
Received April 21, 2019, accepted May 8, 2019, date of publication May 20, 2019, date of current version June 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917674

Automated Model-Based Test Case Generation
for Web User Interfaces (WUI) From Interaction
Flow Modeling Language (IFML) Models
NAZISH YOUSAF1, FAROOQUE AZAM1, WASI HAIDER BUTT 1,
MUHAMMAD WASEEM ANWAR 1, AND MUHAMMAD RASHID 2
1Department of Computer and Software Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology,
Islamabad 46000, Pakistan
2Computer Engineering Department, Umm Al-Qura University, Mecca 21421, Saudi Arabia

Corresponding author: Muhammad Waseem Anwar (waseemanwar@ceme.nust.edu.pk)

ABSTRACT Since the emergence of web 2.0, the architecture of web applications has been transformed
significantly and its complexity has grown enormously. In such web applications, the user interface (UI)
is an important ingredient and with the increased complexity, its testing is getting increasingly complex
and cost/time-consuming process. Recently introduced, interaction flow modeling language (IFML) is an
object management group (OMG) standard. IFML is gaining popularity for developing web applications,
primarily, because of its excellent features for modeling UI elements, their content, and their interaction
capturing capabilities. However, despite its superior UI modeling features, its UI testing is accomplished
through traditional time-consuming techniques, which are employed after implementing the UI code.
Hence, to overcome these limitations, this paper introduces a novel model-based testing approach for
IFML UI elements. The proposed approach provides complete navigation testing using formal models.
Moreover, the approach transforms the IFML models to all necessary UI testing artifacts by generating
state transition matrix plus detailed UI test case document. As a part of a research, model-based user
interface test case (MBUITC) generator tool is implemented to automatically generate navigation model
for formal verification, test case document, and transition matrices from IFML models. The applicability of
the proposed approach is validated through two benchmark case studies. The results have shown that the
proposed approach provides test cases at the early stages of development, i.e., specification and analysis,
which eventually helps in building a right product at the right time at a comparatively lower cost.

INDEX TERMS Formal verification, IFML, MBT, model-based testing, UI, web applications, WUI.

I. INTRODUCTION
WorldWideWeb (WWW) is an information spacewhich con-
tains data, documents and web resources all over the world
connected by webpages. It has become an ever-increasing
network of interlinked pages and web applications, packed
with photos, videos and other interactive contents, there-
fore there is an increased complexity in the architecture of
web-based applications [1]. Over the last decade, the usage
of WWW has increased significantly due to the involvement
of social media (e.g. Facebook etc.) and people access web
apps through various devices i.e. laptops, PDAs, desktops

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Ona.

and mobile phones. Consequently, the primary goal of mod-
ern websites is the consistent representation of information,
so that, the contents can be accessed / shared on different
devices. Furthermore, it is also important to provide universal
interfaces in order to accommodate the demands of users
from different countries. As a result, the efforts and time
require to develop and test Web User Interfaces (WUI) are
significantly increased [2]. There is a strong need tominimize
the development complexity of WUI to achieve certain goals
like usability and productivity for modern websites. This can
be achieved by applying the latest Model Driven Engineer-
ing (MDE) techniques [3]–[5].

Model Driven Engineering (MDE) is a well-known
methodology of software engineering which is commonly

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

67331

https://orcid.org/0000-0002-1193-5683
https://orcid.org/0000-0002-1347-3662
https://orcid.org/0000-0001-5852-1296


N. Yousaf et al.: Automated Model-Based Test Case Generation for WUI From IFML Models

applied in different domains like embedded systems [3],
information systems etc. to simplify the development process
and provide early design verification features. Furthermore,
it is fully applicable for the development of both web and
desktop software applications [6]. Therefore, it is frequently
applied to simplify the development of modern web applica-
tions. For example, UML (Unified Modeling Language) has
been widely used as a standard General Purpose Modeling
Language (GPML) for the visualization of design and func-
tionality of different web applications. However, UML lacks
in covering the significant characteristics of web applications
i.e. user interaction and interface. Therefore, WebML (Web
Modeling Language) with its own notations was introduced
for the development of complex web applications. In 2013,
OMG (Object Management Group) evolved WebML into
IFML (Interaction Flow Modeling Language) [7]. IFML is
designed to capture the structure, user interaction and control
flow of front-end of web applications. Furthermore, it pro-
vides support for platform independent level description for
the UI of web applications accessed on any kind of device i.e.
desktop, computer, laptop, PDA, mobile or tablet indepen-
dent of the residing implementation techniques or platforms.
In order to provide platform independent level interaction,
IFML provides a stable set of concepts used to capture the
fundamentals of user interaction with the interface of web
applications.

To deal with the complexity of modern web applications
and particularly user interfaces, the development and testing
has to start right from the requirement gathering phase. In this
context, IFML facilitates the design process by building the
design models of the web application including the user
interaction, content and structure of application. However,
IFML does not provide design verification and testing capa-
bilities so far. Consequently, the design of web application
is developed through IFML and separate approach in late
development phase is introduced to test the functionality and
user interfaces of web application. This significantly affect
the achievement of important factors like quality, efficiency
and Time to Market (TTM) [8]. Therefore, there is a strong
need to develop an approach to automatically generate test
cases from IFML models. This leads to perform the design
verification of user interfaces in initial development stages
to make the testing process more precise and efficient. Fur-
thermore, it also ensures the cross-platform compatibility of
user interfaces as IFML models are developed at platform
independent level.

This article presents a novel approach to automatically
generate WUI test cases from IFML models. Particularly,
IFML models containing web application functional and
user interfaces requirements are transformed into test cases,
exercising particular actions in the application to verify its
expected behavior. The contributions of the article, as shown
in Fig. 1 are summarized as follows:

• A novel methodology is proposed to automatically
generate test case document, state transition matrix,
source and target informationmatrix and timed automata

FIGURE 1. Overview of the research.

navigation models from the initial collected web appli-
cation requirements which are represented through
domain (UML) and front end (IFML) models.

• Firstly, the conceptual mapping between IFML con-
structs and web application concepts is performed
(Section III-A). This mapping provides the platform for
auto generation of WUI test cases from IFML models.

• Secondly, four types of transformation rules are devel-
oped (Section III-B) to generate target test case artifacts
from the IFML models.

• Thirdly, a complete Model-based User Interface Test
Case (MBUITC) generator tool is implemented in JAVA
and Acceleo (Section IV), capable of generating accu-
rate target test case documents from the IFML models.

• Finally, the validation (Section V) is performed through
two bench mark case studies i.e. Online Auctions and
Library system case studies. Navigation verification
is performed through UPPAAL tool by utilizing auto
generated navigation model. Two properties have been
considered for the verification of pages navigation i.e.
Reachability and Deadlock.

• The comparative analysis of proposed approach with
state-of-the-art is given in Section VI.

Most important contribution made by the proposed
approach is automated navigation verification. IFML model
is transformed into a navigation model which contains the
view containers as states and navigation between them as
transitions. The resulting Timed Automata model can be
used to verify the reachability and deadlock properties;
hence, providing fully automated navigation verification.

67332 VOLUME 7, 2019



N. Yousaf et al.: Automated Model-Based Test Case Generation for Web User Interfaces WUI From IFML Models

Other contributions of the research are automatic genera-
tion of State Transition matrix, Source & Target Information
Matric and UI Test Case Document. The generated matrices
are used as a black box testing technique and are useful for
quick state transition testing of theweb application. They help
testers to expose the invalid or unintended states and contain
test case for each navigation in the IFML model whereas
the UI Test Case document generated is a complete testing
artifact which provides full coverage of all the test cases used
for UI testing of a web application.

II. PRELIMINARIES
In this section, we briefly discuss the ground works for this
research. Introduction of IFML is provided in Section II-A,
and literature review is discussed in Section II-B.

A. INTERACTION FLOW MODELING LANGUAGE (IFML)
STANDARDS
The Interaction Flow Modeling Language (IFML) was stan-
dardized by OMG in March 2013. It was inspired byWebML
and WebRatio experience which were used for model driven
web-based application development. It has widely been
adopted since then. IFML itself describes how we can apply
model driven engineering (MDE) to the problem of front-end
design of software applications. IFML is designed to capture
the structure, user interaction and control flow of front-end
of any software application. Furthermore, it provides support
for platform independent level description for the GUI of
any software application accessed on any kind of device i.e.
desktop, computer, laptop, PDA, mobile or tablet. In order
to provide platform independent level interaction, IFML pro-
vides a stable set of concepts used to capture the fundamentals
of user interaction with the interface of software applications,
defined in subsequent section.

1) DOMAIN MODELING
Requirement specification contains the textual information
on what should be the structure of the application or what
functions should be performed by it. It provides the user roles,
domain entities and the relationship between roles and use
cases. Domain modeling is referred as a highly relevant and
complementary activity to front-end modeling. In order to
design an IFML model, UML model containing the domain
concepts of the application is required. This UML model
is simply a UML class diagram contains information about
the objects identified in requirement specification phase. The
resulting model encompasses classes, attributes and relation-
ships between classes that are later used in the IFML model
which is used to map the domain concepts provided by UML
domain model to the front-end of the application.

2) IFML MODELING
IFML provides support for the front-end application specifi-
cations without taking in account the underlying technologi-
cal details. IFML provides support for the visualization units
throughwhich interface is composed, content to be displayed,

events and actions involved, their effect on the interface state
and the parameters to be passed while the units communicate.
In short, IFML sums up all these concepts in one diagram
unlike UML which relies on multiple diagrams to express
each concept.

B. LITERATURE REVIEW
Literature review is performed in this section to highlight the
applicability and usability of IFML in the field of software
application development. M. Brambilla et al. [9] propose
a multi-step approach for both mobile and web develop-
ment. The study present how model driven transformation
can ease code generation from requirement specification.
The approach started from requirements specification and
business specifications and specified them in IFML based
platform independent generic model that can be used for both
web and mobile aspects. Later, this model was transformed
into a more domain specific model for mobile by blending
the IFML model with a mobile specific modeling language
called MobML. Code generation is done for both web and
mobile specific platforms.

C. Bernaschina et al. [10] propose MDE based approach
for improvement of application development process by com-
bining visual application modeling language (IFML) with
web log analytics. By using this approach, an appropriate
blend can be achieved which helped in user behavior analysis.
R. Acerbis et al. [11], [12] highlight the usage of mobile
extensions of IFML which can be used for rapid applica-
tion development of mobile applications. A comprehensive
toolset calledWebRatio is proposed for this purpose. WebRa-
tio supports IFML and its web extensions and has somemodel
checking and code generation features resulting in generation
of code for cross-platformmobile applications using Cordova
framework.

S. Roubi et al. [5], [13] adopt IFML as amodeling language
for Rich Internet Applications (RIAs). The paper proposes
an approach for Model-based Graphical User Interface (GUI)
generation for RIAs by transforming the IFML models using
Eclipse tool. Each input element of IFML model is mapped
to an element of RIA meta-model in order to automatically
generate code for a running application. Major focus of this
approach is on GUI elements which are considered very
important for any web-based application.

Brambilla et al. [14] present their work on model-driven
approach extending IFML for the development of cross-
platform mobile applications. The proposed extensions cover
both the user interface and event aspects of components.
Screen has been introduced to fill the part of ViewCon-
tainer in a mobile application. Similarly, ToolBar has been
introduced as a sub-container. MobileSystem stereotype is
introduced for mobile ViewContainer andMobileComponent
stereotype is introduced for mobile ViewComponent in IFML
standard. Similarly, several events have also been introduced
in the context of mobile application. The study highlights that
IFML is strong enough to capture all the aspects of a typical
mobile application.

VOLUME 7, 2019 67333



N. Yousaf et al.: Automated Model-Based Test Case Generation for WUI From IFML Models

Nieto et al. [15] present a model driven approach for
development of a web mobile application named ocioColom-
bia. In this paper, IFML is used for development of this
application in order to generalize it from web domain to
general domain. Umuhoza and Brambilla [16] carry out an
extensive survey for identification of different model driven
approaches used for the development of mobile applica-
tions. The survey provides a comparative analysis of research
approaches and the commercial solutions identified on the
basis of SDLC phases, application aspects, Model Driven
Development (MDD) techniques, application types and sup-
ported platforms.

Rhazali et al. [17] propose a model transformation
approach in order to transform Computation Indepen-
dent Model (CIM) to a web-based Platform Independent
Model (PIM) according to Model Driven Architecture
(MDA). To provide web view to PIM model, SoaML and
IFML has been used. A comprehensive set of rules are
constructed in order to develop UML activity, class, use
case and state diagrams at CIM level. Then, a set of trans-
formation rules have been defined for transformation from
CIM to PIM i.e. SoaML and IFML models. This approach
provides a solution to the problem of conversion of busi-
ness models at CIM level to design and analysis models at
PIM level.

Laaz and Mbarki [6], [18] use MDE methodology to gen-
erate user interface from abstract models in order to meet
requirements for RIAs. The approach combines ontology
with IFML.Ontology domain captured theUI logical descrip-
tion and IFML has been used to capture the interaction
between domain elements. Abstract model is given as input
and two transformations are applied on it. First transforma-
tion converts the PIM to Platform Specific Model (PSM) and
then through second transformation on PSM, flex interface
code for RIA is generated.

Fraitak et al. [7], [8] propose a testing technique which
used IFML in order to generate the automated front-end tests.
IFML is used to capture the interface components details.
MDE is used for transformation of IFML model to abstract
front-end test model for the System under Test (SUT). Some
rules are defined according to which the front-end model is
transformed into executable test cases. The abstract test case
scenarios are transformed into physical test case scenarios
using template engine. Generated test cases can be executed
using Selenium. Umuhoza et al. [19] propose a strategy for
WebRatio in developing a MDD tool for mobile applica-
tion development. The approach uses PIM level language
IFML’s extension for mobile application development. The
extended language Mobile IFML supports design views rep-
resenting the structure, design and interaction flow between
mobile interfaces. The study also highlights some code gen-
eration approaches for mobile applications. In another work
Salini et al. [20] present an approach in which web analyt-
ics are used to automatically generate navigation models
for mobile applications. The proposed approach uses usage
patterns from both mobile and web usage and provides an

automated transformation into mobile based navigation tree
and design models.

Bernaschina et al. [21]–[23] present an open source tool for
rapid prototyping of web andmobile applications usingMDD
approach. The approach applied model to model and model
to text transformations. Model to model transformation on
IFML diagram result in place chart nets which later helped
in simulation and verification. Model to text transformation,
on the other hand resulted in code generation for web and
mobile domain form IFML model.

Anwar et al. [3], Larissa da Costa et al. [28] introduce
Model-based User Interface (MBUI) approach used for user
interface engineering for the domain of web-based sys-
tems. The UI stereotype is used to capture UI specifica-
tion, behavior and its presentation. This concept has been
applied along-with IFML for describing a web portal user
interface stereotype as an interaction pattern for automatic
web portal component generation. Bernaschina et al. [30]
in a research paper propose formalization of IFML seman-
tics by mapping IFML constructs to equivalent concepts
in Place Chart Nets (PCN) in a model driven environment
for generation of code for all web and mobile applications.
Rodriguez-Echeverria et al. [31] propose a MDWE tool
called AutoCRUD which is a webRatio plugin and gener-
ates CRUD specifications in IFML automatically in order to
increase the productivity of development teams.

III. PROPOSED METHODLOGY
A. TARGETED IFML CONSTRUCTS
IFML meta-model provides the semantics and structure of
constructs used in IFML. UML profile in IFML meta-model
defines the syntax used to express IFML models in UML.
IFML meta-model comes with two packages. Core pack-
age contains main IFML concepts whereas the Extensions
package contains some enhanced characteristics that make
the application more interactive. The basic purpose of intro-
ducing extensions is to make application more expressive,
increase the readability and to make the elements less
abstract. This package majorly contained web, desktop, com-
ponent and multi-screen extensions. Because of limited time
and scope of the research, we have only targeted the core
concepts and some of main extensions concepts which are
mandatory for development of a Web User Interface. A brief
description of the targeted IFML concepts is given as follows,

• <<ViewContainer>> IFML model consist of one
or more view containers which basically are used to
express web pages and windows in case of web appli-
cations and desktop applications respectively. View con-
tainers can be nested. Child containers can be displayed
at the same time as of parent containers or they can
be made mutually exclusive by using XOR nesting.
In case of mutual exclusion, one container can be set
as default, when user accessed parent container, default
child container is also displayed. For Example, Fig. 2
shows a simple IFML model from movies case study.
It explains simple scenario that if the user wants to add a

67334 VOLUME 7, 2019



N. Yousaf et al.: Automated Model-Based Test Case Generation for Web User Interfaces WUI From IFML Models

FIGURE 2. Example of IFML model.

newmovie, form will be displayed, and user will add the
asked input and add action will be performed resulting in
saving the new data in MovieList. And if the user wants
to see detailed information of movies data, the selected
movie in MovieList will be displayed in detail. In given
model, AddMovieForm and Movie are ViewContainers
andMovieList represents a ViewContainer that has been
set to default.

• <<ViewComponent>> In IFML model, a ViewCon-
tainer can contain one or many ViewComponents. View-
Components contain the type of data to be displayed
i.e. Form, List or Details which are included in exten-
sions package of IFML metamodel. Input and output
parameters can be associated with ViewComponents.
Another important IFML concept is DataBinding which
is part of ViewComponent. It represents the relation
between the domain model element and ViewCom-
ponent. A DataBinding references a domain concept
and DataBinding elements specify exactly what data
needs to be extracted from the domain. Fig. 2 shows
the notation used for ViewComponents with specific
extension type i.e. MovieList is used to represent
movie data in the form of list. AddMovieForm rep-
resents ViewComponent used to take input data in
a form whereas Movie is a ViewComponent type to
display detailed information about selected object i.e.
SelectedMovie.

• <<Event>> Events are used to express interac-
tion between ViewContainers and ViewComponents.
It causes a transition between source and target web
page. There are many types of Events i.e. OnSubmit,
OnLoad and viewElementEvent etc. In Fig. 2, Add a
movie attached to the MovieList ViewComponent is a
representation of viewElementEvent and Select a movie
is a representation of OnSubmit event.

• <<InteractionFlow>>An InteractionFlow represents
the effect of an event used to connect ViewComponents
and ViewContainers. It characterizes the change of state
of interface. Interaction flows in IFML are of two types
i.e. data flow and navigation flow. Data flow repre-
sents the transfer of data between two IFML elements
represented by dotted line and are not caused by user
interaction whereas, navigation flow expresses the nav-
igation between components and containers represented
by solid lines as shown in Fig. 2.

B. PROPOSED SOLUTION
The proposed approach works on the idea of conceptual
mapping of the targeted IFML constructs with the testing
artifact elements which maps the concepts of IFML over the
web testing elements in order to develop an understanding
and to provide ease for the transformation process. In order
to obtain the complete test case document for the web appli-
cation testing, a M2T transformation is applied on UML and
IFML model. The transformation rules are explained in the
subsequent sections.

1) IFML TO TEST CASE TRANSFORMATION RULES
Test case document is amain artifact produced for testing pro-
cess in order to check expected behavior of the application.
Writing effective test cases andmaintaining consistent format
for them is rather time taking process. The proposed solution
provides a complete test case document after the transforma-
tion. Mapping rules used for transformation of IFML model
components into their respective test cases are provided in
this section. ViewComponent have three extension types i.e.
Form, List and Details. The transformation rules defined in
Table 1 are used to transform the UI components from IFML
model to test cases. We have not included other components
of IFMLmodel for transformation because they are unable to
capture the UI details.

VOLUME 7, 2019 67335



N. Yousaf et al.: Automated Model-Based Test Case Generation for WUI From IFML Models

TABLE 1. Transformation rules for IFML to test cases.

TABLE 2. Transformation rules for IFML to state transition matrix.

Actually, IFML ViewComponent alone is only used to
represent the divisions inside a web page. Consequently,
ViewComponent doesn’t belongs to any meaningful testing
concept in the given context. Therefore, it is not required
to transform the viewComponent in MBUITC. However,
the elements inside the viewComponent like Form and List
etc. are relevant to given testing approach. IFML ViewCom-
ponent of type Form is mapped to its respective test case
in the test case document. Name of Form is mapped to test
case name. SimpleField and SelectionField of each form is
mapped to check for the type of input value and selected
value respectively. on Submit event on the form is mapped
to final submit step in test case. IFML ViewComponent of
type List is mapped to its respective test case in the test
case document. Name of List is mapped to test case name.
DataBinding in the List is mapped to domain model element
and VisualizationAttribute is mapped to the domain element
attributes to be displayed in the list. IFML ViewComponent
of type Details is mapped to its respective test case in the
test case document. Name of Details is mapped to test case
name.DataBinding in theDetails is mapped to domainmodel
element and VisualizationAttribute is mapped to the domain
element attributes to be displayed in detail.

2) IFML TO STATE TRANSITION MATRIX TRANSFORMATION
RULES
State transition matrix contains true and false values for
transitions from one state to another. This matrix can be

very helpful for quick black box testing or navigation testing.
The navigation model is generated based on this matrix.
In this section, we explain the mapping rules used for our
transformation of IFML core model to the State Transition
Matrix. The transformation rules defined in Table 2 are used
to transform the concepts from IFML model to the State
Transition Matrix.
ViewComponent in IFML core model is transformed into

state, in the State Transition matrix. Each ViewContainer
name is mapped to elements of first row and column of the
State Transition matrix. NavigationFlow in IFML model is
mapped to transition in the State Transition matrix where it is
represented as ‘‘T’’ (true) and if the transition does not exist,
it is represented as ‘‘F’’ (false).

3) IFML TO SOURCE & TARGET INFORMATION MATRIX
TRANSFORMATION RULES
Source&Target Information Matrix includes details of source
and target pages and the parameters passed during the naviga-
tion between pages. Each row of Source&Target Information
Matrix contains test case for each navigation in the IFML
model. It assesses the complete detailed functionality of web-
app like the flow of information across it. Web application
must be tested against the irregularities caused due to poor
handling of allowed data type and parameters or arguments
passed between source and target pages. In this section,
we explain the mapping rules used for our transformation of
IFML core model to the Source&Target Information Matrix

67336 VOLUME 7, 2019



N. Yousaf et al.: Automated Model-Based Test Case Generation for Web User Interfaces WUI From IFML Models

TABLE 3. Transformation rules for IFML to Source& target information matrix.

containing the detailed test cases for each navigation in the
IFML model. The transformation rules defined in Table 3
are used to transform the concepts from IFML model to the
Source&Target Information Matrix.
ViewContainer in IFML core model is mapped with source

and target in the Source&Target Information Matrix. One
container can act as source in one case and target in another.
‘‘isLandmark’’, ‘‘isDefault’’ and ‘‘isXOR’’ attributes of each
ViewContainer as ‘‘true’’ and ‘‘false’’ values are mapped
to their respective cells in the matrix against the name of
ViewContainer. NavigationFlow in IFMLmodel is mapped to
navigation. Only in case of navigation, rows are added in the
Source&Target Information Matrix. Each ParameterBinding
inside the ParameterBindingGroup is mapped to name of
parameter passed during navigation in the Source&Target
Information Matrix where it can contain a value or can be
null if there is no ParameterBinding.

4) IFML TO TIMED AUTOMATA TRANSFORMATION RULES
Navigation testing of a web application is of great importance
in order to analyze the application architecture and to improve
critical user flow. A navigation model is best way to depict
navigation visually and can be used for deadlock and reacha-
bility verification. Mapping rules used for the transformation
of IFML core model to timed automata are provided in this
section. These rules result in an equivalent navigation model
for verification purposes. We have used Eclipse IFML plugin
for modelling of IFML core model and UPPAAL model
checker has been used for verification of resulting Timed
Automata navigation model. UPPAAL provides simulation
and verification of the models in which timed automata has
been used. Timed Automata model is comprised of states and
transitions [24], [25]. Location in Timed Automata model
represents a state and intiallocation is used to represent initial
state of the model. Edge in Timed Automata model is used to
represent transition. For our approach, it is not essential to
include the synchronizations or time and guard constraints
in Timed Automata model because here we are dealing with
simple navigation testing only, therefore, it is not required
to use synchronization concept. Only a navigation model is
required for verification of reachability and deadlock in our
web navigation, so only states, transitions and navigations

have been used. ViewContainer in IFML model typically is
used to represent page in a web application and screen in a
mobile application. Transformation rules for view containers
and navigation flow are provided in Table 4 along-with the
graphical notations of source and target transformation.
ViewContainer mentioned as Home and containing value

‘‘true’’ for isDefault attribute, representing home page in
the IFML model is mapped to the initiallocation in the
Timed Automata model. Initiallocation is used to represent
the initial state of the system. NavigationFlow in the IFML
model is mapped to Edge in the Timed Automata model.
In order to create an Edge between two locations in Timed
Automata model, at least one Navigation Flow should exist
either between two view containers, view components of two
view containers, any view component of one view container
and other view container or vice versa. Both of these notations
represent transition from one state to another. ViewContainer
representing a page in the IFML model is transformed into
location in the Timed Automata model where it represents
state. ViewComponent in a ViewContainer is not transformed
and containing ViewContainer is taken as a state.

We have not included other components of IFML model
for transformation and hence their rules are not included
because they did not lie under our area of focus. Details of
applicability of these rules is described in Section V. Two
case studies have been used to verify the transformation rules
mentioned above.

IV. MODEL-BASED UI TEST CASE GENERATOR (MBUITC)
As a part of research,Model-based UI Test Case (MBUITC)
Generator tool is developed as per transformation rules
(Section III). Firstly, it provides facility to model IFML
model in Eclipse IFML editor. Secondly, it provides a trans-
formation engine that transforms the IFML model and pro-
vides testing artifacts. Finally, it provides the facility of model
verification using Timed Automata formalism.

Acceleo is an Object Management Group (OMG) standard
tool that provides sophisticated features to perform Model to
Text (M2T) transformations. It is frequently used in Model
Driven Engineering to achieve both simple aswell as complex
transformations. Here, we use Acceleo in MBUITC to imple-
ment a transformation engine that fully automates the testing

VOLUME 7, 2019 67337



N. Yousaf et al.: Automated Model-Based Test Case Generation for WUI From IFML Models

TABLE 4. Transformation rules for IFML to timed automata model.

FIGURE 3. Transformation engine architecture.

phase of SDLC by providing automated test cases from IFML
models. JAVA language and Acceleo tool is utilized for the
implementation.

MBUITC transformation engine is composed of threemain
components which are Main Interface, Acceleo Transforma-
tion and Java Services as shown in Fig. 3. Main Interface:
Main Interface component consists of three classes i.e.Main-
Screen.java, Launcher.java andWinMain.javawhich are used
in development of graphical user interface of MBUITC.
MBUITC Generator tool provides three options i.e. IFML
Editor, Transformation Engine and Navigation verification.
We have selected UPPAAL model checker for navigation
verification of the generated Timed Automata navigation
model. IFML Editor and UPPAAL can be opened directly
whereas the interface of our transformation engine is shown
in Fig. 4. The transformation engine takes UML and IFML
models as input using a Browse button. It also asks for path
of Destination folder. Checkboxes are provided so that the
user only generates the output files of choice. By clicking
the Generate button, the engine generates the selected files.
Along-with test case document (.txt), State Transition matrix
and Source&Target Information matrix are generated in xls

format. Another important artifact generated by transforma-
tion is Navigation model with xta extension which can then
be opened in UPPAAL [25]. To show the status of trans-
formation, a Status bar is provided. Reset button, empties
all the fields i.e. input models path, destination folder path,
status and all checkboxes except for the test case document
checkbox which is by default checked. Close button closes
the interface from the screen.

A. ACCELEO TRANSFORMATION
Main interface takes UML and IFML models as input and
passes them to Acceleo Transformation. Acceleo transforms
the input UML and IFML models in the respective testing
artifacts. Foremost files included in Acceleo Transformation
are main.java containing java code for transformation and
main.mtl containing Acceleo transformation code. These two
files work together to produce Test Case document (.txt)
which contains all the UI testing related concepts captured
from IFML model. The Test Case document covers test cases
related to three main elements of IFML i.e. List, Form and
Details explained earlier in Section III-A. We have imple-
mented the transformation rules in main.mtl file through

67338 VOLUME 7, 2019



N. Yousaf et al.: Automated Model-Based Test Case Generation for Web User Interfaces WUI From IFML Models

FIGURE 4. IFML to test cases transformation engine.

acceleo code. Therefore, main.mtl file is responsible for the
generation of target testing artifacts from IFML source mod-
els. However, main.mtl file cannot be executed directly, and it
requires initiation from java code. Consequently, it is initiated
through main function of main.java file. Main.mtl then gen-
erates the output xta file containing code in Timed Automata
formalism, describing the navigation model for the input
IFML. This xta file has proper syntax and semantics, local
declarations are written at first, then states and transitions
are written. This file then can be opened in UPPAAL model
checker tool to check the deadlock and reachability [29].

B. JAVA SERVICES
Java Services are developed using three main classes,
JavaServices.java, ExcelWrite.java and Model.java. Model.
java class only used to get the input IFML model and instan-
tiates the IFML model. JavaServices.java is the main class
used to store particular details regarding transition matri-
ces because acceleo does not provide the straightforward
facility for storing data through main.mtl file. Therefore,
in order to store transition matrices details, we have imple-
mented JavaServices.java class. The functions defined in
JavaService.java class can then be used inside main.mtl file
using queries. ExcelWrite.java is only used to shape our
matrices in the form of excel sheets. One of the generated
matrices contains only navigation related data and the other
one contains complete information on all the paths in our
IFML model.

After successful transformation, the transformation engine
provides state transition matrix containing true and false
values for transitions from one state to another. Secondly,
it provides another Source&Target InformationMatrix which

includes details of name of source and target pages. Attributes
like isLandmark, isDefault, isXOR of source page are given.
Parameters or arguments passed between source and tar-
get pages are also provided in this matrix. Each row of
Source&Target InformationMatrix contains test case for each
navigation in the IFML model. Actually, the state transi-
tion matrix and Source&Target information matrix provide
the foundation for the proposed approach. In fact, these
matrices are really significant in the area of Model Based
Testing (MBT) and frequently used in different studies.
For example, Suhag and Bhatia [1] propose a novel MBT
approach for web applications where Source&Target Infor-
mation matrix is developed to generate sequence diagram.
In another study [2], dealing with Model-driven GUI testing,
State Transition matrix is developed to generate navigation
model and test oracles. Particularly, state transition matrix
and Source&Target information matrix serve as intermediate
formats that provide basis to generate test case document and
timed automata navigation model. Thirdly, it gives a test case
document containing detailed UI test cases and this document
itself is a main testing artifact. Lastly, a navigation model is
obtained which is used for deadlock and reachability verifi-
cation. The complete source code ofMBUITCGenerator tool
along with user manual and sample case studies can be found
at [32].

V. VALIDATION
In this section, we present the applicability and validity of
our proposed approach with the help of two case studies of
different sizes. Details and validation of Online Auctions case
study is given in Section V-A and Library case study is given
in Section V-B.

VOLUME 7, 2019 67339



N. Yousaf et al.: Automated Model-Based Test Case Generation for WUI From IFML Models

A. ONLINE AUCTIONS CASE STUDY
We explain and validate Online Auctions case study using
four sections. Section V-A-1 covers the requirement speci-
fication for an Online Auctions website. Section V-A-2 and
Section V-A-3 present the UML domain modeling and IFML
modeling of this case study in Eclipse IFML editor, respec-
tively. Lastly, the transformation and verification of the case
study modeled in IFML has been provided in Section V-A-4.

1) REQUIREMENT SPECIFICATION
a: MASTER PAGE
The Online Auctions website should have a landmark page
called Master page which should be accessible from all other
pages. Master page should contain a section showing details
of the User, it shows user name, first name, last name and
score of the current logged in user. This section should con-
tain a mouse over button which should lead the master page to
Logged in user menu page. Master page should have another
section showing the cart details i.e. number of items and
logged in users. The user name data will be taken from user
details section.Master page should also contain a Search form
with an input field that takes String input for search key and a
drop-down list showing all the available category names. This
form should contain show suggestions and hide suggestions
buttons. It should also have a Search button which should
lead the page to Search results page. Another button named
‘‘Advanced’’ should be attached to this form which should
lead the page to Advanced results page. Master page should
have sign in, register and shop by category buttons. Sign in
button should lead the page to Sign in page. Register button
should lead the page to Register page and shop by category
button should lead the page to Category tree page.

b: LOGGED IN USER MENU
Logged in user menu page should contain a section with a list
of user details. Sign out, account settings and my collections
buttons should be attached to this list. Logged in user menu
page should be accessible from master page.

c: SIGN IN
Sign in page should contain a section with a Sign in form
containing sign in credentials. Submit and register buttons
should be attached to this form. Submit button leads the page
to Home page and register button leads towards the Register
page. Sign in page should be accessible from master page.

d: REGISTER
Register page should contain a section with a registration
form containing all the necessary information with a Submit
button which redirects towards Home page. Register page
should be accessible from master page.

e: CATEGORY TREE
Category tree page should contain a section showing list
of shop by category with their names with a Select button.

Category tree page should have two buttons; all categories
and trending collections. Category tree page should be acces-
sible from master page.

f: CATEGORY
Category page should contain a section showing details of
Categorywith their names. Category page should also contain
a section showing list of features with their names, images
and links with a button attached to it which takes feature
link/address as parameter and leads the page towards Show
feature page. Category page should contain a section showing
list of listing groups with their names and images with a
button attached to it which takes feature selected group as
parameter and leads the page towards Groups page. Category
page should contain a section showing the details of events
according to names and has a button attached to the list which
takes selected events as parameter and leads the page towards
Event page. Category page should contain a section showing
the details of Brands according to names and has a button
attached to the list which takes selected brand as parame-
ter and leads the page towards Brand page. Category page
should contain a section which contains list of peer categories
according to names and has a button attached to the list which
takes selected category as parameter and redirects the page
to itself sending the parameter to Category details section.
Category page should contain a section which contains list of
sub categories according to names and has a button attached
to the list which takes selected category as parameter and
redirects the page to itself sending the parameter to category
details section. Category page should be accessible from
Home and Category overview pages.

g: EVENT
Event page should contain a section having event details.
Event page should be accessible from Category page and
selected event should be passed as parameter.

h: BRAND
Brand page should contain a section having brand details.
Brand page should be accessible from Category page and
selected brand should be passed as parameter.

i: SHOW FEATURE
Show feature page should contain a section having feature
details. Show feature page should be accessible from Cate-
gory page and Home page.

j: GROUPS
Group page should contain a section having group details.
Group page should be accessible from Category page and
selected group should be passed as parameter.

k: CATEGORY OVERVIEW
Category overview page should contain a section showing
a list of sub categories and a button which takes selected
category as parameter and leads the page towards Category

67340 VOLUME 7, 2019



N. Yousaf et al.: Automated Model-Based Test Case Generation for Web User Interfaces WUI From IFML Models

page. Category overview page should also contain a section
showing a list of other sub categories and a button which takes
selected category as parameter and leads the page towards
Category page. Category overview page should also contain
a section showing details of Category with image and sends
top category as parameter to both other section s. Category
overview page should be accessible from Home page.

l: COLLECTIONS
Collections page should contain a section showing a list of
Collections containing name, payoff, main image, description
blob, username and photo information. This list also contains
two buttons attached to see collection and seller. Collections
page should be accessible fromAll trending and Home pages.

m: HOME
Home page should contain a section showing list of main
categories according to their titles and has show, on select
and mouse over buttons attached to it. Show button leads
the page towards top category page. On select button takes
selected category as parameter and passes it to Category
details in Category page. Mouse over button leads the page
towards Category overview page. Home page should also
contain a section showing list of features with images and
has a button attached to it which leads the page towards
Show feature page. Home page should also contain sections
for top collection, promoted collections and trending col-
lections. Home page should have four buttons; collections,
my feeds, all trending collections and category overview.
Collections button leads the page towards collection overview
page. My feeds button leads the page to sign in form section
inside Sign in page. All trending collections button leads the
page towards All trending page and category overview button
leads the page towards Category overview page by passing
the top category parameter to category details section inside
Category overview page. Home page should be accessible
from Sign in and Register pages.

n: SEARCH_RESULTS
Search results page should contain a section showing list
of formats with their values and count. A button should
be attached to this list which takes the selected format as
parameter and sends it to the listings section. Search results
page should contain a section having a list of conditions and
has a button attached to it which takes the parameter selected
condition to the listings section. Search results page should
contain a section showing price list with their maximum
and minimum price. A button should be attached to this list
which takes the selected maximum and minimum price as
parameter and sends it to the listings section. Search results
page should also contain a section having a list of locations
and has a button attached to it which takes the parameter
selected location to the listings section. Search results page
should contain a section having a list of delivery types and
has a button attached to it which takes the selected delivery
type as parameter to the listings section. Search results page

should contain a section having a list of options and has a
button attached to it which takes selected option as parameter
to the listings section. Search results page should contain a
section showing categories list and has a button attached to
this list which takes the selected category as parameter and
sends it to the listings section. Search results page should
contain a section showing listings list with their title, price,
image, number of photos, number bids and a see listings
button should be attached to this list which takes the selected
category as parameter and sends it to the listings page. Search
results page should contain a section having a list of related
queries according to the queries text and has a button attached
to this list which eventually saves the results and collaterals
and redirects the page to itself. Search results page should
contain a section showing count details having the count
value. Search results page should contain a section showing
the list of popular related listings with their names, image,
prices and formats. A button should be attached to this list
which takes the selected current listing as parameter and
sends it to the Listings page. Search results page should be
accessible from Master page and itself.

o: LISTING
Listing page should contain a section showing main image
details with their images and has two buttons attached to it;
Mouse over and full screen. Mouse over button leads the page
towards a zoom frame in the main frame Listing and Vendor
inside same page which shows the zoomed image. Full screen
button leads the page towards Images page. Details page
should also contain a section showing list of images and has
a Mouse over button attached to it which takes the selected
image id as parameter and sends it to the main image section.
Listing and Vendor in Details page includes two frames;
Zoom and Listings&Vendor. Listings&Vendor frame should
contain a section showing details of last bid showing its value.
Listings&Vendor frame should also contain a section show-
ing details of Listings showing name, format, description,
condition, number of bids, number of sold items, number
of watches, shipping, location, delivery options, guarantee
and payment information. Listings should have tow buttons;
add to watch list and add to collection attached to it. List-
ings&Vendor frame should contain a section showing details
of sale price. Listings&Vendor frame should also contain a
section showing Vendor details with user name, photo and
score. Visit store, more items and follow buttons should also
be attached to this section. Details page should be accessible
from Search results page.

2) MODELING
MBUITC tool provides the option to open IFML Editor.
Using IFMLEditor, Eclipse environment is opened and IFML
model can be designed by creating a new project for IFML
modeling. For designing an IFML model, UML domain
model is mandatory which is UML class diagram containing
the domain concepts as classes, their attributes and interac-
tions and can easily be created in Eclipse Papyrus editor.

VOLUME 7, 2019 67341



N. Yousaf et al.: Automated Model-Based Test Case Generation for WUI From IFML Models

FIGURE 5. Online auctions domain model.

Domain model of the Online Auctions case study is shown
in Fig. 5.

Domain model of Online Auctions is designed as a UML
class diagram in Papyrus editor using Eclipse. Three main
classes used in Online Auctions web application are users,
bids and listings. Data about user like user name, photo,
score and type are kept in User class s attributes. Bids have
a value and timestamp. Listings are the main objects. List-
ings contain attributes like id, title, itemCondition (i.e. new
or second hand), description (detailed text), start and end
dates (validity period), returnsAccepted, location, shipping
(delivery options), currency, guarantee (terms on guarantee
offered). Relationships between all the classes have also been
shown.

IFML model can be modeled by selecting the domain
model as pre-requisite. This helps in the use of domain fea-
ture concepts in IFML model. Defined specifications lead us
directly to themodeling of IFMLmodel. Master page concept
in web is used to avoid duplication. So, it has to be inferred
that any page which is master page will be accessible from
all other pages. The model developed for online auctions
case study is huge and complex. So, to avoid complexity,
we represent it as parts of IFML diagram of Online Auctions
case study as shown inFig. 6,Fig. 7,Fig. 8,Fig. 9 andFig. 10.

3) NAVIGATION MODEL AND TEST CASE GENERATION
In Fig. 11, UML and IFML model of online auctions
web application are given as input. The transformation
does not involve UML model, just IFML model is needed.

Eclipse does not allow IFML modeling unless UML domain
model is provided for it. UML model with .uml extension is
selected and model with .core extension is selected as IFML
model. We have provided a folder on desktop as destination.
On clicking the Generate button, the input IFML model is
transformed into four outputs.

• First output obtained is a simple State Transition Matrix
in excel format (.xls). This matrix contains all the view
containers of Online Auctions model as states and pro-
vides true and false values against their navigation with
other states. (A small part of matrix is shown in Fig. 12)

• Another matrix generated as output is a detailed
Source&Target Information matrix for Online Auctions
model in excel format (.xls). Each row of this matrix
represents a detailed navigation test case. (A small part
of matrix is shown in Fig. 13)

• Test case document (.txt) with detailed UI test cases
related to Forms, Lists and Details is generated. A total
of 41 test cases were generated for Online Auctions
IFMLmodel. (One test case from the Test case document
is shown in Fig. 14)

• A text file (.xta) is generated as last output. This file con-
tains code of navigation model in Timed Automata for-
malism. This file acts as a template and can be imported
in UPPAALmodel checker tool for verification of dead-
lock and reachability. (A portion of xta file is shown in
Fig. 15)

Status displays that applied transformation was successfully
performed.

67342 VOLUME 7, 2019



N. Yousaf et al.: Automated Model-Based Test Case Generation for Web User Interfaces WUI From IFML Models

FIGURE 6. Online auctions IFML model (diagram 1 of 5).

FIGURE 7. Online auctions IFML model (diagram 2 of 5).

4) AUTOMATED NAVIGATION VERIFICATION
UPPAAL model checker is the tool selected for verification
purpose. When we load the xta template file in UPPAAL
(Fig. 16), it first checks the syntax. Validation in UPPAAL

is done using its simulator which makes sure that the selected
model is correct and complete. Verification is checked after
simulation. Two properties we have considered in verification
are:

VOLUME 7, 2019 67343



N. Yousaf et al.: Automated Model-Based Test Case Generation for WUI From IFML Models

FIGURE 8. Online auctions IFML model (diagram 3 of 5).

FIGURE 9. Online Auctions IFML model (diagram 4 of 5).

• Reachability: Reachability is checking if the state men-
tioned in query is reachable from the initial state
through any possible sequence (at least one). Reach-
ability makes sure that the web pages are accessible.
Query used for checking reachability in UPPAALmodel
is:

E <> Process.Master_page

If the property is satisfied, it means that the ‘‘Master_page’’
is reachable from initial page ‘‘Home’’ using at least one path.

• Deadlock: Deadlock checking is basically checking if
there is a single point in the model which blocks the
transition. In simple words, deadlock occurs when there
is at least one state that has no next state to go to.

A[] not deadlock

67344 VOLUME 7, 2019



N. Yousaf et al.: Automated Model-Based Test Case Generation for Web User Interfaces WUI From IFML Models

FIGURE 10. Online auctions IFML model (Diagram 5 of 5).

FIGURE 11. Transformation for online auctions model.

If the property is satisfied, it means that the model is
deadlock free. Fig. 17 shows that our output model satisfies
both these properties. Hence, our model is reachable and
deadlock free.

The complete source code of MBUITC Generator tool
along with user manual and sample case studies can be found
at [32].

Another case regarding the same case study can be dis-
cussed where there exist some problems in the design of the
web application under discussion. Fig. 18 elicits the model
where some of the pages are unreachable. It can be analyzed
that some pages i.e. Images and Collection_overview do not
have any outgoing navigational flows eventually should result
in a deadlock. Fig. 19 shows that our output model does not

VOLUME 7, 2019 67345



N. Yousaf et al.: Automated Model-Based Test Case Generation for WUI From IFML Models

FIGURE 12. State transition matrix.

FIGURE 13. Source& target matrix.

satisfy the reachability and deadlock property for this case,
which demonstrates the validity of the approach.

B. LIBRARY CASE STUDY
We present a chunk of Library case study as second case
study for validation to show that our proposed approach
works for case studies of all sizes. Section V-B-1 covers the
requirement specification for a part of library web applica-
tion. Section V-B-2 and Section V-B-3 present the UML
domain modeling and IFML modeling of this case study in

Eclipse editor using the IFML plugin, respectively. Lastly,
the transformation and verification of the case study modeled
in IFML has been provided in Section V-B-4.

1) REQUIREMENT SPECIFICATION
Following are the details of the main web pages and their
specifications included in the library case study. Five impor-
tant pages have been selected in the case study which specify
a simple behavior of adding a book.

67346 VOLUME 7, 2019



N. Yousaf et al.: Automated Model-Based Test Case Generation for Web User Interfaces WUI From IFML Models

FIGURE 14. Test case for search form.

FIGURE 15. Navigation model xta file.

a: HOME
Home page contains a section in which recently published
books are shown in a list along-with their titles and publica-
tion years. On selecting any book, it leads us to Book Details
page.

b: BOOK DETAILS
Book Details page has a section which shows details of the
selected book. The details about title, author name, publica-
tion year and description about the book are shown.

c: BOOK LIST
Book List shows a list of books along-with their title, author
name, year and description. On selecting a book, the page is
navigated to Book Details page. Another button named ‘‘Add

book’’ should also be attachedwhich leads towardsAddBook
page and selected book is passed as parameter.

d: ADD BOOK
This page contains a simple form for adding a book. The
form takes title, author year and description as input and on
clicking Submit button, it saves the data to the Book List.

e: ERROR PAGE
If any error occurs during saving the data in Book List, then
Error page is displayed.

2) MODELING
As we have selected a simple feature of the case study, only
one class is needed in domain model. Book class contains

VOLUME 7, 2019 67347



N. Yousaf et al.: Automated Model-Based Test Case Generation for WUI From IFML Models

FIGURE 16. UPPAAL model for online auctions.

FIGURE 17. Deadlock and reachability verification.

important data about book i.e. title, author, year and descrip-
tion. These attributes are later used in the IFML model. Book
class shown in Fig. 20 has been designed using Papyrus
editor.

To model the IFML diagram for library system, its UML
model is taken as pre-requisite and IFML model is designed
in Eclipse IFML editor taking in account the specifications
given. The pages mentioned in specifications are modeled
as view containers. Lists, details and forms are modeled
as extensions of view components.Fig. 21 shows the IFML
model for the part selected from library case study.

3) NAVIGATION MODEL AND TEST CASE GENERATION
Library UML (.uml) and IFML (.core) models are given as
input and a path for destination folder is provides. When we
click on ‘‘Generate’’ button, the input IFML model is trans-
formed into State TransitionMatrix, Source&Target Informa-
tion Matrix, a test case document (one test case is shown in
Fig. 22) and an xta file (Fig. 23) containing code in Timed
Automata formalism that can be opened in UPPAAL.

4) AUTOMATED NAVIGATION VERIFICATION
When the xta template file is loaded in UPPAAL, it shows
us the navigation model for library system (Fig. 24). Reacha-
bility and deadlock properties are verified for library system
using UPPAAL property checking syntax.

The complete source code of MBUITC Generator tool
along with user manual and sample case studies can be found
at [32].

VI. COMPARATIVE ANALYSIS WITH STATE-OF-THE-ART
In this section, we perform a comparative analysis with the
state-of-the-art in order to highlight the significance of the
work done. On whole, we have identified six research works

67348 VOLUME 7, 2019



N. Yousaf et al.: Automated Model-Based Test Case Generation for Web User Interfaces WUI From IFML Models

FIGURE 18. UPPAAL model for online auctions case2.

FIGURE 19. Deadlock and reachability verification: case2.

related to model-based UI test case generation. Table 5
presents an overall comparative analysis of our proposed
approach with the state of art. We have selected six param-
eters for comparison; 1) Reference # is used to represent he
reference number of the selected work, 2) Test Execution

FIGURE 20. Library domain model.

is used to represent whether the selected research provides
execution of the derived testing artifacts. This parameter can
have three values; Yes, No or Not Applicable (in case no
information is given), 3) Modeling Language is used to
indicate the language used for modeling, 4) Tool Support
available for the proposed approach is represented as either
complete, partial or not available, 5) Testing Aspects indicate
that either functional or navigation testing has been focused.

In Table 5, six research works have been selected as ref-
erences excluding the extended work of the research studies.
From the literature review we have identified six researches
which have worked exclusively on model-based UI test case
generation. From which three research works were based
on UML modeling, two on IFML and one on BPM (Busi-
ness Process Modeling). We have observed that no research
related to model-based UI generation fromWebML has been
identified. Main reason to which can be that WebML was
used for a short duration and it was not a standard language
and soon got transformed into IFML as a standard modeling

VOLUME 7, 2019 67349



N. Yousaf et al.: Automated Model-Based Test Case Generation for WUI From IFML Models

FIGURE 21. Library IFML model.

FIGURE 22. Test case for book details.

TABLE 5. Overall comparative analysis.

language for representation of GUI. For example, Suhag and
Bhatia et al. [1] worked on MDE along-with data mining
techniques on UML web and sequence diagrams in order to
obtain a navigation matrix containing the resulting test cases.

Matrix parameters i.e. Source page, target page and argu-
ments etc. are obtained using data mining SQL methods.
These abstract test cases produced in form of matrix are
not executable. Frajtak et al. [7], [8] worked on generation

67350 VOLUME 7, 2019



N. Yousaf et al.: Automated Model-Based Test Case Generation for Web User Interfaces WUI From IFML Models

TABLE 6. Comparative analysis with model-based UI test case generation.

FIGURE 23. Navigation model xta file.

FIGURE 24. UPPAAL model for library system.

of executable test cases in JavaScript format using MDE
transformations and a template engine but some of the core
IFML concepts are not considered. The tests are executed
using Jasmine test runner but no verification has been pro-
vided in the research paper. Saleh and Salem [2] used MDE
for transition based testing of application GUI models. CTT
and ESDM (navigation model) have been used. Model-based
transformation have been applied in order to generate the
test oracle as transition matrix containing events and states.
Only navigation testing has been covered in this research and
simulation using EDSM model is also provided. An online
open source tool ‘‘IFMLEdit.org’’ has been implemented
by Bernaschina et al. [23] which provides modeling facility
in IFML, generates code in json format using MDE trans-
formations on IFML model, also provides verification for

navigation testing using its simulator. Functional testing is
not covered in IFMLedit.org. Bowen et al. and Reeves [26]
worked on interactive systems and focused on test case gen-
eration by tight integration of UI and functionality but mainly
the assertions are based on functional testing. UI Model was
based on finite state automaton, which can be developed using
state diagrams in UML. After transformation of abstract tests
to concrete tests, executable test oracles are produced. Gupta
and Surve et al. [27] also worked on both UI and functional
test case generation but used BPMN to represent the business
flows along with UI but main focus of this work is on fully-
automated functional testing.

Table 6 presents the comparative analysis of our proposed
work with the researches which worked on model-based
UI test case generation using IFML. We have selected five
parameters for comparison; 1) Reference # is used to rep-
resent he reference number of the selected work, 2) Auto-
mated Test Cases represents that if the research resulted in
generation of automated test cases or test case documentation,
3) Navigation Testing represents if the test case generation
approach has performed navigation testing or has provided
state transition or navigation matrix, 4) Automation Level
indicates if the navigation testing has been semi or fully
automated, 5) Formalism represents the formal verification
technique used, 6) Applicability represents the applicability
of research in the domain of web application testing. Narrow
andBroad indicate the presence and absence of the parameter,
respectively.

Table 6 provides a summary of overall studies found on
Model-based GUI testing along-with the proposed approach.
Frajtak et al. [7], [8] used IFML as modeling language for
UI components representation.MDE transformation has been
applied in order to generate abstract test case scenarios which
are again transformed into specific test case scenarios using
the WebdriverIO template. Jasmine test runner then executes
this JavaScript code. Even if executable tests are generated
on the basis of events, but navigation testing has not been
covered. Hence, mentioned as Semi-automated in Table 6.
Bernaschina et al. [23] majorly contributed in code prototype
generation for mobile and web applications. It presents an
open source online MDD tool called IFMLEdit.org which
generated fast prototypes for mobile and web apps using
transformations on IFML models. Focus of this research is
code generation so testing has not been covered. Although,
mapping from IFML to Place Chart Nets (PCN) formalism of
Petri Nets, has been applied for model checking which even-
tually checks navigation in the model i.e. fully-automated
navigation verification. Although Bernaschina et al. [23]

VOLUME 7, 2019 67351



N. Yousaf et al.: Automated Model-Based Test Case Generation for WUI From IFML Models

presented a very good work which illustrated the strength
of IFML based modeling for web application code genera-
tion, there are few issues in IFML.Edit.org editor. This tool
only works on IFML models modeled in its own environ-
ment, models generated by using other tools i.e. Eclipse
and WebRatio etc. are not supported. Whereas, our proposed
approach does not depend on any tool. IFML core model
modeled in any tool can be loaded and tested. It provides
an option to model IFML models in Eclipse environment
and also welcomes the model already generated in any other
environment with .core extension. IFML.Edit.org does not
support domain modeling and data type.Metamodel concepts
are not incorporated fully in their approach which caused
mismatch of concepts.

Our proposed approach uses IFML based modeling and
provides the complete UI testing including the automated
test cases and the navigation verification after successful
transformations on IFMLmodel. Meanwhile, it also provides
simulation, reachability and deadlock freedom verification
for the navigation model using Timed Automata in UPPAAL
tool.

VII. DISCUSSION AND LIMITATIONS
From the literature review, it can be analyzed that there is
a very limited amount of research work done on IFML in
the area of model-based UI testing. In addition, the available
research work does not capture complete UI related testing.
Most of the work has been done only for navigation testing
defocusing the testing needed for UI elements structure and
the content to be displayed. Our proposed approach is a first
step toward automated UI testing using IFML including the
navigation testing as well as the content testing. The approach
generates test cases using model-based testing technique on
UI modeling of the web application using IFML. The tool
we have built, produces all broad testing artifacts that can
be used in the testing process of different industries. Moti-
vation behind this work is to provide early test cases so that
quality can be build inside the application which eventually
proved out to be a cost and time efficient approach. The
generated test cases provide complete and detailed UI testing
for example, how will the information flow take place and
what information is passed during navigation? Such details
are available in the Source and Target matrix produced by the
MBUITC tool. The state transition matrix focuses entirely on
the control flow and linking of pages. Furthermore, the test
cases related to the complete structure displayed in web pages
of the web application are provided in the test case document.
Meanwhile, navigation model is provided in language which
is supported by UPPAAL which can simulate the model
and verify its reachability and deadlock freedom. Test cases
generated are abstract and not directly executable.

It is also important to mention here that IFML has been
inspired fromWebML but is not fully evolved yet. Therefore,
the tool support for IFML is limited at the moment. For
example, only two reliable tools (i.e. WebRatio and Eclipse
IFML plugin) are available that provide support for IFML

modeling. However, both tools are not mature enough for
IFML modeling and there are some problems encountered
during model development. For example, the major issue is
the support for IFML nested containers as both tools do not
allow nesting for more than 3 levels at the moment. Even
though the events are allowed on view containers, but both
tools do not allow them as well. Similarly, navigation flows
are not allowed inside nesting hierarchy. There are few other
limitations to IFML modeling found using these tools but
as the IFML is evolving and a lot of work is being done
on its tool support, we are hoping that these issues will be
resolved soon. That’s why MBUITC tool is developed with
generic approach that will be worked well after the resolution
of aforementioned issues in existing IFML tools.

It can be argued that abstract test cases generated in result
of the proposed approachwill require some additional work to
execute but, at the platform independent level, more detailed
and specific test cases cannot be generated, it would require
some part of implementation. However, the abstract test cases
generatedwill help the developers and testers. For developers,
the testing documents will help to clarify what arguments or
information flow needs to be passed during navigation. For
testers, this document can be helpful in a way that there would
be no effort required in process of creating separate test cases
for each web page element and following a consistent format.
The abstract test cases can help for manual testing as well as
in using the automated testing tools i.e. Selenium etc.

Two case studies of different sizes have been selected in
order to validate our proposed approach. First case study is
a very detailed description of Online Auctions web appli-
cation which included more than 25 view containers and
plentiful view components and navigation flows. Whereas,
the Library case study was a small but main part of Library
systemwhich included 5 view containers, 4 view components
and various navigation flows. A total of 41 test cases were
generated for whole Online Auctions IFML model whereas,
only 4 test cases were generated for Library IFML model
as it was only a small part of whole model. The purpose
of taking into account these two case studies is to vali-
date the MBUITC tool for both large and small scale web
applications. As we have taken the first step for automated
testing of IFML models, there are a few limitations to our
work. For example, we have currently only selected limited
core metamodel elements e.g. ViewContaier, ViewCompo-
nent, NavigationFlow etc. and a few important extensions
metamodel elements e.g.Form, List andDetails etc. Although
selected IFML constructs are sufficient for modeling large
scale web applications, there are many other IFML constructs
that we have not yet considered in this work e.g. Menu,
Window,Module andActivationExpression etc. The proposed
approach and the developed tool (MBUITC) are highly scal-
able. For example, it is fairly possible to extend the proposed
approach for behavioral testing too. To achieve this, UML
behavior diagrams can be integrated with IFML models to
generate fully functional test cases for business processes
along-with the existing WUI testing artifacts. In addition,

67352 VOLUME 7, 2019



N. Yousaf et al.: Automated Model-Based Test Case Generation for Web User Interfaces WUI From IFML Models

more IFML constructs (e.g. Menu,Action, Window, Module,
Context and ActivationExpression etc.) can be considered in
the proposed approach. On the other hand, the functions of
open source MBUITC Generator tool can be enhanced with
ease. For example, more transformation procedures can be
implemented by only amending main.mtl file. We intend to
work on remaining IFML constructs in our next article.

VIII. CONCLUSION AND FUTURE WORK
This article presents a novel approach to automatically gen-
erate Web User Interface (WUI) test cases from Interac-
tion Flow Modeling Language (IFML) models. Particularly,
a novel model-based methodology is proposed to automat-
ically generate test case document, state transition matrix,
source and target information matrix and timed automata
navigation models from the initial collected web application
requirements which are represented through domain (UML)
and front end (IFML) models. As a part of research,
Model-based User Interface Test Case (MBUITC) generator
tool is implemented in JAVA using Model to Text (M2T)
transformation approach through Acceleo. The applicability
of proposed approach is validated through two bench mark
case studies. The results shown that the proposed approach
provides test cases at the early stages of development i.e.
specification and analysis, which eventually helps in building
a right product at the right time at comparatively lower cost.

Future work includes improving and extending proposed
approach in order to support other important IFML constructs
likeModule, Action, Menu, Context and Expression etc. Fur-
thermore, the integration of UML behavior diagrams with
IFML models will be performed to generate fully functional
test cases for business processes along-with the existingWUI
testing artifacts.

REFERENCES
[1] V. Suhag and R. Bhatia, ‘‘Model based test cases generation for Web

applications,’’ Int. J. Comput. Appl., vol. 92, no. 3, pp. 23–31, Apr. 2014.
[2] E. M. Saleh and O. A. S. Salem, ‘‘A model-driven engineering transition-

based GUI testing technique,’’ in Proc. Int. Conf. Comput. Sci. Comput.
Intell. (CSCI), Las Vegas, NV, USA, Dec. 2015, pp. 108–113.

[3] M. W. Anwar, M. Rashid, F. Azam, and M. Kashif, ‘‘Model-based design
verification for embedded systems through SVOCL: AnOCL extension for
system verilog,’’ Des. Automat. Embedded Syst., vol. 21, no. 1, pp. 1–36,
Mar. 2017.

[4] S. Jácome and J. D. Lara, ‘‘Controlling meta-model extensibility in model-
driven engineering,’’ IEEE Access, vol. 6, pp. 19923–19939, 2018.

[5] S. Roubi, M. Erramdani, and S. Mbarki, ‘‘Extending graphical part of the
interaction flowmodeling language to generate rich Internet graphical user
interfaces,’’ in Proc. 4th Int. Conf. Model-Driven Eng. Softw. Develop.
(MODELSWARD), Rome, Italy, Feb. 2016, pp. 161–167.

[6] N. Laaz and S. Mbarki, ‘‘Integrating IFML models and owl ontolo-
gies to derive UIs Web-Apps,’’ in Proc. Int. Conf. Inf. Technol. Org.
Develop. (ITOD), Fez, Morocco, Mar./Apr. 2016, pp. 1–6.

[7] K. Frajták, M. Bureš, and I. Jelínek, ‘‘Transformation of IFML schemas
to automated tests,’’ in Proc. Conf. Res. Adapt. Convergent Syst., Prague,
Czech, Oct. 2015, pp. 509–511.

[8] K. Frajták, M. Bureš, and I. Jelínek, ‘‘Using the interaction flowmodelling
language for generation of automated front-end tests,’’ in Proc. Federated
Conf. Comput. Sci. Inf. Syst. (ACSIS), vol. 6, 2015, pp. 117–122.

[9] M. Brambilla, A. Mauri, M. Franzago, and H. Muccini, ‘‘A model-based
method for seamless web and mobile experience,’’ in Proc. 1st Int. Work-
shop Mobile Develop., Amsterdam, Netherlands, Oct. 2016, pp. 33–40.

[10] C. Bernaschina, M. Brambilla, T. Koka, A. Mauri, and E. Umuhoza,
‘‘Integrating modeling languages and Web logs for enhanced user behav-
ior analytics,’’ in Proc. 26th Int. Conf. World Wide Web Companion,
pp. 171–175, Apr. 2017.

[11] R. Acerbis, A. Bongio, S. Butti, and M. Brambilla, ‘‘Model-driven devel-
opment of cross-platform mobile applications with webratio and IFML,’’
in Proc. 2nd ACM Int. Conf. Mobile Softw. Eng. Syst., Florence, Italy,
May 2015, pp. 170–171.

[12] R. Acerbis, A. Bongio, M. Brambilla, and S. Butti, ‘‘Model-driven devel-
opment based on omg’s IFML with webratio web and mobile platform,’’
in Proc. Int. Conf. Web Eng., Jun. 2015, pp. 605–608.

[13] S. Roubi, M. Erramdani, and S. Mbarki, ‘‘A model driven approach to
generate graphical user interfaces for rich Internet applications using inter-
action flow modeling language,’’ in Proc. ISDA, Marrakech, Morocco,
Dec. 2015, pp. 272–276.

[14] M. Brambilla, A. Mauri, and E. Umuhoza, ‘‘Extending the interaction
flow modeling language (IFML) for model driven development of mobile
applications front end,’’ inMobileWeb Information Systems (Lecture Notes
in Computer Science). Cham, Switzerland: Springer, 2014, pp. 176–191.

[15] V. Nieto, V. Castro, F. Lopez, R. Ferro, and C. Gonzalez, ‘‘Model driven
architecture software and interaction flow modelling language for tourism
data acquisition in colombia,’’ in Communications in Computer and Infor-
mation Science, vol. 657, 2016, pp. 368–379.

[16] E. Umuhoza and M. Brambilla, ‘‘Model driven development approaches
for mobile applications: A survey,’’ in Mobile Web and Intelligent Infor-
mation Systems (Lecture Notes in Computer Science), vol. 9847. Cham,
Switzerland: Springer, 2016, pp. 93–107.

[17] Y. Rhazali, Y. Hadi, and A. Mouloudi, ‘‘A model transformation in MDA
fromCIM to PIM represented byWebmodels through SoaML and IFML,’’
in Proc. 4th Int. Colloq. Inf. Sci. Technol. (CiSt), Tangier, Morocco,
Oct. 2016, pp. 116–121.

[18] N. Laaz and S. Mbarki, ‘‘Combining ontologies and IFML models regard-
ing the GUIs of rich Internet applications,’’ in Proc. Int. Conf. Artif. Intell.,
Methodol., Syst., Appl., Aug. 2016, pp. 226–236.

[19] E. Umuhoza, H. Ed-douibi, M. Brambilla, J. Cabot, and J. Cabot,
‘‘Automatic code generation for cross-platform, multi-device mobile
apps: Some reflections from an industrial experience,’’ in Proc. 3rd Int.
Workshop Mobile Develop. Lifecycle, Pittsburgh, PA, USA, Oct. 2015,
pp. 37–44.

[20] A. Salini, I. Malavolta, and F. Rossi, ‘‘Leveraging web analytics
for automatically generating mobile navigation models,’’ in Proc.
Int. Conf. Mobile Services, San Francisco, CA, USA, Jul. 2016,
pp. 103–110.

[21] C. Bernaschina, S. Comai, and P. Fraternali, ‘‘IFMLEdit. org:Model driven
rapid prototyping of mobile apps,’’ in Proc. 4th Int. Conf. Mobile Softw.
Eng. Syst., Buenos Aires, Argentina, May 2017, pp. 207–208.

[22] C. Bernaschina, S. Comai, and P. Fraternali, ‘‘IFMLEdit.org:
Model driven rapid prototyping of mobile apps,’’ in Proc.
IEEE/ACM 4th Int. Conf. Mobile Softw. Eng. Syst. (MOBILESoft),
Buenos Aires, Argentina, May 2017. [Online]. Available:
https://ieeexplore.ieee.org/document/7972808

[23] C. Bernaschina, S. Comai, and P. Fraternali, ‘‘Online model editing,
simulation and code generation for web and mobile applications,’’
in Proc. IEEE/ACM 9th Int. Workshop Modelling Softw. Eng. (MiSE),
Buenos Aires, Argentina, May 2017, pp. 33–39.

[24] R. J. Punnoose, R. C. Armstrong, M. H.Wong, and J. R. Mayo, ‘‘Survey of
existing tools for formal verification,’’ Sandia Nat. Lab., Livermore, CA,
USA, Tech. Rep. SAND2014-20533, 551829, Dec. 2014.

[25] M. A. Basit-Ur-Rahim, F. Arif, and J. Ahmad, ‘‘Modeling of real-time
embedded systems using SysML and its verification using UPPAAL and
DiVinE,’’ in Proc. 5th IEEE Int. Conf. Softw. Eng. Service Sci. (ICSESS),
Beiing, China, Jun. 2014, pp. 132–136.

[26] J. Bowen and S. Reeves, ‘‘Generating obligations, assertions and tests from
UI models,’’ in Proc. Hum.-Comput. Interact. (EICS), vol. 1, no. 1, p. 5,
Jun. 2017.

[27] P. Gupta and P. Surve, ‘‘Model based approach to assist test case cre-
ation, execution, and maintenance for test automation,’’ in Proc. 1st Int.
Workshop End-to-End Test Script Eng. (ETSE), Toronto, Ontario, Canada,
Jul. 2011, pp. 1–7.

[28] S. L. D. Costa, V. V. G. Neto, and J. L. D. Oliveira, ‘‘A user interface
stereotype to build web portals,’’ inProc. 9th Latin Amer.WebCongr., Ouro
Preto, Brazil, Oct. 2014, pp. 10–18.

[29] A. Amjad, F. Azam, M. W. Anwar, W. H. Butt, and M. Rashid,
‘‘Event-driven process chain for modeling and verification of business
requirements—A systematic literature review,’’ IEEE Access, vol. 6,
pp. 9027–9048, 2018.

VOLUME 7, 2019 67353



N. Yousaf et al.: Automated Model-Based Test Case Generation for WUI From IFML Models

[30] C. Bernaschina, S. Comai, and P. Fraternali, ‘‘Formal semantics of
OMG’s interaction flow modeling language (IFML) for mobile and rich-
client application model driven development,’’ J. Syst. Softw., vol. 137,
pp. 239–260, Mar. 2018.

[31] R. Rodriguez-Echeverria, J. C. Preciado, J. Sierra, J. M. Conejero, and
F. Sanchez-Figueroa, ‘‘AutoCRUD: Automatic generation of CRUD speci-
fications in interaction flow modelling language,’’ Sci. Comput. Program.,
vol. 168, pp. 165–168, Dec. 2018.

[32] Open Source MBUITC Generator Tool. Accessed: Feb. 2018. [Online].
Available: http://ceme.nust.edu.pk/ISEGROUP/MBUITC/index.html

NAZISH YOUSAF received the B.S.E. degree
from International Islamic University (IIUI),
Islamabad, Pakistan, in 2015. She is currently
pursuing the M.S. degree in software engineer-
ing with the Department of Computer and Soft-
ware Engineering, CEME, National University of
Sciences and Technology, Pakistan. Her research
interests include model driven software engineer-
ing, web modeling, and interaction flow modeling
languages.

FAROOQUE AZAM is currently an Adjunct Fac-
ulty Member of the Department of Computer
and Software Engineering, College of Electrical
Mechanical Engineering, National University of
Sciences and Technology, Pakistan. He has been
various software engineering courses, since 2007.
His areas of interest include model driven software
engineering, business modeling for web applica-
tions, and business process reengineering.

WASI HAIDER BUTT is currently an Assis-
tant Professor with the College of Electrical and
Mechanical Engineering, Department of Com-
puter and Software Engineering, National Univer-
sity of Sciences and Technology, Pakistan. His
areas of interest include model driven software
engineering, web development, and requirement
engineering.

MUHAMMAD WASEEM ANWAR is currently
pursuing the Ph.D. degree with the Department
of Computer and Software Engineering, CEME,
National University of Sciences and Technol-
ogy, Pakistan. He is a Senior Researcher and an
Industry Practitioner in the field of model-based
system engineering (MBSE) for embedded and
control systems. His major research areas include
model-based system engineering (MBSE) for
complex and large systems.

MUHAMMAD RASHID received the bachelor’s
degree in electrical engineering from the Univer-
sity of Engineering and Technology, Peshawar,
Pakistan, in 2000, themaster’s degree in embedded
systems design from the University of Nice, Nice,
France, in 2006, and the Ph.D. degree in embedded
systems design from the University of Bretagne
Occidentale, Brest, France, in 2009. He is cur-
rently an Assistant Professor with the Com-
puter Engineering Department, Umm Al-Qura
University, Mecca, Saudi Arabia.

67354 VOLUME 7, 2019


	INTRODUCTION
	PRELIMINARIES
	INTERACTION FLOW MODELING LANGUAGE (IFML) STANDARDS
	DOMAIN MODELING
	IFML MODELING

	LITERATURE REVIEW

	PROPOSED METHODLOGY
	TARGETED IFML CONSTRUCTS
	PROPOSED SOLUTION
	IFML TO TEST CASE TRANSFORMATION RULES
	IFML TO STATE TRANSITION MATRIX TRANSFORMATION RULES
	IFML TO SOURCE & TARGET INFORMATION MATRIX TRANSFORMATION RULES
	IFML TO TIMED AUTOMATA TRANSFORMATION RULES


	MODEL-BASED UI TEST CASE GENERATOR (MBUITC)
	ACCELEO TRANSFORMATION
	JAVA SERVICES

	VALIDATION
	ONLINE AUCTIONS CASE STUDY
	REQUIREMENT SPECIFICATION
	MODELING
	NAVIGATION MODEL AND TEST CASE GENERATION
	AUTOMATED NAVIGATION VERIFICATION

	LIBRARY CASE STUDY
	REQUIREMENT SPECIFICATION
	MODELING
	NAVIGATION MODEL AND TEST CASE GENERATION
	AUTOMATED NAVIGATION VERIFICATION


	COMPARATIVE ANALYSIS WITH STATE-OF-THE-ART
	DISCUSSION AND LIMITATIONS
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	NAZISH YOUSAF
	FAROOQUE AZAM
	WASI HAIDER BUTT
	MUHAMMAD WASEEM ANWAR
	MUHAMMAD RASHID


