rigorous characterization of the computation process using
formal computational models. Alternatively, one may require
methods to characterize the statistical properties implicit in
worst-case algorithms. Important themes will include treat-
ing data as a resource, performing TCS-style analysis, and
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FIGURE 2. General framework of SHMM.

understanding at a much finer level the effect of relaxation
of statistical methodological rigor for the sake of tractability.
Exciting computational models in this domain include Tur-
ing machines, the convex relaxation hierarchy, and statisti-
cal query models. Further collaborations between statistics,
computer science, and mathematics are expected to create
very fruitful results with direct applicability in solving
SHMM problems.

Another contemporary line of statistical research is non-
convex statistical optimization [22], [23], which is also likely
to influence the theoretical foundation of SHMM. Both statis-
tics and optimization are corner stones of modern data anal-
ysis. Despite the considerable degree of overlap between the
two, most of the overlapping topics are related to convex opti-
mization. However, a salient feature of modern data science is
non-convexity, with examples including neural networks and
deep learning [24], [25], reinforcement learning [26], spectral
methods [27], and many more. Developing the theoretical
foundations of non-convex statistical optimization is a critical
challenge. This new field lies at the intersection of modern
statistics and large-scale optimization. In particular, model-
based thinking from modern statistics can be applied to solve
large and complex optimization problems. Such applications
will depend on a rigorous theoretical framework to sharply
characterize the interaction between informational and

computational complexity. Non-convexity arises in various
forms. For example, while spectral methods are not convex
in their most popular presentation, i.e., as vector optimiza-
tion problems, they are convex when viewed as semidefinite
programs. Alternatively, the interaction structure of DNA,
while not self-evidently convex, seems to exhibit some sort
of soft convexity. In many scientific data applications, this
property can be exploited by using a temperature parame-
ter or an annealing schedule, as in simulated annealing [28].
In machine learning applications, low-precision stochastic
gradient descent methods [29] perform a similar function.
Formally proving the theorems of theoretical computer sci-
ence and mathematical statistics in this field is difficult, but
particularly important. That these methods perform so well
for certain applications, while their theoretical basis is so
weak, suggests that this is a ripe area for methodological
work.

In the theoretical foundation of SHMM, another likely
frontier is combined physical and statistical models. These
two ‘‘cultures’’ for modeling complex systems are funda-
mentally different. For example, physical models simulate
dynamics by expressing them in terms of partial differential
equations or stochastic processes that obey physical laws
(like conservation of energy). In contrast, statistical mod-
els exploit powerful probability tools, such as probabilistic

VOLUME 7, 2019 68857



K. L. Tsui et al.: Big Data Opportunities: SHMM

graphical models, to provide an exploratory model to fit the
data. In contrast to the former, the latter do not require that the
true dynamics actually satisfy the statistical models. Instead,
they use a highly regularized ‘‘substitute model’’ to discover a
hidden structure in the data and make predictions. We believe
that hybrid models of these two approaches are most likely to
prevail in the setting of SHMMdue to the intrinsic complexity
of the problems.

In SHMM, one frequently encounters mixed-type and
multi-modality data. For example, a typical dataset may
be aggregated from many data sources, including imaging,
numerical, graph, and text data, etc. Although each spe-
cific data type has been researched intensively in isolation,
developing a unified framework will be a more desirable
approach to study mixed data systematically. This field has
both theoretical and applied implications, and would benefit
from a collaboration between statistics, theoretical computer
science, mathematics, and practitioners of SHMM. Further
research promises to lead to breakthroughs and important
progress in science and engineering.

V. RELATIONSHIP OF SHMM WITH OTHER DISCIPLINES
A. PROGNOSTICS AND SYSTEMS HEALTH
MANAGEMENT (PHM)
PHM for complex systems is of particular interest in
the contemporary world and has attracted much atten-
tion from mechanical engineering [30], [31], electrical
and electronic engineering [32], [33], manufactu-
ring [34]–[36], aerospace [37], [38], and industrial engi-
neering [10], [39], etc. Taking advantage of progress in
sensor technology, computation power, and data analytics
algorithms/methods, engineers are seeking paradigm-shifting
approaches to extend the current methodology in several
aspects. (1) Corrective [40], preventive [41], and condition-
based maintenance are competing approaches to predictive
maintenance for machines and plant equipment. In the correc-
tive paradigm, maintenance is performed only when failure
happens, in which case the failed equipment or machine
is restored to operational condition. In many practical sit-
uations, however, failure is unacceptable, and preventive
maintenance is adopted instead. In preventive (or scheduled)
maintenance, care and servicing to maintain equipment are
performed regularly on a periodic schedule through system-
atic inspection, tests and measurements, adjustments, and
parts replacement. However, it is possible for failure to occur
shortly before a scheduled inspection, or conversely, for
an inspection be scheduled when no faults and failures are
present. In condition-based maintenance, the current health
conditions are monitored to inform maintenance decisions.
This contrasts with predictive maintenance, where decisions
are based on prediction of future health conditions. (2) The
concept of machine maintenance may be extended to health
management of complex systems. Both condition-based and
predictive approaches can avoid any unnecessary mainte-
nance while reducing the risk of failure. (3) Monitoring
may be extended from populations (homogeneous groups)

to individuals. PHM, with its two components of prognostics
and health management, transcends traditional diagnostics
and fault detection [42]. Prognostics is the process of pre-
dicting the future effective reliability of a product, compo-
nent, or system by assessing the extent of deviation from its
expected normal operating condition. Health management,
meanwhile, is the real-time measuring, recording, and moni-
toring of such deviation [32]. SHMMdiffers from PHMby its
distinct emphasis and its definitions of monitoring, prognos-
tics, andmanagement (prognostics is included as part of mon-
itoring), and can be considered an extended version of PHM.
More specifically, system health monitoring includes detec-
tion, forecasting, diagnostics, and prognostics, while system
health management includes decision, financial, and risk
management.

B. STATISTICAL PROCESS CONTROL AND MONITORING
Statistical process control and monitoring (SPCM) [43] is
the use of statistical methods to monitor and control pro-
cesses. The main advantage of SPCM is its emphasis on early
detection and prevention of problems of particular concern.
SPCM generally includes two phases. In Phase I, a common-
cause variation in an underlying process is identified.
In Phase II, a characteristic of interest is monitored. The
philosophy behind SPCM is to distinguish between a
common-cause variation that is attributable to a relatively
stable underlying process, and a special-cause variation that
is unusual for the underlying process. From the definition
of SHMM, it naturally follows that SHMM is an extension
of SPCM containing additional focuses on fault diagnostics,
prognostics, and health management of problems of particu-
lar concern, besides their early detection and prevention.

C. RELIABILITY ANALYSIS AND SYSTEM RELIABILITY
Reliability analysis and system reliability [44] describe the
ability of systems engineering applications and critical com-
ponents to function under given operating conditions for a
pre-determined period. These processes involve predicting
the reliability of systems engineering applications and critical
components prior to their use in practice based on a pop-
ulation of historical data. In contrast, reliability prediction
in SHMM does not solely depend on historical data but also
makes use of online observations for timely updating to boost
the performance of SHMM. Simply speaking, SHMM pro-
vides more accurate reliability prediction for systems engi-
neering applications and critical components.

D. DESIGN OF EXPERIMENT (DOE)
DOE is a statistical method of establishing which variables
are important in a process and the best settings for these
variables to optimize the process [45]. DOE methodology
is long established in industry for quality optimization, and
plays an important role in the pre-stage of SHMM during
data collection for subsequent analysis. The power of DOE is
in systematically describing the variation of measured infor-
mation under conditions that are hypothesized to reflect the
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real-world variation. Taking sensors in engineering systems,
for example, the carefully chosen placement of sensor loca-
tions is a prerequisite for obtaining quality data to enable
reliable health monitoring of key components in a complex
system.

E. DATA MINING AND KDD
Data mining is the process of turning raw data into use-
ful information, including discovery of hidden patterns and
connections and prediction of future trends, etc. [46]. Data
mining is sometimes referred to as knowledge discovery in
databases (KDD). Various data mining algorithms [47], such
as logistic regression, support vector machines, convolutional
neural networks, decision trees, and combinations of these,
have been widely adopted in SHMM applications [48]. Some
application examples include health assessment, fault diag-
nosis, and RUL prediction. Data mining algorithms serve as
solutions to these tasks. However, one major challenge is
the efficient selection of appropriate methods for problems
in SHMM.

VI. SHMM APPLICATIONS IN PUBLIC HEALTH AND
HEALTHCARE SURVEILLANCE
A. SURVEILLANCE OF PUBLIC HEALTH SYSTEMS
The objective of public health surveillance is to examine
health trends, detect changes in disease incidence and death
rates, and to plan, implement, and evaluate public health prac-
tice by systematically collecting, analyzing, and interpreting
public health data (chronic or infectious diseases).

Understanding challenges to nations’ public health sys-
tems and how those challenges shift over time is of crucial
importance for policymakers to establish effective strate-
gies. In general, databases containing rich and detailed infor-
mation about mobility and mortality across regions, time,
age, and gender are a prerequisite for informed analytics.
Many public health organizations have made great efforts
to maintain such databases, such as the Global Burden of
Disease (GBD) project by the World Health Organization
(WHO) for quantifying the health-related losses from hun-
dreds of diseases, injuries, and risk factors [49], and a
wide array of disease databases maintained by the CDC
(http://www.cdc.gov/DataStatistics/).

In public health surveillance, the volume and velocity of
data streams have dramatically grown in recent decades. Tak-
ing the sample-based mortality surveillance system in China
as an example, the surveillance population increased from
6% to 24% of the Chinese populace from 1978 to 2013 [50].
In spite of the growing data volume, advances in informa-
tion technology have enabled collection of cause-of-death
data in a more timely manner. Since 2008, information on
individual deaths in all population catchment areas in China
has been reported in real time via an internet-based reporting
system [51].

The availability of public health big data provides a
comprehensive picture of health system status in terms
of the causes of significant population-wide changes, the

underlying risks, the changes in the pattern of health-related
losses, etc. Numerous efforts have been made to monitor and
evaluate the health of populations by taking advantage of pub-
lic health big data. For example, the GBD 2013Mortality and
Causes of Death Collaborators [52] systematically analyzed
the levels and trends for age-sex-specific all-cause and cause-
specific mortality for 240 causes of death; [53] studied the
effect of ambient air pollution on adult respiratory mortality
in China at city level; and [54] investigated the impact of
armed conflict on gender structure in life expectancy.

B. SENSOR-BASED MONITORING OF PERSONAL HEALTH
The objective of personal health surveillance is to monitor
personal health performance indicators, such as medical his-
tory, real-time health information, and vital signs, for the sake
of understanding individual health conditions, early detection
of health risks, and providing effective individualizedmedical
care.

In this field, the big data approach promises to facilitate the
development of an effective medical care system and enable
more personalized management of individuals to improve the
health of entire populations. Researchers have actively sought
innovative solutions to improve the quality of patient care via
big data analytics.

One example is the use of unobtrusive sensing and wear-
able devices for personal health monitoring. For patients,
devices can provide real-time information and facilitate
timely remote intervention in case of acute events such as
stroke and heart attack. This type of implementation would
be particularly effective in rural areas where expert treatment
may be unavailable [55]. Additionally, for healthy popula-
tions, unobtrusive and wearable monitors provide close track-
ing of health and fitness, enabling detection of health risks
and facilitating the implementation of preventive measures at
an earlier stage. For example, a continuous health monitoring
system has been developed for elderly citizens and patients
with chronic diseases [55]–[60]. Successful continuous mon-
itoring of heart rates and delineating their temporal variation
with various types of wearable devices is another significant
milestone in health management [61], [62]. In recent years,
research trends have shifted from hardware development and
measurement validity [14] to the application level. How-
ever, a wider acceptance of existing systems for continuous
monitoring is still limited for several reasons. Traditionally,
personal medical monitoring systems, such as Holter mon-
itors, have been used only to collect data. Data processing
and analysis are performed offline, making such devices
impractical for continuous monitoring and early detection
of negative health conditions [63]. Besides, most current
systems focus on the use of an individual smart device and
offer mainly instantaneous single-parameter measurements,
which provide only a one-sided understanding of health
conditions.

Personalized health monitoring systems take advantage
of data mining, a decision support system, and a context-
aware system to facilitate diagnosis, treatment, and care based
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FIGURE 3. Design of (a) lifestyle habit monitoring system; (b) tele-monitoring system.

on an individual’s genetics and lifestyle. Fig. 3 illustrates
a standard design of a tele-monitoring system for lifestyle
habits and health. In several studies, an Australian research
team has evaluated the potential benefits of home tele-health
monitoring for the elderly with the use of an all-in-one
station-based health monitoring system [64]–[69]. The study
found promising results for personalized elderly care, where
forecasting models for common geriatric health conditions
were built based on daily monitoring of vital health signs
of the participants. This implies that the implementation of
a health monitoring system at the community level, with the
use of appropriate statistical analysis and data mining tools,
can be an effective solution for healthcare services. It has
been reported that remote monitoring of personal wellbe-
ing, through vital signs together with existing data, could
significantly improve disease prevention, management, and
rehabilitation [70], [71]. Ruiz-Zafra et al. [72] investigated
the effectiveness of a centralized (cloud-based) health plat-
form for integrating advice from different health experts on
collaborative management and monitoring of different types
of patients.

At the population level, data collected from individuals can
be aggregated to evaluate the medical care effectiveness of
an entire cohort. Various analytic methods have been pro-
posed to monitor patient disease conditions, such as sets-
based [73] and risk adjustment methods [74]. Reference [75]
provides detailed discussions of these methods for healthcare
applications.

VII. SHMM APPLICATIONS IN SYSTEMS ENGINEERING
AND CRITICAL COMPONENTS
SHMMof systems engineering applications and critical com-
ponents includes four main aspects: construction of health
indicators for condition monitoring and fault detection, fault

diagnostics, RUL prediction, and system health management.
Health indicators can be used to provide statistical parameters
with specific upper and lower bounds for evaluating and
quantifying the current health condition of a system or com-
ponent. In some cases, it is difficult or impossible to directly
use health indicators measured from sensors, so the indicators
must be indirectly and artificially constructed from the sensor
measurements [42]. For example, rolling element bearings
are one of the most commonly used mechanical components
in industrial machines [76], [77], such as electric motors, gen-
erators, pumps, gearboxes, railway axles, turbines, and heli-
copter transmissions. Once a defect is found on the surface of
an outer or an inner race, bearing failures are inevitable and
will accelerate the failures of adjacent components, finally
resulting in machine breakdown and unexpected accidents.
In practice, although temperature can be used as a health indi-
cator to directly assess severe bearing failures, it is difficult to
assess bearing fault propagation at an early fault stage in this
way. Consequently, for monitoring, diagnostics, and prognos-
tics of bearing condition, other measurements are preferable,
such as vibration signals collected by accelerometers and
acoustic signals collected by acoustic emission sensors and
microphones. Thus, construction of health indicators from
vibration or acoustic signals is a prerequisite for predicting
the RUL of bearings. Wang et al. [78] provided a thorough
review of vibration-based bearing and gear health indicators
constructed from mechanical signal processing, modeling,
and machine learning, and forecast several future directions
in the construction of bearing and gear health indicators,
which were further supplemented by Lei et al. [79]. Once
health indicators are established for the abnormal health
conditions of bearing faults, SHMM enters the next phase,
diagnostics, which aims to identify each specific bearing
fault type [80], such as those affecting the outer race, inner
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race, roller, or cage. If there is no sudden failure, the bearing
RUL is then predicted in the third phase [81]–[83]. Here, RUL
can be defined as the period from the present to the time at
which the bearing will no longer satisfy its functionality. The
methodologies of RUL prediction have been widely investi-
gated. Si et al. [84], in a thorough review of data-driven sta-
tistical models, categorized them into two types: those based
directly on condition monitoring data, such as regression-
based models, Brownian motion with drift, Gamma pro-
cesses, and Markovian models; and those based indirectly on
condition monitoring data, such as stochastic filtering-based,
covariate-based hazard, hidden Markov, and hidden semi-
Markov models. Heng et al. [85] summarized prognostic
techniques for failure prediction of rotating machinery and
classified them as conventional reliability models, condition-
based prognostic models, and hybrids. Ye and Xie [86]
reviewed degradation models and classified them as stochas-
tic process models, general path models, and others beyond
these types. Later, the same two authors [86] made a com-
prehensive comparison between stochastic process and gen-
eral path models. Lee et al. [87] systematically classified
the methods to develop prognostic systems, and the visual-
ization tools for displaying prognostic information. Further,
Zhang and Lee [88] thoroughly reviewed RUL prediction
technologies for rechargeable batteries, noting that these are
potentially applicable to many other components, such as
bearings and gears used in machines. Here, the main differ-
ences between machine prognostics and battery prognostics
were summarized as follows. Firstly, the health condition of
a battery can be easily quantified from its capacity, which
is directly calculated from output measurements. However,
in machine prognostics, health indicators must be artificially
constructed so that they can be correlated with the machine’s
physical health. Secondly, establishing a predetermined fail-
ure threshold is straightforward in battery prognostics, while
in machine prognostics the failure threshold is highly depen-
dent on constructed health indicators, historical data, and
expertise. Recently, Zhang et al. [89] provided a thorough
review ofWiener process-based degradation models and their
applications to RUL prediction. Meanwhile, PHM and its
applications to advanced manufacturing were reviewed in
depth by Xia et al. [90]. Other recent works have shown how,
based on the first three phases of SHMM, system health man-
agement can be conducted to determine an optimal replace-
ment policy for a system or component [91]–[93]. Finally,
thanks to the development of advanced sensor and commu-
nication technologies, an increasing diversity of mechanical
degradation data has become available, which indicates that
SHMM is entering the big data era [94]. For example, massive
data are now collected from many different types of sensors
for timely and accurate monitoring of the health condition
of turbofan engines [95], [96]. With the dawning ubiquity
of big data, SHMM will need more efficient and effective
methods andmodels to construct suitable health indicators for
real-time system and component monitoring and improved
RUL prediction. The payoff to industry will be optimal

replacement policies and the prevention of unexpected
accidents.

A. SHMM OF ROLLING ELEMENT BEARINGS
In this section, SHMM of rolling element bearings is taken as
an example to specifically illustrate the principles of SHMM
in mechanical and industrial engineering. As shown in Fig. 4,
a vibration signal is collected by an accelerometer in a labo-
ratory at a constant operating condition, then processed by
squared envelope spectrum analysis with band-pass filter-
ing to remove unwanted strong vibration components and
identify bearing defect frequencies for health monitoring and
fault diagnosis of rolling element bearings. The purpose of
band-pass filtering is to retain a resonant frequency band
for further demodulation by envelope analysis, exploiting
the fact that impacts generated by rollers striking a defect
surface excite the resonant frequencies of a structure, such
that modulation phenomena occur in the presence of a bear-
ing defect [97]. The selection of an appropriate band-pass
filter is a major theme in bearing fault diagnostics [98]. Two
classic techniques for bearing monitoring and diagnostics are
spectral kurtosis [99] and spectral correlation [100]. In the
former, the statistical parameter of kurtosis is calculated to
characterize a signal filtered by various band-pass filters. The
filter with the largest kurtosis is then selected for bearing
fault diagnosis. A new methodology for extending various
spectral kurtosis algorithms to optimal filteringwas presented
by Wang and Tsui [101] in the framework of wavelet trans-
formation and dynamic Bayesian inference. Spectral correla-
tion,meanwhile, involves simultaneously displaying resonant
frequency bands and bearing defect frequencies in a spectral
frequency-to-cyclic frequency plane. Integrating the spectral
correlation over a specific resonant frequency band generates
a squared envelope spectrum identical to that obtained by
squared envelope spectrum analysis with band-pass filtering,
and in the final frequency domain, only the bearing defect fre-
quencies are displayed [102]. Then, different bearing health
indicators, such as the sum of a bearing defect frequency
and its several harmonics (Fig. 4), are used to characterize
these identified defect frequencies in a time or frequency
domain to track defect propagation over time. Besides the
bearing health indicator exhibited in Fig. 4, in our previ-
ous work [103], a generalized dimensionless indicator with
specific upper and lower bounds was proposed to quantify
bearing defect propagation. The proposed indicator proved
insensitive to varying operating conditions. From inspection
of Fig. 4, it is clear that bearing degradation, as tracked by the
chosen health indicator, has two distinct phases. In Phase I,
the bearing is in a normal health condition and its health
indicator is stable. After a bearing defect frequency and its
several harmonics are detected, the bearing health indicator
deviates greatly from the previous stable level. Following
this, the bearing enters Phase II and the health indicator
degrades exponentially. Moreover, in Phase II the health
indicator is not monotonic and shows large fluctuations over
time. For bearing prognostics, especially RUL prediction, one

VOLUME 7, 2019 68861



K. L. Tsui et al.: Big Data Opportunities: SHMM

FIGURE 4. SHMM of rolling element bearings.

strategy is to build a statistical model containing random
coefficients. Based on the work of Lu and Meeker [104],
Gebraeel et al. [105] used the Bayesian theorem to derive ana-
lytical expressions for the posterior parameters of two statisti-
cal models to update the prior distributions of the parameters
of two models obtained from a population of bearing degra-
dation data. Once the posterior parameters are updated by
online observations of the bearing health indicator, the bear-
ing RUL can be inferred by extrapolating the updated sta-
tistical model to a predetermined failure threshold. Further,
Chen and Tsui [106] proposed a piecewise statistical model
with random coefficients and heterogeneous noise variances
to extend the work of Gebraeel to a more general prognos-
tic method. The application of Chen and Tsui’s prognostic
model is schematized in Fig. 4, where the model with mul-
tiplicative Brownian motion error results in more accurate
RUL prediction than the model with multiplicative normal
random error. Moreover, the Brownian motion-based statis-
tical model [107], [108] can be reformulated as a state space
model so that only the latest bearing health indicator, rather
than the entire time history of the indicator from the very
beginning to the present, can be used to iteratively update the
model parameters for RUL prediction.

B. SHMM OF RECHARGEABLE BATTERIES
In this section, rechargeable batteries are taken as
another example to illustrate the principles of SHMM.

For rechargeable batteries, the SHMM process is similar to
that of PHM inasmuch as both include two main aspects,
state of charge estimation and state of health prediction.
State of charge estimation is inferring the remaining charge
at a specific charge-discharge cycle, while state of health
prediction is inferring how many charge-discharge cycles are
left until the battery fails to provide sufficient power for the
corresponding electrical product, such as a cell phone, hybrid
electric vehicle, unmanned aerial vehicle, etc. Conceptually,
state of health prediction is closely analogous to battery RUL
prediction. In contrast to bearing condition monitoring, fault
diagnostics, and prognostics, in the case of state of health
prediction of rechargeable batteries, the battery capacity (cal-
culated from integration of current over time in a discharge
process) can be directly used as a health indicator to indicate
the current health of the battery. For state of charge esti-
mation, equivalent circuit models [109], [110] are popularly
used to connect the state of charge to measurable outputs,
such as current and voltage. Based on these equivalent circuit
models, state space models are then built to dynamically
and posteriorly infer the state of charge from online output
measurements. A battery equivalent circuit model and its
associated state space model [111] are shown in Fig. 5,
where the state of charge can be accurately tracked and
posteriorly estimated even though the initial state of charge
(0.75) is incorrectly set to 0.3 in the state space modeling.
Alternatively, Fig. 5 depicts an empirical battery degradation
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FIGURE 5. SHMM of rechargeable batteries.

model with an exponential trend [112] that can be used to
construct a non-linear state space model for tracking and
updating the amplitude and slope of the battery degradation.
The non-linear state space model can be iteratively solved in
the framework of particle filtering or its variants [113]–[117].
Extrapolations of the posteriorly updated state space model
to a failure threshold are used to infer the battery RUL. Here,
the failure threshold can be defined by the user within a range
from 1 to 0, corresponding to the constraint range of the
present capacity normalized by the initial capacity.

VIII. DISCUSSION
A. TRAPS OF BIG DATA
While big data create myriad opportunities for traditional sys-
tem health monitoring, we should be aware of potential risks
as well. Below we illustrate both the opportunities and risks
of big data analytics through the example of the well-known
Google flu trend (GFT). GFT is a data analytics model devel-
oped byGoogle for predictingweekly reported ILI rates using
instant query data [11], [118]. ILI is defined as an influenza-
like clinical syndrome, such as fever or cough, without a
known cause, and is regarded as an indicator of influenza
activity levels in a region. The CDC reports weekly ILI rates

in the US with state-level detail, but always with a one-to-
three week delay in reporting. Timely detection of an acute
disease outbreak is recognized to translate into more days
gained, and in turn more lives and resources saved. Therefore,
an accurate prediction of ILI rates before the release of a CDC
report would be helpful for developing intervention strategies
and remedies. In 2008, researchers from Google developed
the web service-based GFT, claiming to accurately predict
(‘‘nowcast’’) ILI rates by modeling search queries in real
time. However, as reported in [118], [119], GFT failed to pro-
vide accurate predictions, and predicted more than double the
actual rate of doctor visits for ILI reported by the CDC during
the 2012-2013 season. Fig. 6 depicts the ILI trend predicted
by GFT and the actual CDC data over those dates [118].
As shown, GFT reported an overly high flu prevalence from
August 21, 2011 to September 1, 2013.

The failure of GFT highlights a number of potential risks
in prediction and forecasting models based on big data ana-
lytics. For example, the number of predictive variables may
change over time, and the impact of individual variables may
change as well, making it important to periodically update
a prediction model. In fact, the GFT prediction model has
run continuously since 2009, with a few changes announced
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FIGURE 6. Overestimation of flu rates by GFT in the 2012-2013
season. [118].

in October 2013 [11]. The model’s failure has led to a large
number of research papers aiming to improve its predictive
accuracy [20], [120], [121]. One representative method was
ARGO, proposed in [20], which not only incorporated sea-
sonality in historical ILI rates, but also captured changes in
the public’s online searching behaviors over time. Comparing
the failure of GFT and the fate of all of the subsequent vari-
ants, including ARGO, in ILI prediction, several lessons can
be learned. First, it is important to understand precisely why
any given search term has predictive utility. Second, relying
solely on big data sources for inference may yield misleading
conclusions. Interrogating big data as a source of information
must be done in tandem with traditional knowledge.

GFT is only one of many examples that illustrate the
potential risks of big data analytics. In medical research,
it has been reported that 40% of experiments described in
research journals cannot be reproduced. Elsewhere, in finan-
cial hedge fund companies, many consultants have claimed to
have outperformed the market by applying their investment
models to historical data. In truth, however, most of their
claimed successes could have been caused by noise rather
than informative signals.

B. THEORETICAL FOUNDATIONS OF SHMM
Every scientific field needs firm theoretical foundations,
and the development of SHMM is no exception. While
asking the right foundational questions is a slow process
and will take time to develop, many important theoretical
issues can already be clearly recognized. We believe that
the maturation of SHMM will benefit from relevant foun-
dational research. The emergence of massive computational
power via cloud computing and supercomputing infrastruc-
ture presents an unprecedented opportunity to enlarge the
impact of SHMM.

Practitioners of SHMM will face many challenges. For
example, it is well known that a large fraction of the total data
analysis time is spent in data preparation and preprocessing.
These tasks pose many intellectually challenging problems
related to deep mathematical issues that cannot easily be for-
malized. This is not ‘‘just engineering’’, but rather a critical
aspect of a model’s successful deployment in industry or
academia. Indeed, these tasks can be seen as the ‘‘before and
after’’ of many high-profile machine learning problems. Data
in SHMM applications are likely to have their own unique
features. Developing standards and preprocessing guidelines
may prove to be both crucial and extremely interesting.

Quantitatively-inclined disciplines, such as genetics and
computational biology, theoretical chemistry and physics,
computational social science, etc., tend to ignore the data col-
lecting and preprocessing steps. We would like to present two
examples in which computations on data are typically viewed
from a computational perspective: (a) in databases, where
one does not typically want to make inferential claims but
instead to perform computations on the data in the database,
regardless of how they were generated, which leads to a focus
on datamanipulation; and (b) in theoretical computer science,
where it is common to formulate computation per se as a
function transforming inputs to outputs, while ignoring noise
characteristics etc. in the data. Developing an improved foun-
dational understanding of how computation interacts with
noise properties in input data, as well as how the output of
computation interacts with inference and other downstream
goals, will be of central importance. Any progress in this
regard is likely to enhance the foundations of SHMM.

IX. CONCLUSION
Nowadays, the concept of big data prevails in numerous
applications and research domains. In this paper, we reviewed
the issues facing the use of big data analytics in SHMM
in a general sense, by discussing the evolution of big data
analytics, categorizing data types based on data sources and
collection processes, and providing some insights on the
research opportunities and challenges brought by big data.
Specifically, we proposed a general framework of SHMM,
and discussed its relationship with other disciplines. For illus-
tration, we provided several application examples of SHMM
for complex systems and critical components.
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