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ABSTRACT Most metaheuristic algorithms, including harmony search (HS), suffer from parameter selec-
tion. Many variants have been developed to cope with this problem and improve algorithm performance.
In this paper, a hybrid algorithm of HS with grey wolf optimizer (GWO) has been developed to solve
the problem of HS parameter selection. Then, a modified version of opposition-based learning technique
has been applied to the hybrid algorithm to improve the HS exploration because HS easily gets trapped
into local optima. Two HS parameters were automatically updated using GWO, namely, pitch adjustment
rate and bandwidth. The proposed hybrid algorithm for global optimization problems is called GWO-HS.
The GWO-HS was evaluated using 24 classical benchmark functions with 30 state-of-the-art benchmark
functions from CEC2014. Then, the GWO-HS has been compared with recent HS variants and other well-
known metaheuristic algorithms. The results show that the GWO-HS is superior over the old HS variants
and other well-known metaheuristics in terms of accuracy and speed process.

INDEX TERMS Computational intelligence, grey wolf optimizer, harmony search, hybrid algorithm,
metaheuristic, optimization algorithm, CEC2014.

I. INTRODUCTION
Solving the NP-hard problem using an exhaustive search is
an impractical technique because of long-time consumption
and complex application. A well-known solution to solve the
NP-hard problem with minimal time consumption is using
a heuristic technique that can find a near-optimal solution.
Heuristic algorithm sacrifices optimality or completeness to
obtain quickly the best result.

Meta-heuristic algorithms are higher-level heuristic algo-
rithms that can cover a wider range of problems, with a lack
of information or high computation time [1]. The main func-
tionality of meta-heuristic algorithms is obtained by merging
rules and randomness to simulate natural phenomena, such
as physical annealing in a simulated annealing (SA) algo-
rithm [2], the human intelligence in the harmony search (HS)
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algorithm [3], the biological evolutionary process in an evo-
lutionary algorithm (EA) [4], and animal behavior in Tabu
search [5].

The efficiency of metaheuristic algorithms depends on the
utilization of explorative and exploitative ranges through the
search process [6]. The exploitative process is accomplished
by utilizing the information obtained to guide the search
toward its goal. The explorative process is the capability of
an algorithm to examine uncovered areas quickly within con-
siderable search sizes. Overall performance develops if the
balance between these two characteristics is established [7].

Harmony search (HS) algorithm is a well-known meta-
heuristic algorithm, introduced by Geem et al. [3] by mim-
icking the musician’s process in creating a new musical
harmony [8], [9]. The HS algorithm is used in different fields
of optimization problems, such as engineering [10], [11],
water distribution [12], structural optimization [6], music
ensemble [13], and university timetable [14], Software
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testing [15]–[18]. Many other applications and variants of
the HS algorithm were made according to previous survey
articles [19], [20].

The success of using HS in different research fields is
attributed to its characteristics. The main advantage of HS is
its capability to utilize exploration and exploitation simulta-
neously through the search process [14].

Most metaheuristic algorithms, including HS, suffer from
parameter selection, and premature convergence. Many vari-
ants have been developed to cope with this problem and
improve algorithm performance [21]–[26].

Generally, researchers have two ways of setting meta-
heuristic parameter values, namely, by using parameter
tuning or by using parameter control.

A. PARAMETER TUNING
The use of parameter tuning is achieved by finding the best
values for algorithm parameters before running the algorithm
to fix the problem. Parameter tuning involves a number of
difficulties, such as longtime consumption because of the
need to cover all possibilities, which is practically impossible;
another difficulty is high complexity because parameters are
not independent; moreover, choosing a fixed parameter as
optimal value through the search process is against the idea
of EA of a dynamic and adaptive process [27].

B. PARAMETER CONTROL
The other way to modify algorithm parameter values is
through the search process, which can be accomplished in
three ways.

1: First method: The algorithm parameter values can be
modified using a deterministic function to replace the
static value of the parameters in the search process;
an example of this process is the improved HS by
Mahdavi et al. [21], who replaced the static values of
pitch adjustment rate (PAR) and bandwidth (BW) with
new functions to modify their values throughout the
search process. The following equations present the
dynamic BW:

C =
(
ln
(
BWmin

BWmax

)
÷ NI

)
(1)

BW (t) = BWmax × e(c×t). (2)

(BWmin; BWmax) are the minimum and maximum
values of BW, t is the current number of iterations. The
following equation present the dynamic PAR:

PAR (t) = PARmin +
(PARmax − PARmin)

NI
× t. (3)

(PARmin; PARmax) are minimum and maximum val-
ues of PAR, t is the current number of iterations, NI is
the total number of iterations.

2: Second method:The algorithm can use feedback from
the search process to improve the search parameter
values, such as updating step size (by decreasing or

increasing it) on the basis of the success rate of the
search process.

3: Thirdmethod: The third method uses the self-adaptive
values of the algorithm parameters. The adapted param-
eters can change in chromosomes and mutation pro-
cesses on the basis of the previous results; an example
of this approach is the self-adaptive global best HS
algorithm by Pan et al. who constructed the mutated
values of harmonymemory consideration rate (HMCR)
and PAR through the search process.

In the current article, we present a hybrid algorithm of HS
and grey wolf optimizer (GWO). GWO is a newly developed
algorithm inspired by the hunting and leadership of grey wolf
packs [28]. Inspired by the idea of finding the best values
using optimization algorithms, GWO was used in the current
paper to modify the HS parameters as a self-adaptive process.
Hence, instead of tuning the PAR and BW parameters before
the search start, the GWO algorithm modifies the parameter
values throughout the search process.

To improve HS exploration and avoid premature conver-
gence, a modified version of the original opposition-based
learning (OBL) [29] is implemented in the hybrid algorithm.
This paper mainly aims to design, implement, and evaluate
a new hybrid algorithm of HS and GWO with self-adaptive
parameter selection. This paper also aims to improve HS
algorithm exploration using a modified version of the OBL
technique.

To evaluate the effectiveness of the suggested hybrid algo-
rithm, the hybrid algorithm has been tested using 24 classi-
cal benchmark functions with 30 state-of-the-art benchmark
functions from CEC and compared them with previous HS
variants as well as with well-knownmetaheuristic algorithms.
Parametric tests, namely, Wilcoxon’s rank test and Friedman
test, were used. The tests were used to provide an insight
into the new hybrid algorithm in contrast to the previous
variants and hybrid algorithm at α = 5% significance level.
The new hybrid algorithm shows highly competitive results
in all experiments. To find the best values of harmony mem-
ory size (HMS) and HMCR for the hybrid algorithm, some
experiments were conducted as presented in the experimental
results and analysis section.

The remaining sections of this paper are organized as fol-
lows. The original HS and its variants. Then GWO algorithm
and modified OBL are investigated. The proposed algorithm
is described after that. Then, a section will provide the results
and discussion. Finally, a conclusion is provided, and possible
future improvements are provided.

II. HS AND ITS VARIANTS
In this part, we will comprehensively describe HS, and differ-
ent variants were created to overcome the HS variable selec-
tion and improve its performance. Some researchers utilized
fuzzy logic to automatically update the HS parameters [40].
Mahdavi et al. [21], created a modified variant of HS by
adding new functions to modify the HMCR and PAR values
throughout the search process. Other researchers, such as
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Omran andMahdavi [22], modified the search process, which
he borrowed from Particle Swarm Optimization [41].

A. HS ALGORITHM
The HS algorithm process contains five main steps, as shown
in Figure 1:

FIGURE 1. HS process.

Step 1:Creating initial values of HS parameters: BW, PAR,
HMCR, number of iterations (NI), and HMS. The optimiza-
tion objective function will be determined in this step either
by using the maximum or minimum objective function f(x),
which are the benchmark functions used in this paper.Xi is the
prospect solution vector from N (all possible solution vectors
of Xi, and the Xi value is within (lower and upper boundaries)
for all the decision variables.
Step 2: In this step, HMwill be initialized within the upper

and lower boundary ranges, as shown in the next equation,
and X1 is a random value between 0 and 1.

Xi = LB+ r1 × (UB− LB) (4)

Step 3: In this step, the improvisation of new harmony will
be performed using a combination of three major parame-
ters, namely, HMCR, PAR, and BW, according to line 9 in
Algorithm 1. First, random number X2 generated between

0 and 1; if X2 is larger than HMCR, then a new value Xj will
be created using Equation 1; otherwise, a random value of Xi
will be chosen from HM. Afterward, another random value
r3 will be generated between 0 and 1; if it is smaller than
or equal to PAR, then Xi will be modified using Equation 2,
as follows:

Xi′ = Xi′ ± BW × rnd (5)

Step 4: If the newly generated vector Xi′ is better than
the worst vector in the harmony memory, then the worst
vector will be replaced with the new vector Xi′ because of
the objective function.
Step 5:The stopping criteria, such as themaximum number

of improvisations, should be checked after every improvisa-
tion. A detailed description of the HS algorithm is presented
in the following pseudocode:

Algorithm 1 Harmony Search Algorithm Improvisation
1. while (t < Max number of iterations)
2. for (j = 1 to D) = {D : number of dimensions}
3. If (R2) ≤ HMCR {Memory consideration}
4. x ′i = xi,j {i is a random integer (1, . . .HMS)}
5. if (R3 ≤ PAR){Pitch adjustment}
6. x ′j = x ′j ± R4× bw
7. end if
8. else
9. x ′j = LB+ R5× (UB− LB))
10. end if
11. end for
12. Update HM :
13. if

(
x ′j better than worst xj

{
xj ∈ HM

})
14. xj = x ′j
15. t = t + 1
16. End while
17. return best harmony

B. EXPLORATORY POWER OF THE HARMONY SEARCH
ALGORITHM: ANALYSIS AND IMPROVEMENTS FOR
GLOBAL NUMERICAL OPTIMIZATION (EHS; 2011)
To improve HS performance, Das et al. [42] conducted a the-
oretical study of the HS algorithm; another variant of the HS
algorithm was introduced. The new variant is compared with
other variants of HS and other state-of-the-art optimization
algorithms. The new variant shows competitive results. The
new variant has the same steps as the original HS except
for the BW value, which is updated based on the following
equations:

BW = k
√
Var(x) (6)

Var(x) =
1
m

m∑
k=1

(xi − x̄)2 = x2i − x̄
2 (7)

For the benchmark function, the author suggests using
(k = .17); meanwhile, m = HMS, and X is the population
average.
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C. AN IMPROVED GLOBAL-BEST HARMONY
SEARCH ALGORITHM (IGHS; 2013)
El-Abd [24] developed as an improved variant of GHS [22] by
focusing on the explorative range at the beginning, and then
on the exploitative range at the end of a search. To accom-
plish this, the author used Gaussian distribution to select the
random pitch adjustment, as described in the next Equation:

X ′j = HM r
d + Gauss (0, 1)× BW (8)

where HM r
d is a randomly selected value from HM, and

Gauss is a random number with a mean of 0 and a standard
deviation of 1. For pitch adjustment, the next equation is used
as follows:

X ′j = HMbest
d + ∅ × BW (9)

where HMbest
d is the best value in HM based on the objective

function evaluation f(x). The value ϕ is a random number
that is uniformly distributed within the range ‘‘−1 to 1’’.
PAR value is decreased within the iterations to achieve great
exploitation, as described by [43]. For BW, the author bor-
rowed its formula from the IHS [21] variant. The algorithm
was compared with seven previous HS-variants using the
CEC 2005 benchmark function.

D. DIFFERENTIAL-BASED HARMONY SEARCH
ALGORITHM FOR THE OPTIMIZATION
OF CONTINUOUS PROBLEMS
(DH/BEST; 2016)
Hosein et al. [25] introduced a new HS-variant by modifying
two aspects of the original HS. The first modification is
applied to the initialization of HS by using a new method to
initiate feasible solutions with less randomness. The second
modification involves replacing pitch adjustment with the
applied to the initialization of HS by using a new method to
initiate feasible solutions with less randomness. The second
modification involves replacing pitch adjustment with the
updated version inspired by the differential evolution (DE)
mutation strategy and excluding the BW parameter. The fol-
lowing algorithm describes the new initialization processes,
which is implemented by replacing the random value with a
new calculation based on HMS:

Algorithm 2 DH/best Initialization (Hosein 2016)
1. for (j = 1 to D) {D = dimensions}
2. for (i = 1 to HMS)
3. tempi = LB+ ((i− 0.5

HMS )× (UB− LB)
4. end for
5. Shuffle the temporary array
6. for (i = 1 to HMS)
7. HM = tempi
8. end for
9. end for

where UB and LB are the upper and lower bounds of the deci-
sion variables. The new variant eliminates the requirement of
setting BW, and pitches are adjusted based on the distances

between the pitches in HM by using DE/best/1 mutation,
as described in the following Pseudo-code:

Algorithm 3 DH/best Improvisation (Hosein 2016)
1: for(i = 1 to D)
2: if (r(0 ∼ 1) ≤ HMCR)
3: X ′i = Xij(i is random integer from 1.. HMS)
4: if (r(0 ∼ 1) ≤ PAR)
5: X ′i = Xbest + r (0 ∼ 1)× (X r1,J − Xr2,J )
6: if (X ′j < LBorX ′j > UB)
7: X ′j = r (0 ∼ 1)× (UB− LB)+ LB
8: end if
9: end if
10: else
11: X ′j = r (0 ∼ 1)× (UB− LB)+ LB
12: end if
13: end for

where UB and LB are the upper and lower bounds of the
decision variables, r(0 − 1) is the random value between
0 and 1, Xbest is the best Xi in HM based on the objective
function, and Xr1,J and Xr2,J are two random values in the
jth dimension.

E. A HYBRID HARMONY SEARCH AND SIMULATED
ANNEALING (HS-SA; 2018)
New hybrid HS algorithm and SA algorithm were presented
by Assad and Deep [26], the temperature parameter in SA
has been introduced inside the HS algorithm. The new hybrid
algorithm adopts a similar process to the original HS, except
that it has been updated to accept the poor results of the
improvisation process via the probability of the temperature
parameter. The temperature starts with a high value to provide
high exploration, and it then decreases at each iteration to
focus on exploitation through the search process. The new
hybrid algorithm provided better results in comparison with
the original HS and SA.

III. GWO ALGORITHM
GWO algorithm is a new metaheuristic algorithm developed
by Mirjalili et al. [28], GWO has been presented as a swarm-
based algorithm that simulates the natural driving life of grey
wolves [30], [31]. The GWO algorithm shows high perfor-
mance in many optimization problems [32]–[35].

The GWO algorithm divides the population into four
groups, namely alpha α, beta β, Delta δ, and Omega ω.

Firstly, random populations of wolves are created. The
wolves change their location through the optimization phase
on the basis of the fittest wolves, which is α. Consequently,
the second and third best solutions are named β, and δ, ω
will be guided through the search by those wolves. In order
to attack the prey, wolves will encircle the prey as described
in the following equations:

−→
D = |

−→
C .
−→
X p (t)−

−→
X (t) | (10)

−→
X (t + 1) =

−→
X p (t)−

−→
A .
−→
D (11)
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−→
X p marks the location vector of the prey, and

−→
X marks

the location vector of the grey wolf.
−→
C and

−→
A represent the

coefficient vectors, whereas t indicates the current iteration
value.

−→
C and

−→
A values are calculated using the following

equations:
−→
A = 2

−→
A .−→r 1 −

−→a (12)
−→
C = 2.−→r 2 (13)

where −→r 1 and −→r 2 are random vectors in (0,1), and −→a
decreased from 2 to 0 through iterations.

The α, β, and δ values will be the best solution acquired
thus far. Then, all the other values (wolves) are considered
as ω and will be relocated with respect to α, β, and δ.
The updated value of the wolves is based on the following
equations:

−→
D α = |

−→
C 1.
−→
X α −

−→
X | (14)

−→
D β = |

−→
C 2.
−→
X β −

−→
X | (15)

−→
D δ = |

−→
C 3.
−→
X δ −

−→
X | (16)

where
−→
X is the location of the current solution;

−→
X α ,
−→
X β , and

−→
X δ are the α, β, δ locations, respectively;

−→
C 1,
−→
C 2, and

−→
C 3

are random vectors between (0 to 2); and
−→
X α ,
−→
X β , and

−→
X δ ,

represent the distance between the current solution and α, β,
and δ, respectively. Afterward, the final location of the current
solution is calculated using the following equations:

−→
X 1 =

−→
X α −

−→
A 1.(
−→
D α) (17)

−→
X 2 =

−→
X β −

−→
A 2.(
−→
D β ) (18)

−→
X 3 =

−→
X δ −

−→
A 3.(
−→
D δ) (19)

−→
X (t + 1) =

−→
X 1 +

−→
X 2 +

−→
X 3

3
(20)

where
−→
A 1,
−→
A 2,
−→
A 3 are random vectors between {−2a, 2a},

where a decreased from 2 to 0, within the course of
iteration (t).

The final location will be calculated using Equations
(10 to 12). Finally,

−→
A and

−→
C assist the exploration and

exploitation as random and adaptive vectors, respectively.
The entire process is described in algorithm 4.

IV. MODIFIED OPPOSITION-BASED
LEARNING TECHNIQUE
The original OBL introduced by Tizhoosh [29], and many
variants of OBL developed after that and used by different
research areas [36]. Many HS variants and hybridizations
utilized the OBL and its variants in the literature [37]–[39].

In this article we applied a modified version of the original
OBL within the HS updating process, to improve the HS
exploration, as described in Algorithm 5.

In algorithm 5, x{d} represents the new improvisation
vector, r is a random value between 0, and 1, d is the number
of dimensions, and xi is the modified opposition value. Once
the improvisation process of HS creates a new value xj, the
modified opposition will be applied on the new improvisation

Algorithm 4 Grey Wolf Algorithm
1. Initialize grey wolf population within the boundaries

xi(i = 1, 2, . . . , n)
2. Initialize A, a and C
3. Calculate the fitness of each search agent
4. xα = best search agent
5. xβ = second − best search agent
6. xδ = third − best search agent
7. while (t < Max number of iterations)do
8. for (each search agent)
9. update the current search agent possition by eq 18

10. End for
11. Update A, a, and C
12. Calculate the fitness of all search agents
13. Update xα, xβ and xδ
14. t = t + 1
15. return Xa

Algorithm 5Modified Opposition
1. x{d} = {x1, x2, . . . xd }
2. r = random value between (0, 1)
3. for (i = 1 to d)do
4. X̄i = −1× x{i} × r;
5. if (f (x̄) < f (x))
6. x = x̄

Algorithm 6 Hybrid Algorithm GWO-HS
1: Define the objective function f(x)
2: Initialize HS and GWO Parameters (HMS, HMCR,

GWO-Number-of-Agents, HS-NI, GWO-NI)
3: Initialize GWO population (PARi; BWi)
4: Initialize HS population (Xi)
5: while(it < GWOmax iteration)do
6: while(i < search agents)do
7: while(d < 2)do (for PAR and BW )
8: fitnes = HS()(HS-improvisation)
9: Improvise new PAR and BW (using GWO)
10: Update Alpha,Beta, andDelta
11: Improvise new PAR and BW (using GWO
12: improvisation process)
13: Return best harmony

value xj in the update section and will replace it if it is better
on the basis of the objective function f.

V. PROPOSED HYBRID ALGORITHM
A hybrid algorithm is an algorithm that merges two or more
algorithms to solve a problem. The goal of this algorithm
is to create a new algorithm that combines advantages from
these algorithms. The main purpose of this paper is to design,
implement, and evaluate a new hybrid algorithm of HS and
GWO with a self-adaptive parameter selection, where the
benchmark functions are the case studies to evaluate the new
proposed algorithm.
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TABLE 1. Benchmark functions (GOV: global optimum value).
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TABLE 1. (Continued.) Benchmark functions (GOV: global optimum value).

TABLE 2. Parameters setting GWO-HS.

Given that the PAR and BW have a high effect on the
efficiency of HS [22], [44], we utilize the GWO algorithm
to find the right values of PAR and BW through the search
process. We use a modified version of the original OBL
technique [29] to improve improvisation results because HS
suffers from bad exploration, especially if one or more of its
vectors are near the local optimum. Meanwhile, we use the
static values of 5 and 0.99 for HMS and HMCR, respectively.
The new algorithm was tested on the benchmark function

TABLE 3. Parameters setting for compared algorithms.

and proves the superior performance compared with the
previous HS variants and other well-known metaheuristics.
Figure 6 presents the general process of the hybrid algorithm,
which is described as follows:

1. Hybrid algorithm parameter and population
initialization:
a. Hybrid parameters will be initialized, as described

in Table 2: HMCR, HMS, the minimum and
maximum value of PAR and BW, number of
iterations of HS (HS-NI), GWO number of itera-
tions (GWO-NI), and the number of GWO search
agents.
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TABLE 4. Parameters setting for HS variants.

TABLE 5. Effects of HMS on the GWO-HS performance (HMCR = 0.99).

b. The GWO population will be initialized for PAR
and BW within their upper and lower boundaries
and represented as two dimensions.

c. The HS population vectors (for the benchmark
functions in this paper) will be initialized using
HS initialization process. These vectors will be

TABLE 6. Effects of HMCR on the GWO-HS performance (HMS = 5).

used as HM through the whole process of the
hybrid algorithm.

2. Improvisation process:
a. In the HS-improvisation process, the HM vectors

will be optimized using the objective function
(benchmark functions in this paper).
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TABLE 7. Mean and SD of the errors of HS variants for (D = 30).

b. A modified OBL was used to improve the
obtained result, from HS improvisation process,
within the updating phase of HS, which is

described in Algorithm 6. The final result is sent
as a fitness function value of GWO optimization
process.
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TABLE 8. Mean and standard deviation (SD) of the errors of HS variants for (D = 50).

c. The GWO improvisation process, as described in
Algorithm 4, will be used to improvise the PAR
and BW values. The fitness function (as included

in line 3 in Algorithm 4) value will be the
result of HS improvisation process in every GWO
improvisation.
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TABLE 9. Mean and standard deviation (SD) of the errors for the existing optimization algorithms for (D = 30).

3. Results: The best results of the hybrid algorithm will
be presented in this phase.

The values of PARi, BWi in Algorithm 6 are random val-
ues of PAR and BW within their lower and upper bounds.

Possible solutions for xi for HS initialization are the random
values between the objective function boundaries.

To conclude the whole process, the GOW-initialization
will be used to create PAR and BW possible values
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TABLE 10. Mean and standard deviation (SD) of the errors existing optimization algorithms for (D = 50).

(as search agents). HS initialization will be used to initialize
the benchmark functions possible solution vectors (as HM).
In every iteration of GWO, the GWO-fitness function will be

the result of HS optimization using the PAR and BW values
from GWO-memory. HS improvisation will improvise HM
values to find possible solutions to the benchmark functions.
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TABLE 11. Mean and standard deviation (SD) of the errors for HS variants using the CEC2014 (D = 30).
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TABLE 11. (Continued.) Mean and standard deviation (SD) of the errors for HS variants using the CEC2014 (D = 30).

Finally, we included a modified version of OBL technique
as part of our hybrid algorithm through HS updating. The
modified OBL will improve the exploration of HS and help
the algorithm avoid falling in local optima. Figure 6 presents
the general structure of the hybrid algorithm process. The
pseudo code of Algorithm 6 describes the hybrid algorithm.

VI. EXPERIMENT RESULTS AND ANALYSIS
In the first section, we investigate HMCR and HMS param-
eter best values for the hybrid algorithm using the first
15 classical benchmark functions from Table 1. In the sec-
ond and third sections, we apply the hybrid algorithm
to minimize a set of 24 classical benchmark functions,
as described in Table 1 and 30 state-of-the-art test cases

from CEC2014 [45]. The classical test functions contain
unimodal and multimodal functions to provide insight into
the hybrid algorithm capabilities to cover different types of
problems. The CEC2014 is also a well-known experimental
test for single objective optimization problems that contain
shifted, rotated, hybrid, and composition optimization test
cases. Friedman test and Wilcoxon nonparametric test at
α = 5% significance level were conducted to evaluate the
overall performance of the new hybrid algorithm. All exper-
iments are performed on Microsoft Windows 10 Education
in a computer with Intel Core i7 Quad CPU 4702MQ pro-
cessor 2.2 GHz with 240 GB SSD hard drive and 16GB
DDR3 RAM. All algorithms are coded in Java. The best
results obtained from the experiments are highlighted in bold.
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TABLE 12. Mean and standard deviation (SD) of the errors existing optimization algorithms using the CEC2014 (D = 30).
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TABLE 12. (Continued.) Mean and standard deviation (SD) of the errors existing optimization algorithms using the CEC2014 (D = 30).

A. EFFECTS OF HMS AND HMCR
ON THE HYBRID ALGORITHM
To determine the best values of the static parameters of the
hybrid algorithm, we investigate the different values of the
static parameters, namely, HMS and HMCR. Other param-
eters of the hybrid algorithm for these experiments are the
same as those shown in Table 2. We used the first 15 bench-
mark functions as described in Table 1 to determine the best
values of HMS and HMCR as static values in this article.
The total number of improvisations is set to 104 for all
experiments in this article, except for CEC2014 experiments
in which we used 106. The mean and SD are calculated for
30 runs of each function with 30 dimensions. Table 4 presents

the results of using different HMS values (i.e., 5, 30, 50,
and 100). Meanwhile, f presents function.

Table 4 shows that the best results for the hybrid algorithm
are obtained using HMS = 5 and shows the fastest results
obtained in most functions. Table 4 shows that increasing
HMS does not improve the performance in most algorithms.
Thus, a small HMS improves the update rate in HM for
most cases. Table 5 presents the results of running the hybrid
algorithm with different HMCR values (i.e., 0.7, 0.8, 0.9,
and 0.99). The obtained results show that the HMCR value
has a high influence on the HS performance. A large HMCR
value provides improved results. The best results are obtained
using HMCR = 0.99 for most benchmark functions with the
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TABLE 13. Wilcoxon signed-rank test results GWO-HS vs HS variants 30D.

TABLE 14. Wilcoxon signed-rank test results GWO-HS vs HS variants 50D.

TABLE 15. Wilcoxon signed-rank test results GWO-HS vs other metaheuristics 30D.

TABLE 16. Wilcoxon signed-rank test results GWO-HS vs other metaheuristics 50D.

TABLE 17. Wilcoxon signed-rank test results GWO-HS vs HS variants CEC2014 30D.

TABLE 18. Wilcoxon signed-rank test results GWO-HS vs other metaheuristics CEC 2014 30D.

fastest convergence rate. Through the experiment of HMS
values, we use HMCR = 0.99 and HMS = 5 to run the
HMCR value experiment.

B. EXPERIMENT 1
In this part, we will analyze the experiment of the new
hybrid algorithm compared with four recent HS variants and
one hybrid algorithm (i.e., EHS 2011, IGHS 2013, DH/best
2016 and HS-SA 2018). The parameter configurations for

these variants are described in Table 4. The parameter val-
ues for the hybrid algorithm are the same as those listed
in Table 2. First, we examine the hybrid algorithm together
with four HS variants using 24 benchmark functions with
30 and 50 dimensions, as described in Table 1.

For both dimensions, as presented in Tables 7 and 8,
the hybrid algorithm provides better results than the other HS
variants in most cases. Second, we compare the hybrid algo-
rithm with the recent variants of HS using 30 state-of-the-art
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TABLE 19. Friedman test results GWO-HS vs HS variants.

TABLE 20. Friedman test results GWO-HS vs other metaheuristics.

FIGURE 2. Convergence curve for f 1.

CEC benchmark functions [45], with 30 dimensions. The
results presented in Table 11 show that the new hybrid algo-
rithm outperforms the recent variants in 20 out of the 30 test
cases and provides highly competitive results. In terms of
speed, the algorithm only outperforms the other variants in
seven functions, but it provides high speed in all cases.

Wilcoxon’s rank test was applied to the mean results of
Tables 7, 8, and 11 presented in Tables 13, 14, and 17
respectively. The p-value shows the significance of the results
and performance improvement in comparison with other vari-
ants. A low p-value means high improvement. R+ presents
the total ranks whenever the hybrid algorithm provides bet-
ter results than the other variants, whereas R- provides
the total ranks of lower results than the other variants. N is the
total number of benchmark functions, l, h, and s indicate the
total number of functions with higher, lower, or similar results
of the hybrid algorithm compared with other variants. As pre-
sented in Tables 13, 14, and 17, the new hybrid algorithm
outperforms all variants of HS with improved performance.

Finally, to establish a comparative assessment, Friedman sta-
tistical test has been conducted based on the mean results of
Tables 7, 8, and 11. The results presented in Table 19 con-
firm that the new hybrid algorithm outperforms all previous
variants of HS because it provides the highest ranking. These
results obtained the lowest value on the Friedman test, which
shows a high ranking. The results contain classical 30D as
classical benchmark functions with 30 dimensions, and clas-
sical 50D as classical benchmark functions with 50 dimen-
sions, and finally the CEC2014 test cases with 30 dimensions.

C. EXPERIMENT 2
To investigate the capability of the hybrid algorithm, we eval-
uate it with other state-of-the-art metaheuristic algorithms
from different families, as follows: artificial cooperative
search (ACS 2013) [46], (multi-verse 2016) [47], artifi-
cial bee colony (ABC 2005) [48], and differential evolution
(DE 1997) [49]. The parameter characteristics of these algo-
rithms are shown in Table 3 as used in this experiment.
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FIGURE 3. Convergence curve for f4.

FIGURE 4. Convergence curve for f 6.

In Table 9, we compare the hybrid algorithm with
other metaheuristics using classical benchmark functions as
described in Table 1. These functions have 30 dimensions.
The hybrid algorithm provides the best results in all test func-
tions, except for F5 and F13. The hybrid algorithm provides
the second-best results. Table 10 presents the mean, and the
SD of the hybrid algorithmwith other metaheuristics by using
50 dimensions for the classical benchmark functions. The
hybrid algorithm outperforms other metaheuristics in all test
functions, except for F5, F13, and F16; the hybrid algorithm
provides the second-best result. Finally, we compare the
hybrid algorithm with other metaheuristics in Table 12 using

30 state-of-the-art benchmark functions from CEC 2014. The
results of mean and standard deviations and running time
show that the hybrid algorithm provides the highest speed
in all the 30 cases. Moreover, this algorithm outperforms all
other metaheuristics in 12 cases, as presented in Table 12.
Overall, according to the results shown in Tables 9 and 10,
the hybrid algorithm provides a competitive result compared
to other metaheuristic algorithms in terms of efficiency.

Similar to the previous section, we conducted Wilcoxon’s
rank test and Friedman statistical test based on the mean
results of Tables 9, 10, and 12. The Wilcoxon’s rank test
results presented in Tables 15, 16, and 18 were derived from
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FIGURE 5. Convergence curve for f7.

FIGURE 6. The general process of GWO/HS hybrid algorithm.

30, 50 dimensions of classical benchmark functions, and
CEC2014 test cases, respectively.

As shown in Tables 15 and 16, the hybrid algorithm
provides very small p-values. Therefore, it outperforms all

other metaheuristic algorithms and provides very high sig-
nificant improvement. Table 18 shows the results based on
CEC2014 experiment results presented in Table 12. The
hybrid algorithm provides high significance results against
two algorithms, namely, ACS and DE.

For the Friedman test, Table 20 presents a full overview
of the classical benchmark functions with two dimensions,
30 and 50, and the CEC test cases. As seen in the classi-
cal experiments, the hybrid algorithm has the lowest value
on Friedman test, which means it has the highest ranking
among other metaheuristics. For the CEC2014 experiment,
the hybrid algorithm has the second raking following ACS
algorithm.

To provide insight into the hybrid algorithm convergence
rate, we run experiment using four benchmark functions. Two
functions with unimodal optimum (F1, F4), and two functions
with multimodal optimum (F6, F7). Figures (2 - 5) illustrate
the best score obtained so far of the hybrid algorithm and
other HS variants versus the iteration.

VII. CONCLUSION
This paper presents a new hybrid algorithm of the HS algo-
rithm with the GWO algorithm called GWO-HS algorithm
for the global continuous optimization problem. The new
hybrid algorithm solves the parameter selection problem of
the HS algorithm by using another algorithm, namely, GWO,
to modify the values of the PAR and BW parameters as a self-
adaptive process. Another modification is performed to har-
monize search by applying themodified opposition technique
to the search result and improving the obtained results. The
GWO-HS convergence is very high compared to the existing
HS variants due to the opposition technique, and GWO-HS
can reach the optimum results with less iterations. The new
hybrid algorithm can cover different types of problems with

VOLUME 7, 2019 68783



A. A. Alomoush et al.: Hybrid HS Algorithm With GWO and Modified Opposition-Based Learning

the same parameter setting, which makes it a better version
of HS than the original one. Two groups of evaluation tests
are used to examine the new algorithm performance. First,
we compare the hybrid algorithm with the recent variants
of the HS algorithm using different types of optimization
functions, namely, 24 classical and 30 CEC2014 benchmark
functions. The results show that the hybrid algorithm is better
than the previous variants in terms of accuracy and provides
competitive time consumption. Additionally, the algorithm
has been evaluated with well-known metaheuristics from dif-
ferent families. The hybrid algorithm shows improved results
and speed compared with these algorithms. The new hybrid
algorithm shows high performance, which is essential in
solving real-world optimization. Therefore, we recommend
using a new algorithm to solve real-world problems. The cur-
rent experiment focuses on continuous benchmark functions.
Future work could utilize the new hybrid algorithm in discrete
optimization problems.
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