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ABSTRACT One of the essential tasks for the planning and development of talents training programs in
different colleges of universities is to find how we can reasonably guide students to pursue a master’s degree
concerning their comprehensive situations. The purpose of this study is to develop a modified fuzzy k-
Nearest Neighbor (FKNN) framework to predict the college students’ intentions for master programs in
advance, that is, students choose to attend the postgraduate exam or find a job after graduation. The proposed
integrated framework combines the random forest (RF), FKNN, and a new chaos-enhanced sine cosine-
inspired algorithm (CESCA). In this model, RF is employed to evaluate the importance of features in the
dataset, while the FKNN is utilized to establish the relationship framework between the features and the
college students’ decisions to earn a master’s degree or not. The proposed CESCA is utilized to tune the
key parameters of the FKNN automatically. All eight variants of SCA have been rigorously compared based
on 13 benchmark problems to validate the effectiveness of the proposed CESCA. Then, the CESCA-based
FKNN (CESCA-FKNN) has been further compared against the other three classical classifiers in terms of
four common performance metrics. The experimental results indicate that the proposed CESCA-FKNN can
obtain the best classification accuracy. The results indicate that the established adaptive FKNN framework
can be served as a powerful tool for college students’ intention before pursuing a master’s degree.

INDEX TERMS Fuzzy k-nearest neighbor method, sine cosine algorithm, chaos theory, students’ intentions
for master programs, feature selection.

I. INTRODUCTION

In recent years, the number of postgraduate enrollments in
Chinese universities has steadily increased. According to
statistics from the Ministry of Education, several applicants
for postgraduate entrance examination reached 2.38 million
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in 2018, an increase of 18.4% over 2017 million!. With
the overall transformation and upgrading of China’s national
economy, the social demand for highly educated talents is
increasing. The role of graduate and above literary talents is
becoming more and more evident in the context of today’s
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technological revolution and economic globalization. It can
be predicted that the fever of the postgraduate entrance exam-
ination will last for a long time in the future.

At present, most students often hesitate to take part in
the postgraduate entrance examination and employment. It is
difficult for them to make rational choices in time. Therefore,
it is necessary to make an in-depth analysis of the logical
choice of postgraduate entrance examination and employ-
ment of college students to find an effective way for college
students to choose the direction of graduation scientifically.
At present, colleges and universities have accumulated a lot
of data. Through mining and analyzing these data, an intel-
ligent forecasting model is established to find out the fac-
tors that affect the graduate students’ choice of postgraduate
entrance examination or employment. Then, any potential
correlation between the factors is further analyzed to guide
the students for a better selection of postgraduate entrance
examination or jobs.

So far, few pieces of literature used data mining tech-
niques to mine the postgraduate students’ relevant data.
Koutina and Kermanidis [1] proposed to use the machine
learning techniques for predicting the academic performance
tendency of postgraduate students. The experimental results
of their work demonstrated that Naive Bayes and 1 Near-
est Neighbor achieved the best prediction results. Wang [2]
proposed a residual modified grey model combined with
an improved neural network to forecast the postgraduates’
employment confidence index. Chi and Lin [3] proposed
to utilize the genetic algorithms for optimizing the initial
weights and thresholds of BP neural network in dealing
with the prediction of the postgraduate entrance examination
results. The results demonstrated that the proposed method
was better than the BP neural network alone, and it was
better than the traditional k-Nearest Neighbor (KNN) and
Naive Bayes methods, as well. We can see that there is no
study towards establishing an intelligent prediction model for
predicting students’ intentions of choosing the postgraduate
entrance examination or employment. For the first time, this
work develops an intelligent prediction model based on the
fuzzy k-Nearest Neighbor (FKNN) method to predict the
students’ intention for master programs.

The KNN method is the most popular non-parametric pat-
tern classification method due to its simplicity and ease of
implementation. In KNN, a class is obtained by the most
basic category in its k-nearest neighbors. FKNN [4], [5] clas-
sifier is a fuzzy version of traditional KNN, which combines
the fuzzy theory with the KNN algorithm and it has been
studied extensively since the establishment of the original
work. Owing to its excellent characteristics, FKNN has been
applied to many fields of sciences, for instance, bankruptcy
prediction problems [6], protein identification and prediction
problems [7], [8], slope collapse prediction problems [9], and
medical diagnosis problems [10], [11]. The neighborhood
size (k) and the fuzzy strength parameter (m) are fundamental
determinants of the FKNN model. As it is obvious, the values
of k and m affect the prediction results directly. It is difficult
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to determine the values of m and k because there is no theory
and standard method that explains how to establish the fitting
values of m and k. Hence, it is necessary to explore the full
potential of FKNN by adjusting these parameters to exploit
the maximum classification performance for students’ inten-
tions in the master programs. In this paper, the sine cosine
algorithm (SCA) is employed and enhanced to tune the key
parameters of FKNN automatically.

Mathematical models always need to a suitable technique
to obtain the solution during a reasonable time [12]-[16]. The
SCA is a new nature-inspired optimizer originally developed
by Mirjalili [17]. Due to its simplicity and efficiency, this
method has received extensive attention in different fields of
research [18]-[22]. For example, the SCA was used to opti-
mize parameters of an adaptive neuro-fuzzy inference system
for forecasting the oil consumption in [23]. Moreover, the
SCA has been applied to the field of power system economics
to tackle the short-term hydrothermal scheduling cases [24].
Furthermore, it was used in a power system such as in [25] as
an interactive process and applied it to specified important
branches for improving the security of the power systems.
However, like other metaheuristic algorithms [26]-[37],
SCA has several drawbacks including easy to falling into
local optima and slow convergence speed as well. To mitigate
these deficiencies in dealing with the optimization prob-
lems, scholars tried to propose some modified variants of
the original SCA. In 2018, Qu et al. [38] introduced a new,
improved SCA by mixing two optimization mechanisms and
a greedy Levy mutation strategy to avoid falling into the
local optimum. Chegini et al. [39] combined the particle
swarm optimizer (PSO), the updating equation in SCA and
the levy flight to tackle the disadvantages of PSO such as
falling into the local minimum. To obtain a better exploration
of the search space and generate more accurate solutions,
Elaziz et al. [40] used an improved version of SCA that
considers opposition-based learning as an exploratory mech-
anism. Also, a combination of the SCA and the differential
evolution (DE) algorithm was developed for tackling opti-
mization problems and object tracking in [41].

Some researchers adopted the chaos mechanism and veri-
fied its constructive impact on improving the exploration and
exploitation trends of a swarm-based optimizer. In order to
further enhance the searching performance of SCA, eight
different chaotic mapping strategies (CMS) were used in
this paper to enrich the randomicity in the searching pro-
cess of the standard SCA, thus, a series of SCA-based
techniques were proposed, which are called ‘LogisticSCA’,
‘IterativeSCA’, ‘CircleSCA’, ‘ChebyshevSCA’, ‘Singer-
SCA’, ‘SinusoidalSCA’, ‘SineSCA’, and ‘TentSCA’. Then,
a series of comparative experiments based on 13 benchmark
problems were conducted and the best method among all the
proposed variants of basic SCA, which is called CESCA,
was analyzed in the present study. The proposed CESCA
was compared with several well-established optimizers using
13 classical benchmark functions to evaluate the performance
of the proposed method, and the experimental results show
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that chaotic local search (CLS) strategy has indeed improved
the efficacy of the basic SCA in a significant manner. More-
over, the random forest (RF) was employed to the feature
evaluation procedure, and then, the CESCA was adopted to
tune the key parameters of FKNN. It can be observed that
the solution found by the proposed CESCA-FKNN is much
better than that of the original SCA-FKNN. Also, the effi-
cacy of the proposed CESCA-FKNN model was rigorously
compared with other three well-regarded classifiers and three
swarm intelligence algorithms-based FKNN approaches on
the real-life dataset collected from Wenzhou University.
The experimental results demonstrated that the proposed
CESCA-FKNN had achieved better experimental results
than other three methods in terms of the four standard per-
formance metrics including Matthews Correlation Coeffi-
cients (MCC), classification accuracy (ACC), sensitivity and
specificity.

The accuracy of predicting the college students’ intentions
for master programs was influenced to a great extent by
the performance of the employed classifier. FKNN has been
widely studied due to its excellent performance in dealing
with some real-world problems. However, previous studies
indicated that the performance of FKNN model was heavily
influenced by two key parameters of the neighborhood size
and the fuzzy strength parameter. Therefore, an enhanced
SCA with chaotic mechanism was proposed to identify the
two key parameters of FKNN to improve the prediction
accuracy of college students’ intentions for master programs.
To the best of our knowledge, this is the first time that the
FKNN has been employed to predict the college students’
intentions for master programs.

The main contributions of this study are as follows:

a) First, to further make a delicate balance between
the exploration and exploitation inclinations of SCA,
we introduce several chaotic mechanisms for updating
the key parameter of the primary method. This strategy
helps conventional SCA to reveal a faster convergence
rate and also achieves higher local optima avoidance.

b) Several variants of the chaos-based SCA are proposed
with eight different chaotic maps, and the validation
of the performance is based on 13 commonly used
benchmark problems.

¢) The improved CESCA strategy is successful in opti-
mizing the two key parameters of FKNN. The result-
ing model, CESCA-FKNN, is applied to the pre-
diction of students’ intentions for master programs.
Results of the proposed model show that the developed
model outperforms other six effective machine learning
methods.

The rest of this paper is organized as follows.
Section 2 offers a brief description of the methodology
including FKNN, SCA, and CLS. The experimental design
is given in Section 3. Section 4 presents the detailed sim-
ulation results. The discussion on the experimental results
is delivered in Section 5. Finally, Section 6 summarizes the
conclusions and recommendations for future work.
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Il. METHODS

This part will introduce the prediction framework of college
students’ intention of the postgraduate entrance examina-
tion, namely CESCA-FKNN. The main structure is shown
in Figure 1. The whole process is divided into three parts.
The first part is to normalize the data and evaluate the feature
importance one by one by RF. The second part is to construct
an optimized FKNN model with the chaos-enhanced SCA,
and at the same time, the optimal feature set is obtained by
the incremental evaluation of different feature sets. The main
task of the third part is to use the optimal model constructed
in the previous stage for predicting the new data samples.

It should be noted that the difference between the existing
method and our proposed method is that we have proposed to
use the chaotic mechanisms to update the parameter of r3 in
SCA for the first time, and its effectiveness was rigorously
validated on a set of benchmarks including the unimodal
and multimodal landscapes. Then, the proposed CESCA was
used to tune the two key parameters of FKNN model in
an adaptive manner. In the literature, there are few works
which hybridize other swarm-intelligence methods for opti-
mizing the parameters of FKNN, including PSO [42] and
grey wolf optimizer (GWO) [43]. However, this is the first
time that these improved SCA-based optimizers are proposed
and assessed to train the FKNN model for dealing with our
datasets and for the subject of this research.

A. PREDICTION ENGINE: FUZZY K-NEAREST

NEIGHBOR (FKNN)

KNN is a generalization of the nearest neighbor method,
that is, for the samples of unknown categories, the k-nearest
neighbors in training samples are selected and count the
number of samples in k-nearest neighbors. The category with
the largest number of samples is regarded as the category
of the unknown class samples. Let the number of samples
be N, and the number of samples from w; class is N;.
If the number of samples belonging to w, w»,..., w, among
k-nearest neighbors are ki, ka, ..., k., respectively, then,
the discriminant function can be defined as follows:

gix)=k, i=12,...c¢ 1)
Here, c indicates the number of class. The decision rule is as
follows:

if g; (x) = max(k;), thenx e w; 2)

The KNN classification regards the weight of training sam-
ples as the same when considering training samples, and does
not reflect the distance difference of training samples to clas-
sification decision, which is inconsistent with the actual sit-
uation. Therefore, considering introducing the idea of fuzzy
classification, namely, the fuzzy KNN (FKNN), this problem
is solved by adding the degree of membership function to
training samples [4], [5]. The degree of the membership
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FIGURE 1. Flowchart of the proposed CESCA-FKNN framework.

function of the sample to be classified is defined as follows:

S g1/ [ — g Y)
S (1 Jx = 5Dy

where j = 1,2,...,k and m is the fuzzy strength coeftfi-
cient, representing the weight of the distance between each
neighbor and the test sample;|x — xj” is indicates the dis-
tance between x and its jth nearest neighbor x;. In this study,
the Euclidean metric is used for Hx — xj”. u;; is the mem-
bership degree of the pattern x; belonging to the training
sample of the ith category, among the k nearest neighbors of x.
In this paper, the constrained fuzzy membership was adopted.
Hence, the membership of xi (the k-nearest neighbors of each
training pattern) in each class is given as,

ui (x) =

3

0.51 + (nj/k) %0.49, j=i

Ujj (xx) = . .
(nj/k) x 0.49, VER

Here, the value n; is the number of neighbors found which

belong to the jth class. The brief steps to calculate the mem-
bership degree can be listed as the following steps:

“

a) Calculate the distance (Hx —xj”) between any two
samples in the training sample set, and this paper uses
the Euclidean distance.

b) For each sample, k samples which are nearest to it
are selected, and their category information is counted,
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and the membership degree of training samples is
calculated.

c) For the samples to be classified, calculate the dis-
tance between it and all the training samples, and also
select the k samples closest to the distance. Rules
in Egs (1)-(4) obtain the membership degree of the
samples to be classified.

B. THE HARMONIOUS SCA WITH CLS

Swarm-intelligence methods often inspire nature-based phe-
nomena. However, it is possible to develop a mathematical
model for an optimizer by inspiration from mathematical
concepts. The SCA [17] is a new metaheuristic algorithm that
starts the process with a set of random candidate solutions and
updates the search agents outwards or towards the optimal
solution. The formation of the movement is based on sine
and cosine functions [29]. Random agents explore different
regions of the search space while the core function returns a
value less than —1 or greater than 1. Promising areas of the
search space are exploited while the value returned by the
core function is between —1 and 1. The updated agent loca-
tions (X;, i = 1...N) used in the SCA are adjusted by Eq. (5) to
make sure that solutions always update their positions around
the optimal solution obtained so far.

X =X+ 7y x sin(ra) x [r3Pf — X ©)
X = X+ 1y x cos(rp) x [P — X! ©)
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TABLE 1. Eight chaotic maps.

NO Name Map (a= 0.5 and b=0.2, it can
generate chaotic (0, 1))
Xk+1 = Xk +b—

(a/2m)sin(2nk)mod(1)

Map,  Circle map

Map, Chebyshev  x,,; = cos(kcos™1(xy))

map
Maps Iterative Xp41 = sin(an/x;),a € (0,1)

map
Maps Logisticmap X,,q = axg (1 —xy)
Map; Sinemap  Xy4q = a/4sin(mx,),0<a<4

. Xps1 = u(7.86x; — 23.31x2

Maps  Singermap oo 753 13.302875x)
Maps Sinusoidal  x,,, = axZsin(mx,)

map

_ Xk/0'7'Xk < 0.7

Maps ~ Tentmap — Xp4y = {10/3(1 — x), X = 0.7

where X! is the position of the current solution in the
i-th dimension at t iteration, and Pl’. is the position of the
target point in the i-th dimension at t iteration. r1, r and r3
are random variables and || shows the absolute value. The
range of sine and cosine is updated adaptively by using the
parameter r| in Eq. (5) to balance exploration and exploitation
abilities. Therefore, the random parameter r; defines the
region of the next solution; this region may be either in the
space between X! and P! or outside them.
a

rn=a—t- T @)

where a is a constant, 7 means the maximum number of

iterations. Then, Eq. (5) and Eq. (6) are combined by a
random number r4 € [0, 1] in SCA as follows,

1+1
X;
B X =X 7y x sin () x [Pl — X!, 14 < 0.5
X =X 47y x cos(r2) x [Pt —XE|, 14> 0.5
(3)

Due to the use of sine and cosine in the updating process
in Eq. (8), this algorithm is named as SCA. The CLS mech-
anism was introduced into SCA to develop the basic SCA
and to mitigate the possibility of the local optima stagnation,
which is the core disadvantage of the basic SCA. Chaos
is sensitive to its initial conditions. Also, it has two basic
characteristics: randomness and ergodicity. The randomness
explains that the variations of a chaotic system are random.
Therefore, the optimization of the objective function can
make full use of these characteristics. In this paper, eight
CMS was used to produce chaotic sequences for updat-
ing the r3 in the classical SCA. The eight maps are listed
in Table 1.

The CLS mechanism, owing to its strong randomicity and
ergodicity, can effectively help SCA to jump out of the local
optima and avoid the premature convergence. In this way,
the solutions of the whole population will be optimized,
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FIGURE 2. Flowchart of CESCA.

and the optimal solution will naturally move towards the
global optimum. The general framework of CESCA is shown
in Figure 2.

The computational complexity of the CESCA mainly
depends on five producers: initialization, fitness
evaluation, sequences of 73 updating, the best solution search-
ing and search agents updating. Hence, the overall com-
putational complexity is O(CESCA) = O(nitialization)
+ O(Calculating the fitness values of agents) + O (Producing
the chaotic sequences) + O(Searching the best solutions of
all search agents) + O(Updating the location vectors of all
agents). Considering that the calculation of time complexity
is based on the specific optimization problem, the main focus
of the complexity is on the other four producers. The compu-
tational complexity of the initialization process is O(V). The
time complexity of the chaotic sequences is O(g), and the
best location of all agents is O(N), where g is the maximum
number of iterations.The computational complexity of the
updating mechanism is O(gxNxD)+0x(gxN), which is
composed of searching the best solution and updating the
positions of all search agents, where D is the dimension of
specific problems. Therefore, the final computational com-
plexity of CESCA is OQ2N+g+Nxg(1 + D)).

The general procedure of CESCA is as follows:

Ill. EXPERIMENTAL DESIGNS

A. DATA COLLECTION AND DESCRIPTION

The data obtained in this study were from Wenzhou
University. To achieve a balance between graduate employ-
ment samples and postgraduate entrance examination sam-
ples, 351 of samples received postgraduate degrees, and
351 graduate employment samples were randomly selected as
experimental samples. So, there were a total of 702 students
involved in this research. We analysis of the subjects’ gender,
type of standard school students, Grade Point Average (GPA),
total credits, college English course, advanced mathemat-
ics course, programming language course, college physics
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TABLE 2. Description of the 12 attributes.

Attributes  Name Description
F1 Gender Male and female students are represented by 1 and 2, respectively.
F2 Type of Normal School It is divided into normal students and non-normal students, represented by 1 and 2,
Students respectively.
F3 Grade Point Average (GPA) GPA is a way for the school to assess students' learning quality. The score is within
0-4.
F4 Total Credits It is a unit of measurement used to calculate students' learning volume. The more
credits students receive, the more they learn.
FS College English Course Total Mark of the College English course. The score is between 0 and 100.
Fé6 Advanced Mathematics It is an important basic course in science and engineering colleges. The score is
Course within 0-100.
F7 Programming Language It is a basic course for students of science and technology. The range of score is 0-
Course 100.
F8 College Physics It is the fundamental courses of computer science and technology in universities. The
score is also within 0-100.
Fo A score of Modern Chinese It is one of the fundamental courses in the new scheme of the Marxist theory
history curriculum. The score of the course for students is in the range of 0-100.
F10 Graduation Project or Thesis It is the quality of graduation design paper, and it is divided into high level, middle
level, low level and below standard level, represented by 1, 2, 3 and 4, respectively.
F11 College English Test Band CET-6 is one of the tests to examine the English level of college students whose
Six (CET-6) major is not English. The score of CET-6 for students is in the range of 0-710
intervals.
F12 College English Test Band CET-4 is also an important standard to test students’ English level. The score is
Four (CET-4) within 0-710 intervals.
Procedure of CESCA competitive metaheuristics including grasshopper optimiza-
Begin tion algorithm (GOA) [44], dragonfly algorithm (DA) [45],

Initialize a set of search agents (solutions)
Evaluate each of the search agents by the objective
function
Update the best solution obtained so far (P = X*)
Do until
Update ry, rp, 14
Update r3 using eight different CMS
Update the positions of search agents using
Eq. (8)
Evaluate each of the search agents by the
objective function
End do
Return the best solution obtained so far as the global
optimum
End

course, score of modern Chinese history course, graduation
project or thesis, College English Test Band Six (CET-6), and
College English Test Band Four (CET-4). This study intends
to evaluate the importance and interrelationships of these
twelve attributes to establish a predictive model for decision
support. A detailed description of the twelve attributes is
shown in Table 2.

To validate the effectiveness of the proposed method,
firstly, the effectiveness of chaotic variants of SCA was
compared on common unimodal and multimodal benchmark
functions. The best one was selected to compare with other
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bat algorithm (BA) [46], moth-flame optimization (MFO)
[47] and salp swarm algorithm (SSA). Secondly, we have
applied the chaotic SCA to optimize the critical parameters of
FKNN. The resultant CESCA-FKNN was compared against
the SCA-FKNN and several popular machine learning meth-
ods such as RF, KELM, and SVM. The whole experiment
was done in the MATLAB 2014b environment. We imple-
mented CESCA-FKNN and SCA-FKNN from scratch.
LIBSVM [48] was utilized for SVM implementation; the
source code from http://www3.ntu.edu.sg/home/egbhuang
was used for KELM implementation; the code from
https://code.google.com/archive/p/randomforest-matlab was
taken for RF implementation. The empirical experiment was
conducted on a Windows Server 2008 R2 operating system
with Intel (R) Xeon (R) CPU E5-2660 v3 (2.60 GHz) and
16GB of RAM. Data was first scaled into the range [—1, 1]
before classification. The k-fold cross-validation (CV) was
used to evaluate the classification accuracy [49]. The range
of two parameters in SVM and KELM, penalty factor C and
kernel width y are both set as {2_5, 274 .., 2%, 25}. The
parameters in SCA, GOA, DA, BA, MFO, and SSA were set
as those in their original papers. The initial value of all the
chaotic maps was set as 0.7.

IV. EXPERIMENTAL RESULTS

A. CHAOTIC INITIALIZATION

In this part, the proposed chaotic SCA variants were verified
on 13 benchmark functions which are listed in Tables 3 and 4.
These two tables present seven unimodal (fj-f7) and
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TABLE 3. Unimodal benchmark functions.

Function Dim  Range fnin
fi(x) =31, x? 30 [-100,100] O
f2(x) = Zitqlxl + T 1xl 30 [-10, 10] 0
fs(x) = T Ty x))? 30 [-100, 100] ©
fa(x) = max;{|x;|,1 < i <n} 30 [-100,100] 0
fo(x) = $P100(xi41 — 22+ 30 [-30,30] O
(x; —1)?]
fo(x) = X ([x; + 0.5])2 30 [-100, 100]
f(x) =¥~ ix} + random[0,1) 30 [-1.28, 0
1.28]
TABLE 4. Multimodal benchmark functions.
Function Dim Range fmin
fa(x) = X%, —x;sin( [1x:) 30 [-500,500]-418.9829%*5
—folx) = X0 [x2 — 30 [-5.12,5.12] 0
10 cos(2mx;) + 10]
fro(x) = 30 [-32,32] 0
—20exp {—0.2 ,%zglxi}
—exp{%z’i’;l cos(ani)} +20+e
1
fii(x) = mzyﬂxl? — 30 [-600,600] 0
n X
[T, cos (ﬁ) +1
f12(x) = %{10 sin(ay,) + 30 [-50,50] 0
TSy — DA+
10sin®(my;0)] + O — D? +
0 —a<x;<a
k(=x; —a)™ x<-—a
fi3(x) = 0.1{sin?(3mx;) + 30 [-50,50] 0

Y — D21+ sin?Grx; +
D]+ (x, — D?[1 +
sin?(2mx,)] +

" u(x;,5,100,4)

six multimodal (fg-f13) functions and include the following
information for each test function: the function equation,
the dimensionality of the specific optimization problem, the
range of optimization variables and the optimal values.

Nine algorithms are compared in detail to evaluate the
influence of eight CMS, the. Table 5 lists the average results
(mean) and the standard deviation (std) of the best solution
found by the nine algorithms over 30 independent runs. For a
fair comparison purpose, all methods are implemented in the
same testing environment on the same computing platform.
The population size, dimensions and number of maximum
iterations for the eight variants of SCA and basic SCA were
set as 30, 30 and 500, respectively. As for the parameters
of population number, iteration number and run times, we
have tested by trial and error and determined the best param-
eters. Because too many iterations will consume a lot of
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CPU time. Therefore, we finally determined that
30 populations, 500 iterations, and 30 random runs were used
in this paper.

Table 5 shows that all variants of SCA outperform the
original algorithm. It indicates that the CMS leads the original
SCA to move towards a better solution. The performance of
the original SCA, LogisticSCA, IterativeSCA, CircleSCA,
ChebyshevSCA, SingerSCA, SinusoidalSCA, SineSCA and
TentSCA show a slight difference with each other. Inspecting
the detailed results of algorithms on 13 problems in the table,
the comparison results of the nine methods indicates that
TentSCA has the smallest mean index on 5 out of 13 bench-
marks problems. In the unimodal (2, f4) and multimodal
(fo-f11) functions, the TentSCA provides exact optimum
results. For the rest of the variants, the results are competitive
but TentSCA is far better. Apart from these, the Wilcoxon
signed rank test [50], [S1] has been used to evaluate the signif-
icant improvement of the TentSCA over the other seven vari-
ants of SCA and the original SCA. And the symbols of “+”,
“=""and “-” indicate that TentSCA is superior to, equal to,
and inferior to other eight peers, respectively. In terms of
the “+/=/-"", we can observe that the proposed TentSCA is
significantly better than the basic SCA, IterativeSCA, Cheby-
shevSCA, SingerSCA, SinusoidalSCA on 12,7, 7, 8 and 7 out
of 13 functions, and inferior to them on 1,1,2,4 and 3 out
of 13 ones, respectively. Moreover, the result of TentSCA is
significantly better or equal than those obtained by the Logis-
ticSCA, CircleSCA, and SineSCA in dealing with all func-
tions. Furthermore, the Friedman test has also been employed
to estimate the performance of all the variants of SCA for
further statistical comparison, and the average ranking value
(ARV) is reported in the results. It can be seen from Table 5,
TentSCA obtains the lowest ARV for 13 functions, followed
by the LogisticSCA, CircleSCA, SineSCA, IterativeSCA,
ChebyshevSCA, SingerSCA, SinusoidalSCA and the basic
SCA. In short, we can conclude that the proposed TentSCA
achieves the best search performance and is well capable of
escaping the local optimum value than all other competitors.

Also, to intuitively observe the difference of performance
between eight different strategies, convergence curves of
LogisticSCA, IterativeSCA, CircleSCA, ChebyshevSCA,
SingerSCA, SinusoidalSCA, SineSCA, TentSCA, and orig-
inal SCA on some typical benchmark functions are also
provided in Figure 3. For fi, f4, and f;, all the variants
give competitive convergence trends, but TentSCA delivers
the best result among all. For the multimodal benchmark
function fi;, the TentSCA surpasses all other proposed
versions. Compared with the other eight techniques,
the TentSCA has more research value. It is also noteworthy
that TentSCA renamed CESCA is selected as the best variant
to compare with other methods in the following experiment.

The performance of the new method was compared with
five recently proposed optimization algorithms on 13 classi-
cal benchmark tests to validate the proposed CESCA. The
compared methods are GOA, DA, BA, MFO, and SSA.
The same experimental condition of the competitors and
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FIGURE 3. Convergence curves of some selected benchmark functions. (a) Convergence curve of F1. (b) Convergence
curve of F4. (c) Convergence curve of F7. (d) Convergence curve of F11.

the proposed CESCA was adopted. As shown in Table 6,
we can see that, on average, the presented CESCA obtains
the lowest values for 12 problems, and it converges to the
optimal solution on fy. Followed by MFO, it provides the
lowest mean value on one function. In terms of the statistic
results of Wilcoxon’s signed rank test, we can observe that
the developed CESCA is significantly better than SSA, GOA,
DA, and MFO on 12 out of 13 functions, and inferior to them
on one case, respectively. Similarly, CESCA is superior to
BA on 11 out of 13 problems, inferior to it on one case, and
equal to them on one case. Moreover, the proposed algorithm
achieves the best performance among all these competitors
from the point of view. Therefore, we can say that CESCA
produces the best results for these benchmark problems. The
average results of the CESCA and all the involved algorithms
were also compared by using the Friedman test. According to
the ARV values of different methods, it can be observed that
the proposed CESCA has the best performance for handling
these benchmark problems, followed by GOA, BA, MFO, and
SSA, while DA has the worst searching capability.
Furthermore, to clearly show the superiority of the
CESCA, the evolution progress of SSA, GOA, DA, BA,
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MFO, and CESCA on some standard benchmarks are also
provided in Figure 4. It can be detected that the proposed
method has the ability of rapid convergence and it can be
superior to all other competitors in realizing f;, while SSA,
GOA, DA, BA, and MFO cannot improve the quality of
solutions in solving fi seen throughout more explorative
steps. This trend also can be seen in dealing with the uni-
modal benchmark function (f3) and multimodal problems
(fio and f11). For f5 and f;, CESCA has converged so fast
during few searching steps. To sum up, it can be indicated
that the Tent mapping strategy is beneficial to improve the
solution accuracy of SCA.

B. PREDICTION RESULTS OF STUDENTS’ INTENTIONS
FOR MASTER PROGRAMS

In this experiment, the RF was employed to evaluate
the importance of the factors in the experimental dataset.
The importance of every feature is plotted in Figure 5. The
rank of the selected features based on the average values
decrease in accuracy in subsets is F4, F11, F6, F5, F1, F8,
F10, F12, F7, F3, F9, and F12. According to the ordered
features, 12 feature subsets were incrementally constructed.
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TABLE 5. Results of SCA variants with different chaotic maps.
Fun Index SCA LogisticSCA IterativeSCA CircleSCA ChebyshevSCA SingerSCA SinusoidalSCA SineSCA TentSCA
F1 mean 1.49E+01 6.94E-14 1.51E-11 8.67E-16 2.64E-12 1.67E-08 9.19E-08 1.56E-13 8.85E-16
std 3.19E+01 2.26E-13 7.77E-11 2.85E-15 5.24E-12 3.26E-08 1.45E-07 2.83E-13 1.98E-15
F2 mean 1.46E-02 2.09E-09 1.47E-08 2.54E-10 9.02E-09 1.42E-06 4.71E-06 5.30E-09 2.29E-10
std 1.87E-02 4.52E-09 2.38E-08 4.23E-10 2.23E-08 3.68E-06 5.48E-06 1.38E-08 4.09E-10
F3 mean 1.01E+04 6.65E-10 1.03E-06 1.21E-11 4.75E-07 1.64E-02 1.08E-03 1.64E-07 4.38E-11
std 6.78E+03 1.49E-09 3.43E-06 2.91E-11 1.11E-06 3.57E-02 2.45E-03 4.05E-07 1.42E-10
F4 mean 3.76E+01 2.04E-06 5.23E-05 4.27E-07 7.62E-05 5.73E-03 1.68E-03 2.37E-05 3.61E-07
std 1.55E+01 3.32E-06 9.26E-05 8.04E-07 2.22E-04 6.24E-03 1.78E-03 4.33E-05 5.63E-07
F5 mean 5.93E+04 2.84E+01 2.83E+01 2.85E+01 2.84E+01 2.83E+01 2.83E+01 2.85E+01 2.85E+01
std 1.65E+05 4.08E-01 4.40E-01 3.49E-01 3.81E-01 2.94E-01 3.27E-01 3.94E-01 3.31E-01
F6 mean 2.66E+01 5.47E+00 5.18E+00 5.75E+00 5.24E+00 4.90E+00 4.56E+00 5.38E+00 5.42E+00
std 4.05E+01 2.78E-01 1.92E-01 1.85E-01 3.07E-01 2.60E-01 2.16E-01 2.11E-01 2.64E-01
F7 mean 1.17E-01 3.28E-04 3.93E-04 2.48E-04 3.32E-04 6.08E-04 3.90E-04 3.41E-04 2.61E-04
std 1.41E-01 2.64E-04 5.09E-04 2.03E-04 2.71E-04 5.27E-04 3.38E-04 2.71E-04 2.62E-04
F8 mean -3.65E+03 -3.50E+03 -3.28E+03 -3.37E+03 -3.68E+03 -3.59E+03 -3.41E+03  -3.39E+03 -3.35E+03
std 3.13E+02 3.55E+02 2.82E+02 3.55E+02 2.97E+02 2.46E+02 2.64E+02 2.95E+02 2.68E+02
F9 mean 3.71E+01 5.68E-15 4.03E-12 1.89E-15 2.35E-13 2.95E-06 1.34E+00 1.98E-12 0.00E+00
std 3.57E+01 2.29E-14 1.61E-11 1.04E-14 4.93E-13 9.46E-06 7.12E+00 1.05E-11 0.00E+00
F10 mean 1.70E+01 1.82E-08 1.72E-07 2.78E-09 1.47E-07 1.77E-04 8.55E-01 1.15E-07 2.08E-09
std 6.61E+00 2.38E-08 2.19E-07 4.27E-09 2.05E-07 7.78E-04 3.82E+00 2.37E-07 2.72E-09
F11 mean 1.10E+00 1.62E-14 2.42E-10 4.23E-14 4.70E-11 3.25E-07 7.33E-03 1.75E-12 3.54E-15
std 5.18E-01 3.46E-14 9.83E-10 1.31E-13 1.07E-10 8.19E-07 1.56E-02 331E-12 9.95E-15
F12 mean 7.00E+05 6.82E-01 6.66E-01 8.14E-01 7.24E-01 5.74E-01 5.15E-01 7.05E-01 6.77E-01
std 3.49E+06 5.07E-02 1.34E-01 1.30E-01 1.59E-01 1.09E-01 1.06E-01 1.33E-01 1.10E-01
F13 mean 1.21E+05 2.60E+00 2.56E+00 2.69E+00 2.59E+00 2.47E+00 2.39E+00 2.56E+00 2.60E+00
std 2.80E+05 8.34E-02 8.88E-02 5.88E-02 8.56E-02 1.22E-01 1.13E-01 7.46E-02 1.21E-01
+=/- 12/0/1 5/8/0 7/5/1 3/10/0 7/4/2 8/1/4 7/3/3 7/6/0 -
ARV 8.526 3.899 4.677 4.028 4.723 5.549 5.572 4.620 3.406
TABLE 6. Comparative results of CESCA with other popular algorithms.
Fun Index SSA GOA DA BA MFO CESCA
F1 mean 8.87E+02 3.47E+01 2.75E+03 1.70E+01 3.45E+03 3.16E-15
std 4.15E+02 1.66E+01 1.18E+03 2.47E+00 6.03E+03 5.32E-15
F2 mean 1.70E+01 1.86E+01 1.65E+01 5.40E+01 3.54E+01 3.05E-10
std 3.18E+00 2.53E+01 6.97E+00 1.35E+02 2.03E+01 6.10E-10
F3 mean 5.06E+03 3.77E+03 1.39E+04 1.29E+02 2.06E+04 2.69E-11
std 3.23E+03 2.22E+03 8.55E+03 4.09E+01 1.25E+04 5.37E-11
F4 mean 2.00E+01 1.53E+01 3.06E+01 3.81E+00 6.68E+01 2.71E-07
std 3.50E+00 4.29E+00 7.98E+00 2.73E+00 9.53E+00 4.68E-07
F5 mean 1.44E+05 6.00E+03 2.96E+05 5.00E+03 2.69E+06 2.85E+01
std 1.15E+05 8.65E+03 2.65E+05 1.60E+03 1.46E+07 3.66E-01
Fé6 mean 1.17E+03 3.61E+01 2.20E+03 1.62E+01 3.36E+03 5.40E+00
std 6.78E+02 3.36E+01 1.17E+03 2.89E+00 5.48E+03 2.29E-01
F7 mean 3.79E-01 4.90E-02 6.36E-01 1.31E+01 4.51E+00 1.80E-04
std 2.09E-01 1.76E-02 4.86E-01 7.17E+00 9.10E+00 1.60E-04
F8 mean -6.13E+03 -7.56E+03 -5.56E+03 -7.24E+03 -8.45E+03 -3.31E+03
std 8.59E+02 7.63E+02 5.94E+02 7.10E+02 7.23E+02 3.37E+02
Fo mean 9.48E+01 9.80E+01 1.60E+02 2.71E+02 1.71E+02 0.00E+00
std 1.92E+01 4.17E+01 3.40E+01 2.48E+01 4.01E+01 0.00E+00
F10 mean 9.41E+00 5.19E+00 1.04E+01 5.59E+00 1.46E+01 4.07E-09
std 1.40E+00 1.15E+00 1.84E+00 3.91E+00 7.39E+00 5.06E-09
F11 mean 1.02E+01 1.16E+00 1.79E+01 6.38E-01 1.30E+01 9.61E-15
std 3.50E+00 1.35E-01 8.71E+00 5.54E-02 3.11E+01 2.02E-14
F12 mean 2.28E+01 9.43E+00 1.68E+04 1.48E+01 1.12E+04 7.48E-01
std 1.18E+01 4.61E+00 4 87E+04 4.94E+00 6.15E+04 1.69E-01
F13 mean 1.82E+04 4.40E+01 4.79E+05 2.68E+00 2.08E+01 2.60E+00
std 3.90E+04 3.00E+01 6.79E+05 4.00E-01 1.54E+01 8.62E-02
+/=/- 12/0/1 12/0/1 12/0/1 11/1/1 12/0/1
ARV 4.323 3.062 5.015 3313 3.846 1.441

Subset 1 is represented with the most crucial feature {F4};
Subset 2 denotes the top two features {F4, F11} and so
on. The classification results of 12 feature subsets using the
CESCA-FKNN are shown in Table 7. The results show that
the Subset 5 {F4, F11, F6, F5, F1} is capable of achieving
the best performance in four measurements: classification
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accuracy (ACC), Sensitivity, Specificity and MCC with val-
ues of 82.47%, 85.47%, 78.97% and 0.6565. In terms of
the standard deviation, Table 7 also confirms the fact that
Subset 5 is more stable than other feature subsets. Therefore,
Subset 5 was selected as the best feature subset in the follow-
ing experiment.

67243



IEEE Access

A. Lin et al.: Predicting Intentions of Students for Master Programs

FIGURE 4. Convergence curves of some selected benchmark functions.

To verify the effectiveness of the proposed CESCA-FKNN
method, we compared the proposed method with RF, kernel
extreme learning machine (KELM) [52] and support vector
machine (SVM) [53], [54]. Since RF, KELM, and SVM were
the most commonly used and practical machine learning
algorithms. Also, the original SCA-FKNN, the DA based
FKNN approaches (DA-FKNN) and the MFO based FKNN
model (MFO-FKNN) have also been employed to evaluate
the performance of the developed CESCA-FKNN model.
The experimental results of seven methods in four indicators
are shown in Figure 6. As can be seen from the figure,
CESCA-FKNN has better results than the other three
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methods in terms of the three indicators. Besides,
CESCA-FKNN had the smallest standard deviation among
the two indexes with ACC of 82.47%, sensitivity of 85.47%,
the specificity of 78.97%, MCC of 0.6565.

According to the ACC metric, CESCA-FKNN achieves
the best results which are slightly better than results yielded
by DA-FKNN, whereas SCA-FKNN, MFO-FKNN, RF,
KELM, and SVM produce inferior results. Regarding the
sensitivity metric, RF obtains the best results, MFO-FKNN,
CESCA-FKNN, SCA-FKNN, and DA-FKNN yielded sim-
ilar results, whereas KELM and SVM yielded the worst
results. As for the specificity metric, the developed
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FIGURE 5. Mean decrease in accuracy for each feature.

FIGURE 6. Comparison results among CESCA-FKNN, SCA-FKNN, DA-FKNN,
MFO-FKNN, RF, KELM, and SVM.

CESCA-FKNN obtained the best results, followed succes-
sively by DA-FKNN, MFO-FKNN, SVM, SCA-FKNN,
KELM, and RF. In terms of the MCC metric, CESCA-FKNN
obtained the best results, whereas KELM again yields the
worst results. The results indicate that the CESCA-FKNN
model proposed in this paper is an effective method with
strong potential to predict the students’ intention of master
programs.

The evolutionary curves of CESCA-FKNN, DA-FKNN,
MFO-FKNN, and the original SCA-FKNN are depicted
in Figure 7 to evaluate the performance of the proposed
method, t. All methods were implemented in the same test-
ing environment to ensure a fair comparison. The popu-
lation size and number of maximum iterations were set
as 20 and 50, respectively. As can be seen from the fig-
ure, the proposed CESCA-FKNN obtained the best conver-
gence curve. It is also observed that solutions obtained by
CESCA-FKNN are much better than the best solutions of
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FIGURE 7. The convergence trend of four methods.

the original SCA-FKNN in the later period of optimiza-
tion iterative. This fact can indicate that the exploitation
tendency of the proposed CESCA in searching for optimal
parameters has improved, considerably. Also, the original
SCA-FKNN model may have poor ability to explore further
during the iterative process, and thus, got the worse results.

V. DISCUSSION

Based on the above experimental results, it is observed
that the most important features including total credits (F4),
CET-6 (F11), Advanced Mathematics course (F6), College
English course (F5), and gender (F1), the influence of these
features on the choice of students’ intentions for master pro-
grams is relatively prominent. On the whole, students with
a higher level of language proficiency are more inclined to
become a graduate student because English is an impor-
tant subject for the postgraduate entrance examination, and
English scores often become the lowest part of the barrel
effect of the postgraduate entrance examination. Students
with excellence score in Advanced Mathematics course have
obvious opportunity to go to graduate school because math
is an important basic course in science and engineering col-
leges. Gender differences also have a significant influence on
students’ intentions for master programs. The proportion of
girls choosing to occupy a job is much higher than that of
boys’ maybe because boys are courageous, and girls prefer
steady jobs. The academic achievement and the employment
option have a significant influence on one’s entire life. The
academic performance mainly includes GPA, CET-6, Total
Credits, scores of college English course and advanced math-
ematics course, and the academic achievement is generally
divided into two categories: good and bad. Students with
low academic scores do not have an obvious advantage to
pursue further education, and they will actively think about
how to improve their practical experience or job opportunities
through various channels. Hence, the probability of searching
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TABLE 7. Performance of CESCA-FKNN on different feature subsets.

Feature subsets MCC ACC Sensitivity Specificity
Subset 1 0.3388 (0.0910) 0.6680 (0.0493) 0.7409 (0.0486) 0.5959 (0.0848)
Subset 2 0.4370 (0.1217) 0.7178 (0.0660) 0.7452 (0.0937) 0.6824 (0.1736)
Subset 3 0.4490 (0.1038) 0.7192 (0.0520) 0.7781 (0.1186) 0.6455 (0.2196)
Subset 4 0.5879 (0.1193) 0.7919 (0.0606) 0.7970 (0.0880) 0.7890 (0.0903)
Subset 5 0.6565 (0.0665) 0.8247 (0.0332) 0.8547 (0.0854) 0.7897 (0.1032)
Subset 6 0.6455 (0.1170) 0.8192 (0.0579) 0.8752 (0.0779) 0.6455 (0.1170)
Subset 7 0.6053 (0.1083) 0.8035 (0.0528) 0.8179 (0.0937) 0.7809 (0.0881)
Subset 8 0.5775 (0.1057) 0.7833 (0.0587) 0.8620 (0.0484) 0.7072 (0.0932)
Subset 9 0.5689 (0.0767) 0.7821 (0.0415) 0.8150 (0.0630) 0.7502 (0.0989)
Subset 10 0.5511 (0.1038) 0.7722 (0.0549) 0.8278 (0.1011) 0.7083 (0.1200)
Subset 11 0.5441 (0.1154) 0.7623 (0.0598) 0.8435 (0.1168) 0.6724 (0.2112)
Subset 12 0.5958 (0.0946) 0.7935 (0.0507) 0.8346 (0.0678) 0.7536 (0.1165)

for a job is stronger than that of the students who got ACKNOWLEDGEMENTS

high total credits. On the contrary, students with better aca-
demic achievements prefer to study further to earn a master’s
degree.

It is noteworthy that the present study has several restric-
tions that can be addressed in the future. First, the research
sample in this study was restricted. To obtain accurate results,
more consecutive samples are needed to be collected for com-
pleting the unbiased learning model. Second, the research
was accomplished only based on a relatively single university,
which needs to add diversity, then, the model for decision
support will be more reliable and practical. The third item
is the limited involved attributes. More studies should be
undertaken to investigate more attributes which may have any
influence on students’ intentions for Master Programs.

VI. CONCLUSIONS AND FUTURE WORKS

In this study, we developed an improved FKNN framework
to predict the students’ intentions for master programs. This
paper’s novelty lies in combing the RF algorithm with an
enhanced SCA-based FKNN prediction engine. On the one
hand, the RF algorithm aims at screening the key features in
the data, and on the other hand, proposed enhanced SCA was
employed to tune the two key parameters of FKNN to predict
new samples. Simulation results have demonstrated that the
proposed framework has better classification performance
than three classical classifiers and four swarm intelligence
algorithms-based FKNN approaches on the majority metrics
of ACC, MCQC, sensitivity, and specificity. Therefore, we can
get a preliminary conclusion that an improved framework is a
valuable tool for predicting students’ employment intention.
In future work, we plan to collect more consecutive samples
to complete the unbiased learning model to improve the
prediction performance. Also, we also plan to establish a set
of the decision support system on the proposed model to assist
the decision makers of university departments to predict the
students’ intentions of master programs.
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