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ABSTRACT The traveling salesman problem (TSP) is one of the most classical NP-hard problems in the
combinatorial optimization, as many practical problems, such as scheduling problems and vehicle-routing
cost allocation problems can be abstracted. The introduction of multiobjective in the TSP is a very important
research topic, which brings serious challenges to the TSP. Currently, genetic algorithms (GAs) are one
of the most effective methods to solve the multiobjective traveling salesman problem (MOTSP). However,
GA-based algorithms suffer the premature convergence, the insufficient diversity, and nonuniform distri-
bution of solutions when solving the MOTSP, which further restrict the wide application of GA-based
algorithms. In order to overcome these problems, this paper proposes an improved method for GAs based
on a novel evolutionary computational model, named the Physarum-inspired computational model (PCM).
Based on the prior knowledge of the PCM, the initialization of the population in the proposed method is
first optimized to enhance the distribution of solutions. Then, the hill climbing (HC) method is used to
improve the diversity of individuals and avert running into the local optimum. Compared to the otherMOTSP
solving algorithms, a series of experimental results demonstrate that our proposed method achieves a better
performance.

INDEX TERMS Bi-objective traveling salesman problem, NSGA-II, hill climbing, Physarum.

I. INTRODUCTION
Multi-objective problems (MOPs) have attracted much more
attentions mainly because of its wide application, such as
the multiobjective network structure design [1] and multi-
objective scheduling problems in the flow shop [2]. Many
real-world problems can be designed as a multiobjective
traveling salesman problem (MOTSP) [3], in which the
presence of multiple objectives generates a series of opti-
mal solutions (called as Pareto optimal solutions), instead
of an optimal solution. Existing multiobjective optimization
algorithms aim to find as many pareto optimal solutions as
possible [4].

At present, most multiobjective optimization algo-
rithms are based on the evolutionary algorithm, among
which the most representative algorithms are the genetic

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

algorithm (GA) and ant colony algorithm (ACO). Luo et al.
have put forward an improved ant colony optimization
algorithm for solving traveling salesman problem TSP [5].
Ye et al. have proposed an improved ACO algorithm with
a strengthened negative-feedback mechanism for tackling
CSPs [6]. However, there are still some limitations for ACO
in practical application. For example, it is easily trapped
into the local optimum and will take long executing time for
finding an optimal solution, which limit the use of popular-
ization and application of such algorithm [7], [8]. Meanwhile,
different pheromone update rules will directly affect the
efficiency and performance of the ants colony algorithm
model. How to define an effective pheromone update rules
is still an open question. Genetic algorithm has inherent
implicit parallelism and powerful global optimization ability,
which can provide a simple and effective method to solve
complex problems. In particular, it requires few definitions
of basic concepts and rules. This is the reason why GA-based
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algorithms have been widely used to solve various problems
(e.g., overlapping community detection [9], multiobjective
optimization [10], clustering problem [11], nash equilibria in
electricity markets [12]). Therefore, this paper presents a new
nature-inspired computational model based on the genetic
algorithm with a faster convergence rate, better diversity,
and more efficiency to solve the multiobjective traveling
salesman problem.

Among various GA-based algorithms, one of the most
well-known methods is the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [13], [14], which incorporates an
elitism preservation strategy in evolutionary algorithms.
The main idea of NSGA-II is to reproduce a population
by a genetic operator and then sort them based on the
non-domination rank and crowding distance [14]. Some
studies have shown that NSGA-II can maintain a better
spread of solutions and converge better in the obtained
nondominated front in different test problems [15], [16].
NSGA-II for solving the bi-objective traveling salesman
problem (BTSP), however, often cannot achieve a good trade-
off solution or suffers the premature convergence, which
results in falling into the local optimal solutions due to the
disturbance of non-global optimal paths. Taking NSGA-II as
a benchmark algorithm, a new nature-inspired computational
model is applied in this paper to optimize this algorithm in
order to help the original algorithm overcome the above prob-
lems and verify the validity of the nature-inspired algorithm
framework.

The main part of nature-inspired computational model is
based on the Physarum-inspired model. Currently, a series
of biological experiments have demonstrated that a uni-
cellular and multi-headed slime mold, Physarum shows an
ability to solve mazes and construct efficient and robust
networks [17]. In order to explore the inner mechanism of
intelligent behaviors of Physarum, different scholars have
established the bionic models from different perspectives.
Tero et al. have captured and formulated the positive feed-
back mechanism of Physarum in foraging and have built
a Physarum-inspired model which has been used for opti-
mizing heuristic algorithms [17]. Gao et al. further have
described the characteristics of Physarum from the bionic
mechanism model and intelligent computation [18], [19].
Based on the positive feedback mechanism, the Physarum-
inspired computational model (PCM) can generate the raw
material pipes to link the maze with the shortest path. If the
prior knowledge exists or can be generated at a low com-
putational cost, the appropriate initial estimation can gen-
erate better solutions with a faster convergence. Based on
such prior knowledge, the Physarum-inspired computational
model is proposed to optimize the initialization of population
of NSGA-II for solving multiobjective traveling salesman
problems. Moreover, the hill climbing method (HC) is used
to increase the diversity of individuals and avoid falling
into the local optimum. What’s more, compared to [20],
this paper provides more detailed formulations, schematics
and comparison for highlighting the performance of our

proposed method. Besides, a series of detailed experiments,
including carrying out parameter analyses and statistical anal-
yses, which are implemented and compared with other algo-
rithms in several different datasets, have shown our proposed
computational model can achieve a better performance com-
pared with compared algorithms.

The remaining of this paper is organized as follows: Sec. II
illustrates some basic definitions and concepts, such as mul-
tiobjective optimization problems (MOOP), Pareto optimal
solutions, BTSP and PCM. Sec. III presents the formula-
tions of GA-based BTSP methods, and then proposes the
Physarum-inspired NSGA-II algorithm based on the pre-
sented nature-inspired computational model. Some experi-
ments and discussion are performed to show the effectiveness
of algorithms and models in Sec. IV. Finally, some basic
concluding remarks are discussed in Sec. V.

II. RELATED WORK
This section first introduces basic concepts of multiobjective
optimization problems (MOOP) and Pareto optimal solu-
tions, and then provides the problem formulation of BTSP.
All of these concepts are given with respect to a minimization
problem that is because each maximization problem can be
transformed into a minimization problem.

A. BASIC CONCEPTS OF MOOP
A multiobjective optimization problem (MOOP) is designed
to handle two or more objective functions simultaneously.
As usual, a MOOP which satisfies p inequality constraints
and q equality constraints can be formulated as Eq. (1).

MOOP

=


min F(X ) = (f1(x), . . . fM (x)); for M = 2, . . .m
subject to Gi(X ) > 0; for i = 1, 2, . . . p
Hj(X ) = 0; for j = 1, 2, . . . q

(1)

Since different objectives in MOOP are usually in conflict
with each other, it is very difficult to compare with solutions
obtained by different objective functions. The goal of MOOP
is to get these non-dominated solutions with good trade-offs
among different objectives which are named as the Pareto
set [21]. The related definitions are as follows.
Definition 1: X1 = (x11 , x

2
1 , . . . , x

n
1 )
T is said to be domi-

nated by X2 = (x12 , x
2
2 , . . . , x

n
2 )
T , denoted as X1 ≺ X2, if and

only if both conditions mentioned below are satisfied:

∀ i ∈ (1, 2, . . . , k) : fi(X1) 6 fi(X2)

∃ i ∈ (1, 2, . . . , k) : fi(X1) < fi(X2) (2)

Definition 2: The Pareto set (PS) is defined as the set of
all Pareto optimal solutions. If a solution is not dominated by
any other solutions in a feasible solution set, it is named as a
Pareto optimal solution or non-dominated solution.

PS = {X ∈ D|@Y ∈ D,F(Y ) ≺ F(X )} (3)
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Definition 3: The Pareto front (PF) is defined as an objec-
tive vector corresponding to PS in the objective space.

PF = {F(X )|X ∈ PS} (4)

For MOOP instances, a true PS is always unknown [22].
Instead, the pseudo-optimal PS is defined as an approxima-
tion of true PS, which is obtained by fusing all PSs returned
by all existing algorithms in several runnings [23].

B. PROBLEM FORMULATION
As an extension of a single objective traveling salesman
problem (TSP), Bi-objective traveling salesman problem
(BTSP) manages two objectives simultaneously, which can
be described as follows. One objective is to minimize the
distance, which can guarantee the shortest distance when
traveling salesmen pass by N cities and return back if and
only if one time. The second objective is to minimize the cost.
The BTSP consists in finding a Hamiltonian cycle of N cities
that optimizes the following minimization problem:

hk (x) = Ck
(m(N ),m(1)) +

N−1∑
i=1

Ck
(m(i),m(i+1)), k = 1, 2 (5)

wherem(i) refers to the ith city,Ck
(m(i),m(j)) represents the value

factor between m(i) and m(j) for an objective k .
According to the definition of García-Martínez et al. [24],

four typical measurements are used to estimate the perfor-
mance of BTSP solution algorithms:

1) The graphical representation of PF is returned by an
algorithm. These graphics provide a visual information
for estimating the quality and distribution of solutions.
It is an intuitive measurement of PF with a graphical
representation. If there are two PFs, i.e., PFA and PFB,
and results of PFA converge to the bottom-left region
comparing with those of PFB, we can deduce that
results of PFA are better than those of PFB.

2) M1 metric represents the distance between results of an
algorithm, denoted as Y , and the pseudo-optimal Pareto
front (Y ). This metric is based on Eq. (6), in which
|Y | means the number of non-dominated solutions in
the front of Y . The smaller M1 metric is, the smaller
difference between Y and Y is.

M1(Y ) =
1
|Y |

∑
p∈Y

min{‖ p− p ‖; p ∈ Y } (6)

3) M2 metric evaluates the distribution of solutions in
PF returned by an algorithm (denoted as Y ). Thismetric
is based on Eq. (7), in which σ is a positive constant.
The larger M2 metric is, the wider the coverage of
obtained solutions is.

M2(Y ) =
1

|Y − 1|

∑
p∈Y

|{q ∈ Y ; ‖ p− q ‖> σ }| (7)

4) M3 metric is used to evaluate the diameter of
PF returned by an algorithm (denoted as Y ) based

on Eq. (8), in which pi denotes the solution value in p
for an objective i. The larger M3 metric is, the larger
region of objective space of solutions locates.

M3(Y ) =

√√√√ 2∑
i=1

max{‖ pi − qi ‖; p, q ∈ Y } (8)

Many researchers have been using various methods to
solve TSP with more than one objective. For examples,
Florios et al. have proposed an improved version of aug-
mented ε-constraint method to produce all Pareto opti-
mal solutions in multiobjective traveling salesman prob-
lems [25]. Moraes et al. have presented a new approach
calledMOEA/NSM for bi-objective traveling salesman prob-
lems [26]. These algorithms are designed to find the Pareto-
optimal set for MOTSP, and these methods are based on the
elitism approach which preserve the best solution of popu-
lation in each generation to the next generation. However,
these techniques differ in strategies of preserving elitism
and selecting subsets of solutions. Additionally, we note that
some of these methods have some weaknesses of the balance
between the convergence and diversity in combinatorial opti-
mization problems with two or more objectives. In order to
solve the imbalance between the diversity preservation and
achieving convergence, this paper proposes a new nature-
inspired computational model based on the genetic algorithm.

C. THE PHYSARUM-INSPIRED MODEL
Physarum is a large and single-celled amoeba whose vegeta-
tive state is composed of veins (i.e., pseudopodia) [18]. The
flow in veins (tubes) is the carrier of chemical and physical
signals, which makes up a supply network of nutrients for the
whole organism. Physarum looks for food by expanding the
network of veins, the flow of which increases or decreases
with the location of food. In the biological experiment,
the food source is placed in the entrance and exit of a maze,
and it always generates the protoplasmic duct connecting the
shortest path between the entrance and exit of the maze [27].

Based on the above biological phenomena, the basic
assumption of Physarum model is that a graph follows
the Poiseuille flow from an inlet node to an outlet node.
The Poiseuille flow consists of two processes: 1) expansion
process. In such process, fluxes expand across a network,
as shown in Fig. 1 (a). Eqs. (9) and (10) describe the law
of Poiseuille flow at each moment in the graph. 2) Shrink-
age process. In this process, flows continuously concentrate
on the optimal path determined by the Physarum model,
as shown in Figs. 1 (b) and (c). The change of a linear between
inlet and outlet in the graph indicates the increase or decrease
of fluxes.

The Physarummodel (PCM) can be used to find the short-
est path between two points in a maze [27] or a roadmap [28],
which is described in detail as follows. Taking Fig. 1 (a)
as an example, each edge stands for a tube in a network.
Dki,j represents the conductivity of an edge eij at time step k ,
which denotes the transport capacity of flow. The greater
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FIGURE 1. A network example for highlighting the working mechanism of PCM. The linear variation in thickness indicates the increase and
decrease of the flux Qk

i,j . The flux Qk
i,j is determined by the length Lij of an edge eij , the conductivity Dk

i,j , and the pressure values pk
i and pk

j
at time step k . (a) Physarum expands across a network as an initial network, (b) an intermediate network obtained by the evolutionary
contraction of PCM, and (c) a final network obtained by the evolutionary contraction of PCM. The shortest path is reserved between In and
Out , and other paths disappear.

the value of Dki,j is, the stronger the transport capacity has.
pki represents the pressure value at a node vi. Where Lij is used
to express the length of a tube (i, j),Qki,j stands for the flux on
the edge eij at time step k . There is a positive feedback process
between the fluxQki,j and conductivityD

k
i,j. Assuming that the

flow in a tube is approximate to the Poiseuille flow, then the
relationship amongDki,j, p

k
i ,Q

k
i,j and Lij can be formulated as:

Qki,j =
Dki,j
Li,j

(pki − p
k
j ) (9)

Suppose that the flow capacity of each node is 0, that is,
if vi is not an inlet node or an outlet node, then there is∑

iQ
k
i,j = 0. According to the flow conservation law, the inlet

in a network is set as I0 and the flux input is equivalent to
the flux output. Then the flux of whole network satisfies the
formula Eq. (10).

∑
i

Qki,j =


−I0, for j = In
I0, for j = Out
0, otherwise

(10)

By setting the basic pressure level p2 as 0, all pki can be
calculated based on the Eq. (10). Then, we can get the fluxQki,j
from Eq. (9). The value ofDki,j changes with time based on the
flux Qki,j of corresponding side, as shown in Eq. (11).

Dki,j − D
k−1
i,j

δt
=

∣∣∣Qki,j∣∣∣
1+

∣∣∣Qki,j∣∣∣ − Dki,j (11)

The value of Dki,j is fed back to Eq. (10). If the constraint∣∣∣Dki,j − Dk−1i,j

∣∣∣ 6 10−6 is satisfied, the iteration terminates.

Fig. 1 displays the initial, intermediate and final states of
a network, respectively. Obviously, the core mechanism of
PCM is the positive feedback, i.e., the higher conductivity
leads to the greater flux which increases the conductivity in
turn [17]. The shorter the paths are, the higher the flux of
tubes is. The tubes in the shorter paths tend to be wider,

and will be remained in the evolutionary process of forag-
ing network. Meanwhile, some longer tubes become nar-
rower and disappear. Finally, the reserved tubes which are
denoted as critical paths, are the solution to a path-finding
problem.

In conclusion, due to the positive feedback mechanism
during the foraging process of Physarum, the PCM model is
applied to solve the shortest path problem or maze problem
directly. Moreover, it is also used to solve some complex opti-
mization problems, such as 0/1 knapsack problem [29] and
network community detection [30], by combining nature-
inspired algorithms. According to the type of a problem,
the data set of such problem is taken as an input of the
PCM model to form an initial network. Then, according to
computational characteristics of the PCM model, the matrix
of the flux Qki,j is obtained as an output, that is, the short-
est path between specific inlet and outlet. Based on such
matrix, some operations in nature-inspired algorithms can
be optimized, such as the initial population in genetic algo-
rithms or the pheromone matrix in ant colony algorithms.

III. PHYSARUM-INSPIRED NSGA-II FOR BTSP
GA-based algorithms are one type of effective methods for
solving BTSP. However, GA-based algorithms suffer the
premature convergence, the insufficient diversity and nonuni-
form distribution of solutions when solving BTSP. Based
on the Physarum-based computational model, this paper
proposes a novel modeling method for improving genetic
algorithm, as shown in Fig. 2. This model consists of three
parts: (1) the Physarum-based network computational model
in Fig. 2 (a), (2) the main body of GA-based algorithms
in Fig. 2 (b) and (3) the hill climbing method in Fig. 2 (c).
To validate the efficiency of our proposed method,
NSGA-II algorithm is selected as a benchmark algorithm and
optimized based on our model, named as pNSGA-II.
In this section, previous GA-based methods for solving

BTSP are first introduced in Sec. III-A. Sec. III-B takes the
NSGA-II algorithm as an example to design an improved
algorithm based on the Physarum-inspired computational
model.
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FIGURE 2. The Physarum-inspired computation model. This model consists of (a) Physarum-based network model, (b) the main
body of GA-based algorithms, and (c) the hill climbing method.

FIGURE 3. The illustration of different crossover operators in GA-based algorithms. An example of (a) the single point
crossover and (b) the uniform crossover between chromosomes with 5 nodes.

A. THE FORMULATION OF GA-BASED BTSP METHOD
Genetic algorithms are optimization search algorithms that
maximize or minimize given objective functions. GA-based
methods are flexiblemethods that can be used to solve various
types of problemswhich can be formulated as an optimization
task [31].

Existing studies about GA-based methods focus on
improving the encoding scheme and operator of selection,
crossover and mutation. For examples, Albanyrak et al. have
proposed a new mutation operator to solve TSP [32]. Elaoud
et al. have proposed a dynamic selection scheme through
optimizing multiple crossover and mutation operators [33].
During the optimization process of GA-based methods, these
basic steps of GA-based methods are as follows:

(1) Identifying the appropriate selection technique is a
critical step in genetic algorithms [34]. The selection process

plays a key role in preventing the premature convergence
because of a lack of diversity in the population. Therefore the
selection of population in each generation is very important.
A number of selection strategies have been developed and
utilized for genetic algorithm optimizations.

(2) The crossover process is implemented in such a way,
that children should have characteristics from parents. Usu-
ally the crossover operator consists of copying part of geno-
type from one parent and filling the missing genes from
other parent. As show in Fig. 3, common crossover operators
include single point crossover and uniform crossover. In this
paper, we use the single point crossover for the following
experiment.

(3) The task of mutation is to modify gene values in
order to allow the exploration of search space for unex-
amined areas. However, the mutation should not be too
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FIGURE 4. The flowchart of pNSGA algorithm. (a) The physarum-based network is mapped to the topology of a network. The
conductivity matrix is calculated based on the relevant values to initialize the population of pNSGA-II algorithm. (b) The
optimization algorithms based on the NSGA-II algorithm. (c) The hill climbing method is embed into the pNSGA-II algorithm
framework.

destructive and invalidate the process of finding an optimal
solution.

When these basic steps (i.e., population initialization,
crossover or mutation) are optimized, the approach which
involves both improved population initialization and local
search operators is rarely considered in the existing liter-
atures. In this paper, in order to increase the performance
of GA-based methods, we take advantages of Physarum-
inspired computational model and the hill climbing (HC) to
improve the quality of population initialization and escape
from the local optimum, respectively.

In all GA-based methods, NSGA-II is an effective algo-
rithm which incorporates an elitism preservation strategy
in evolutionary algorithms [14], which is widely used to
solve various problems such as community detection and
multiobjective optimization problems. However, it should be
pointed that this algorithm tends to the premature conver-
gence, the insufficient diversity and nonuniform distribution
of solutions for solving BTSP. Therefore, taking NSGA-II
as a benchmark algorithm, the Physarum-based network
computational model (PCM) is applied to improve the per-
formance of GA-based algorithms in order to validate the
validity of proposed method.

B. FORMULATION OF pNSGA-II
Taking advantage of PCM in solving path-finding problems,
we propose optimization method to improve the efficiency

of NSGA-II when solving the BTSP. The proposed algo-
rithm is denoted as pNSGA-II. Fig. 4 shows the flow chart
of pNSGA-II. In pNSGA-II, a Physarum network is mapped
to the topology of network. Food sources and tubes of
Physarum network are defined as cities and paths connect-
ing two different cities, respectively. We exploit the prior
knowledge of Physarum network conductivity matrix to ini-
tialize the population. The optimized strategy can improve
the search ability of algorithms, from two perspectives. First,
the optimized method can reduce the searching space so as
to speed up the convergence. Second, Physarum network
conductivity matrices can promote the population diversity
in the some way.

Compared with the original NSGA-II, we keep the main
framework. The major distinction between the optimized and
the original is the process of initialization population and
genetic operator. During the initialization, the population is
preset with the priori knowledge of PCM. Fig. 5 gives an
example of initialization process of city agglomeration with
5 nodes.

In order to increase the diversity of individuals, the hill
climbing method (HC) is added to the genetic operator
of pNSGA-II. Fig. 6 presents an example of hill climb-
ing procedure of 5 nodes. Given a chromosome Ck =
{C1

k ,C
2
k , . . . ,C

n
k }, a node C i

k is randomly selected from Ck
and then we replace the location i with a random location j,
where j 6= i. Compared with the original chromosome,
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FIGURE 5. The illustration of initialization process of pNSGA-II. The figure shows food sources and tubes of
physarum network which represent cities and paths or cost in a road network, respectively. Taking the city
agglomeration of size 5, each objective matrix generates the corresponding flow matrix using the positive
feedback mechanism of PCM, and then the initial solution is constructed according to the flow matrix of
corresponding objective.

FIGURE 6. The illustration of operator of hill climbing. Our method
chooses a node randomly and reinserts at a random location
to generate a new chromosome.

the new generated one is retained if it can achieve better
solutions. The details of HC procedure are given in Alg. 1.

IV. EXPERIMENTS
This section first introduces bi-objective symmetric TSP
instances and corresponding parameter settings in Sec. IV-A.
Then experiments results and the statistical analysis are
implemented in Sec. IV-B. The computation complexity anal-
ysis is carried out in Sec. IV-C. Finally, the effects of param-
eters are analyzed to verify the performance of pNSGA-II
algorithm in Sec. IV-D.

A. DATASETS AND PARAMETERS
Bi-objective symmetric TSP instances are obtained from
the web page.1 Each of these instances is constructed from

1https://eden.dei.uc.pt/~paquete/tsp/

Algorithm 1 Hill Climbing Procedure
1: Input: chromosome Ck , the local search probability pi
2: flag← FALSE
3: for l = 1 : pi ∗ len(Ck ) do
4: Randomly select a node and location: C i

k ∈ Ck and j,
where j 6= i
5: Reinsert:C ′k = Ck ← C i

k
6: if Eval(C ′k ) > Eval(Ck ) then
7: Assign:Ck = Ck ← C ′k
8: else
9: Assign:flag← TRUE

two different single objective TSP instances with the
same number of nodes. For the sake of contrastive anal-
ysis, this paper uses eight bi-objective TSP instances,
i.e., euclidAB100, kroAB100, kroAB150, kroAB200,
kroDE100, kroCD100, kroAC100, and euclidEF100 to esti-
mate our proposed method.

Some parameter settings are shown as follows. The initial
value of conductivity of each tube is 1. The total number
of runs affected by PCM are 30. Total steps of iteration
are 500 or 1000, according to the scale of instance. The
population-size, mutation, crossover and hill-climbing are set
to 500/1000, 0.2, 0.6, 0.4, respectively, which are the same
with the setting in NSGA-II [14]. More detailed parameter
analyses are discussed in Sec. IV-D. All experiments are
implemented on PC with 3.2 GHz CPU, 4 GB RAM and
Windows 7 OS.
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FIGURE 7. PFs returned by pNSGA-II, pPACO, pMACS, pBIANT, PACO, MACS, BIANT, and NSGA-II in eight bi-objective symmetric TSP instances. Results
show that most of solutions generated by pNSGA-II in four instances can dominate solutions generated by NSGA-II, which means pNSGA-II can obtain the
better PF than NSGA-II. Most of solutions generated by pNSGA-II converge to the upper-left region and locate a larger region of solution space than other
algorithms. However, partial solutions generated by pNSGA-II are dominated by the most of solutions generated by other compared
algorithms.

FIGURE 8. M1 metric comparison among eight algorithms in eight instances. Results show that each corresponding M1 value of pNSGA-II are much lower
than those of optimized ant colony optimization (ACOs) and NSGA-II in seven instances, which means that solutions generated by pNSGA-II are much
closer to the pseudo-optimal PFs. In other words, pNSGA-II algorithm works better than other algorithms about M1 metric.

B. RESULTS AND ANALYSES
In this section, we present experimental results and carry
out statistical analyses. All experiments are implemented in
the same environment to enable fair comparisons between
our algorithm and other algorithms including HYGA [35],
NSGA-II [14], pPACO, pMACS, and pBIANT [36], where
pPACO, pMACS, and pBIANT are enhanced algorithms of
pareto ant colony optimization (PACO) [37], the multiple ant
colony system (MACS) [38], the bicriterion ant algorithm
(BIANT) [39], respectively. In order to wipe off the computa-
tional fluctuation, all results in our experiments are averaged
over 30 times.

1) EXPERIMENTAL RESULTS
Figure 7 plots the graphical representation of PFs returned
by eight algorithms in eight instances, where each coordi-
nate represents an objective, and each point corresponds to
a feasible solution for the instance, respectively. All PFs
generated by each algorithm are fused into a single PF by
removing dominated solutions. This result shows that the
optimized strategy for NSGA-II can improve the quality and
distribution of solutions, especially in kroAB200, kroAC100,
euclidEF100 instances.

In order to further compare the performance among differ-
ent algorithms, box-plots in Figs. 8-10 are used to estimate
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FIGURE 9. M2 metric comparison among eight algorithms in eight instances. Results show that each corresponding M2 values of pNSGA-II are slightly
worse than those of optimized ACOs and NSGA-II in eight instances.

FIGURE 10. M3 metric comparison among eight algorithms in eight instances. Results show that most of M3 metrics of pNSGA-II are better than those of
optimized MOACOs and NSGA-II.

the value of M1, M2 and M3 metric. In each box, the highest
and lowest lines represent the maximum value and minimum
value with 30 runnings, respectively. The upper and lower of
a box are the upper and lower quartiles, respectively. The line
within a box means the median of solutions.

Figure 8 shows that PFs generated by the pNSGA-II are
much closer to the pseudo-optimal PFs in eight instances.
Fig. 9 evaluates the distribution of solutions in PFs returned
by original algorithm (i.e., NSGA-II), compared algorithm
(i.e., pPACO, pMACS, pBIANT, MACS, PACO, BIANT)
and the optimized algorithm (i.e., pNSGA-II) according to
M2 metric. Results show that the distribution of solutions
of pNSGA-II is less desirable while pBIANT and pMACS
can obtain the better distribution of solutions in each Pareto
front. Furthermore, we estimate the scalability of solutions by
comparing theM3 metric. As plotted in Fig. 10, the scalability

of solutions of pNSGA-II is better than original and compared
algorithms.

In order to further evaluate the performance of
pNSGA-II comprehensively, this paper uses hypervolume
metric proposed by Zitzler and Thiele [40] to further mea-
sure the differences of algorithms. The larger the value of
hypervolume is, the better the algorithm performance is.
Table 1 shows hypervolume comparison results among dif-
ferent algorithms in some instances. We can conclude that the
performance of pNSGA-II is better than other algorithms.

Moreover, a typical GA-based method (i.e., HYGA [35])
is compared with our proposed method. Table 2 reports
comparison results among pNSGA-II, NSGA-II and HYGA
in four instances (i.e., euclidAB100, kroAB100, kroAC100,
kroCD100). Results show that the performance of pNSGA-II
algorithm is better than other algorithms.
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TABLE 1. Comparison results of hypervolume among different algorithms
in some instances.

TABLE 2. Hypervolume comparison results among pNSGA-II, NSGA-II,
and HYGA in some instances.

2) STATISTICAL ANALYSES
In order to verify that the pNSGA-II algorithm is statistically
superior to other algorithms, this section carries out statistical
analyses according to [41]. Table 3 shows the average value
of M1 in different scales of instances. Table 4 gives the
rankings of different algorithms on the various datasets based
on results in Table 3.
In Table 4, symbols G1 - G8 denote eight instances,

i.e., euclidAB100 (G1), kroAB100, kroAB150, kroAB200,
kroDE100, kroCD100, kroAC100, and euclidEF100. The val-
ues of Table 4 denote the ranking results of six algorithms
from the best to the worst based on the averaged value of
the valuation index M1 in Table 3. R represents the average
of all rankings on eight datasets for each algorithm. For
example, the ranking R of pNSGA-II can be calculated as,
R = (1+ 1+ 2+ 1+ 1+ 1+ 1+ 1)/8 = 1.125.

First, by Eq. (12), the statistics can be made in Friedman
test (i.e., χ2

F ). Rj represents the rank of diverse algorithms.
N and k express the number of algorithms and datasets,
respectively. According to Eq. (12), the χ2

F of Table 4 is cal-
culated to be 17.125. The degree of freedom of Table 4 can be
obtained from the records in Chi-square table, i.e., k−1 = 7,
and χ2

0.05 = 9.488. Because 17.125 > 9.488, within the
confidence interval of 95%, these algorithms in Table 4 show
significant differences.

χ2
F =

12N
k(k + 1)

∑
j

R2j −
k(k + 1)2

4

 (12)

Second, according to the significant differences among
these algorithms, the Bonferroni-Dunn’s test can be utilized
to prove the specific distinction between two algorithms. This
rule, whether the difference value between two algorithms
in ranking is greater than the critical difference, is used
as the evaluation criterion (denoted as CD). For a multiple

FIGURE 11. The Bonferroni-Dunn’s graph corresponding to results of
Table 4. The horizontal line represents the value which equals to the sum
of ranking of control algorithm (i.e., pNSGA-II) and the corresponding CD.
Those bars which exceed this line are the associated to an algorithm with
worse performance than pNSGA-II.

comparison, α and qα are the confidence level and threshold
obtained by checking the Z table, respectively. Therefore,
we can conclude that q0.05 = 2.935 (where P = k(k − 1)/
2 = 15) for Table 4. According to Eq. (13), we can
get the critical values at the 95% confidence levels,
i.e., CD0.05 = 2.745.

CDα = qα

√
k(k + 1)

6N
(13)

Since the performance of two algorithms is obviously dif-
ferent, and the ranking difference is larger than CDα , it can
be concluded that pNSGA-II is better than pPACO, pBIANT,
NSGA-II, PACO, MACS, and BIANT with α = 0.05
(95% confidence) based on Fig. 11.

z =
Ri − Rj√
k(k+1)
6N

(14)

Finally, Holm’s and Hochberg’s methods are used to
further compare the differences between two algorithms.
To compare algorithm i and j, the statistic is computed
(denoted as z value) by Eq. (14). Generally, the ranking result
is listed in reverse order. More specifically, according to the
z values, searching the normal distribution table can gain an
unadjusted p (expressed as Up). From BDpi = min{vi; 1},
Bonferroni-Dunn p (expressed as BDp) can be computed,
where vi = (k − 1)Upi . From Hpi = min{vi; 1}, Holm p
(denoted as Hp) can be computed, where vi = max{(k −
j)Upj : 1 ≤ j ≤ i}. From HBpi = max{(k − j)Upj : (k − 1) ≥
j ≥ i}, Hochberg p (expressed as HBp) can be computed.
According to the Holm’s and Hochberg’s procedures,

Table 5 reports the statistical results of the data in Table 4.
We can get the value of z by Eq. (14). Through searching and
comparing the value of z and the α value in the normal distri-
bution table, we can obtain the probabilistic error estimation
of a comparison (i.e., p-value). Unadjusted p in Table 5 is
p-value squared. However, it does not consider the remain-
ing comparisons, when p-value is in multiple comparisons.
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TABLE 3. The comparison of measure M1 obtained by algorithms in different TSPLIB instances. From left to right, these TSPLIB instances are
euclidAB100, kroAB100, kroAB150, kroAB200, kroDE100, kroCD100, kroAC100, and euclidEF100. These results show the superiority of pNSGA-II algorithm
compared with other algorithms.

TABLE 4. The ranking obtained based on Table 3. The value means the ranking result of these algorithms in each instance.

TABLE 5. The p-value on datasets G1 - G8 (pNSGA-II is the control algorithm), which reports statistical results of Table 4. According to such comparison,
it is easy to reach a conclusion that pNSGA-II is better than other comparison algorithms at the 95% confidence level.

Adjusted p-value (APVs) considers multiple tests and can be
used directly as the assumptive p-value in the multiple algo-
rithm comparison range. Bonferroni-Dunn p (BDp), Holm p
(Hp) and Hochberg p (HBp) represent the three calculated
APVs. According to such comparison, we can conclude that
pNSGA-II is better than other comparison algorithms at the
95% confidence level.

C. COMPUTATION COMPLEXITY ANALYSIS
In the proposed Physarum-inspired algorithm framework,
as shown in Fig. 4, there are three parts: (1) the Physarum-
based network computational model, (2) the main body of
GA-based algorithms and (3) the hill climbing method. The
computational complexity of the above three parts are ana-
lyzed as follows.

For the Physarum-based model (PCM) in Fig. 4 (a),
the Poiseuille flow has only a pair of inlet and outlet.
The path from the inlet to other N nodes needs N opera-
tions, i.e., each iteration requires the solution of N -element
equations (i.e., Eqs. (9) and (10)). According to the Gauss
elimination, the time complexity of solving such equations

is O(N 3). Assuming that the maximum iteration number of
the PCM is max_gen, in general, max_gen has little effect on
the PCM and is usually set as 1. Therefore, the computational
complexity of the first part is O(N 3).

For the benchmark algorithm in Fig. 4 (b), the compu-
tational complexity of NSGA-II is O(MN 2). Specifically,
M represents the number of objective functions that is much
less than N [14].
For the hill-climbing method in Fig. 4 (c), the computa-

tional complexity of generating new chromosomes based on
the local search probability qi is O(N ). The threshold param-
eter is a constant k . Therefore, the computational complexity
of the hill-climbing method is O(k ∗N ), where k is much less
than N .
According to above analyses, the computational com-

plexity of the our proposed Physarum-inspired computation
model is O(N 3).

D. PARAMETER ANALYSIS
In pNSGA-II algorithm, there are four important param-
eters which are (1) total steps of iteration (gen),
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FIGURE 12. M1, M2, and M3 values obtained by pNSGA-II with different pop, gen, HC , PMP , Mu, and Co, settings in
kroCD100 instance. With the increase of parameters pop, gen, Mu, and Co, the overall performances generally increase.
When Mu and Co take 0.2 and 0.7 respectively, the performance of pNSGA-II is best. When the parameters
(i.e., HC and PMP) are within the range of 0.2 to 0.8, the performance slightly fluctuates with the increase
of parameter values. Therefore, the improved algorithm pNSGA-II is less sensitive to the change
of HC and PMP in kroCD100 instance in the whole.
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FIGURE 13. M1, M2, and M3 values obtained by pNSGA-II with different pop, gen, HC , PMP , Mu, and Co, settings in
kroDE100 instance. Similar to the results in kroCD100 instance, with the increase of parameters pop, gen, Mu, and Co,
the overall performance of pNSGA-II generally increases. When Mu and Co take 0.2 and 0.6 respectively,
the performance of pNSGA-II is best. When the parameters (i.e., HC and PMP) are within the range of 0.2 to 0.8,
the performance slightly fluctuates with the increase of parameter values. Overall, the improved algorithm pNSGA-II
is less sensitive to the change of HC and PMP in kroDE100 instance in the whole.
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(2) population size (pop), (3) hill-climbing percentage
(HC), (4) PCM percentage (PMP), (5) mutation proba-
bility (Mu) and (6) crossover probability (Co). The hill-
climbing percentage (HC) represents the set local search
probability, i.e., probability qi in Fig. 4. The PCM per-
centage (PMP) represents the selection ratio of the PCM
model output which is applied to the initial population.
gen, pop, Co and Mu represent iteration times, population
size, crossover probability and mutation probability, respec-
tively. In this section, we mainly discuss the effect of these
parameters on the algorithm. This section uses two datasets
for experiments, which are kroDE100 and kroCD100.
The setting range for each parameter is shown below.
gen = 100, 250, 500, 1000. pop = 100, 250, 500, 1000.
HC = 0.01, 0.2, 0.4, 0.6, 0.8. PMP = 0.01, 0.2, 0.4,
0.6, 0.8. Mu = 0.01, 0.05, 0.1, 0.2, 0.4. Co = 0.4, 0.6, 0.7,
0.8, 0.9. For the experiment of each parameter, the remaining
parameters are the same as those set in the previous section
and remain unchanged.

Figures 12 - 13 show the average value of M1,M2,M3
obtained by pNSGA-II with different pop, gen, HC , PMP,
Mu and Co, settings on the same instance, where the standard
deviation is shown around the average value.

Some phenomena can be obtained from Figs. 12 - 13. First,
all indicators are roughly consistent when they are used for
different test instances. Second, it can be seen from parameter
analyses of kroCD100 and kroDE100 that the performance of
algorithm generally increases with the increase of pop, gen,
Mu and Co. When Mu and Co take 0.2 and 0.6 respectively,
the algorithm performance is better. In addition, according
to Figs. 12 - 13, M2 metric decreases with the number of
generations. Due to the influence of selection operation,
the difference between individuals gradually decrease with
the increase of generations times, thus affecting the diversity
of the population and the distribution of solutions.M2 metric
evaluates the distribution of solutions in Pareto front returned
by an algorithm. So, theM2 metric decreases with the number
of generations.

However, the performance of pNSGA-II has only slightly
fluctuated with the increase of HC and PMP from 0.2 to 0.8.
The pNSGA-II algorithm is not sensitive to the change of
parameter values in the whole. Therefore, in order to reduce
the running time, both HC and PMP are generally set as 0.4.
In conclusion, although two newly introduced parametersHC
and PMP have a slight influence on the algorithm, the algo-
rithm pNSGA-II is not sensitive to the value of parameters in
general.

V. CONCLUSIONS
In order to solve the imbalance between diversity preservation
and achieving convergence, a method using a new nature-
inspired computational model based on the genetic algorithm
has been presented. What’s more, this method can be used
in various GA-based algorithms for solving some practical
optimization problems which can be translated into MOTSP
and have several objectives to be optimized.

Taking advantages of prior knowledge of Physarum-
inspired computational model and the hill climbing method,
this paper proposes an optimization strategy to optimize
the initialization and genetic operator of typical GA-based
algorithms. NSGA-II is selected as a test algorithm, and the
improved algorithm denoted as pNSGA-II is applied to solve
bi-objective symmetric TSP (BTSP). Extensive experiments
are implemented in BTSP instances. The results show that
PFs obtained by pNSGA-II is closer to the pseudo-optimal
PFs and wider extent comparing with PFs obtained by other
algorithms.We can conclude that the quality of solutions gen-
erated by pNSGA-II is superior to others. Overall, the conclu-
sions are as follows.

• The prior knowledge of Physarum-inspired computa-
tional model (PCM) is used to optimize the initialization
process of GA-based algorithms. The PCM can increase
the convergence speed to reach the optimal and improve
the distribution of solutions, which can find the shortest
route between two sources.

• The hill climbing method (HC) increases the diversity
of individuals, which can enhance the exploration space
and avoid falling into the local optimum.

• The Physarum-inspired algorithm framework based on
the genetic algorithm takes into account the algorithm
convergence rate, local search capabilities and diversity
preservation, which makes the algorithm easier to find
the global optimal solution.

This paper designs a new evolutionary multiobjective
model to solve the traveling salesman problem. Because of
the high computational complexity of the Physarum-inspired
model, our future work aims to improve the efficiency of the
algorithm through reducing the computational complexity.
What is more, because of the multi-dimensional characteris-
tics in multilayer networks, how to balance the heterogeneous
features of community in each layer and the quality of com-
posite community is an important issue. Therefore, we will
expand our evolutionary multiobjective model to solve the
problem of community detection on multilayer networks.
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