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ABSTRACT The enhanced Mobile Broadband (eMBB) and ultra-Reliable Low Latency Communica-
tions (uRLLC) are the two main scenarios of 5th generation (5G) mobile communication system networks.
There is an obvious difference in service requirements between different scenarios. When multi-scenario
services coexist in the 5G networks, exploring optimized resource scheduling and allocation strategies
become a critical issue. The 5G New Radio (NR) and numerology technologies have been standardized,
which lay the foundation for flexible frame structure and adaptive scheduling. In this paper, we propose
the self-adaptive flexible transmission time interval (TTI) scheduling (SAFE-TS) strategy in the eMBB
and uRLLC coexistence scenario. Machine learning (ML) is applied to achieve flexible TTI scheduling.
Moreover, we design the random forest-based ensemble TTI decision algorithm (RF-ETDA) to accomplish
the TTI selection for each service. Compared with the existing ML methods, the proposed algorithm has
a performance improvement in selecting TTI, especially for the uRLLC services. Then, the TTI selection
results will be the basis of system resource scheduling and allocation. The simulation results prove that
the proposed SAFE-TS effectively reduce the delay and packet loss rate of the uRLLC services while
guaranteeing the eMBB requirements. Therefore, it is highly recommended that flexible TTI scheduling
should be applied in the construction of the 5G networks to achieve superior network performances.

INDEX TERMS Flexible TTI scheduling, machine learning, delay, control overhead, eMBB, uRLLC.

I. INTRODUCTION
From the early voice services to current versatile communica-
tions services, the mobile communication system has under-
gone profound changes. Multi-scenario becomes a major
feature of 5th generation mobile communication system (5G).
For the emerging 5G user cases, such as ultra-Reliable
Low Latency Communications (uRLLC), enhanced Mobile
Broadband (eMBB) and massive Machine Type Communi-
cation (mMTC) scenarios, 5G will confront with increasing
requirements and challenges of various services [1]. More-
over, in many cases, different service scenarios coexist in the
networks, especially the eMBB and the uRLLC.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ning Zhang.

The distinction of service requirements between different
scenarios is obvious. The eMBB services, such as Virtual
Reality (VR) and 4K video, have high requirements of band-
width and data rate. The uRLLC services, such as industrial
automation and automatic drive, have strict requirements for
delay and reliability. When these scenarios coexist in the
system, how to compromise the requirements of different sce-
narios becomes a critical issue. Exploring optimized resource
scheduling and allocation strategies is the key to efficient 5G
networks [2].

With the emergence of technologies such as multi-
connectivity and numerology, the New Radio (NR) of 5G
is moving towards flexibility and adaptability. A lot of
works have proven the performance advantages of multi-
connectivity [3], [4], which provide a possible solution to
achieve the data rate requirements of eMBB services.
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The multi-numerology technology standardized by the 3rd

Generation Partnership Project (3GPP) lays the foundation
for the flexible frame structure [5]. In the previous studies
of resource allocation issues, the integrated two-dimensional
resource allocations of time and power are not rarely seen.
However, with the emergence of new scenarios in 5G net-
works, the existing granularity of resource allocation cannot
meet the growing requirements of 5G services. A promising
solution is to explore the resource scheduling with the flexi-
bility of time and frequency domains.

Fortunately, these issues might be solved in the field of
Machine Learning (ML), which provides brand prospects
and possibilities compared with traditional methods. Prob-
lems difficult to model and to solve are the potential appli-
cation directions for ML in 5G networks [6].

Therefore, our work considers eMBB and uRLLC coex-
isting scenario in 5G networks, and explores innovative joint
scheduling strategies based on ML. The contributions of this
paper are listed as follows:

(1)We propose a flexible TTI scheduling strategy to satisfy
the service requirements in eMBB and uRLLC coexistence
scenario. The proposed Self-adaptive Flexible TTI schedul-
ing (SAFE-TS) strategy has obvious performance advantages
compared with traditional fixed-length TTI scheduling.

(2) Based on ML, we design the Random Forest based
Ensemble TTI Decision Algorithm (RF-ETDA) to implement
the flexible TTI scheduling. The length of the TTI is selected
according to the four features of the Base Station (BS) and
channel conditions when different services arrive.

(3) The flexible TTI scheduling has obvious advantages for
uRLLC services. Compared with fixed-length TTI schedul-
ing, SAFE-TS improves the delay performance of uRLLC
services by 45.64% on average, and improves the PLR per-
formance by 59.17% on average while ensuring the data rate
requirements of eMBB. The eMBB services do not have
typical classification characteristics, and most of them select
larger TTI.

The remaining of this paper is arranged as follows.
In Section II, the related works about flexible TTI scheduling
and ML are introduced. The system model and the definition
of delay are given in Section III. The strategies of SAFE-TS
and RF-ETDA are proposed in Section IV. In Section V,
the performance evaluation and simulation results are pro-
vided. Finally, there are concluding remarks.

II. RELATED WORKS
From the Long-Term Evolution (LTE) to 5G, the flexible
frame structure has always been appreciated [7] [8]. Flexi-
ble TTI scheduling is necessary to meet 5G new scenarios,
especially for uRLLC services. Many works have proved the
benefits of flexible frame structure and dynamic scheduling
for critical services. The authors of [9] explored the impact
of different situations on TTI selection. They proposed that
support for scheduling with different TTI sizes is important
for uRLLC services. To describe the influence of the control
overhead of shorten TTI, a model based on the flow arrival

rate and TTI length is designed in [10]. The authors of [11]
investigated the optimizing resource allocation with flexible
numerology in both frequency and time domains, and illumi-
nated advantages for capacity enhancement and satisfaction
of uRLLC service requirements. However, in the existing
work, the factors affecting the TTI selection and the specific
selection scheme are not given. The corresponding flexible
TTI scheduling algorithm is rarely proposed.

In addition,ML has beenwidely applied inmany aspects of
wireless communications in recent years. The authors in [12]
focused on the self-organizing networks, and provided future
research directions and solutions using intelligent algorithms.
With the constraints of the data rate and transmission power,
a K-means algorithm to maximize the rate in millimeter wave
non-orthogonal multiple access systems is developed in [13].
The authors of [14] proposed a novel ML architecture for
short packet communications, in which the received signals
are clustered by unsupervised learning, and cluster-symbol
mapping is accomplished by known labels. To the best of
our knowledge, there are no studies focus on applying ML
methods to flexible TTI scheduling.

III. SYSTEM MODEL
The research scenario is the coexistence of multi-user and
multi-service in a multi-tier heterogeneous 5G networks,
where two types of services, eMBB and uRLLC are consid-
ered. As shown in Fig.1, there are several macro BSs and pico
BSs. Some services are shown as examples in Fig.1, such
as VR, industrial automation, etc. In order to meet the strict
requirements of uRLLC, higher priority is usually assigned
to uRLLC services [15].

The multi-connectivity technology is also applied in this
work. The services can be connected to different BSs for
transmission simultaneously, especially for eMBB services.

A. DELAY MODEL
The delay D for a user scheduled in the downlink can be
expressed as:

D = dQ + dbsp + dFA + dTx + dmtp (1)

FIGURE 1. Downlink network deployments with eMBB and uRLLC
coexisting scenarios.
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where dQ denotes the queuing delay, which is the time that
the packet waits in the buffer queue to be transmitted. dQ will
increase with traffic load conditions. When the packet arrives
and the resources are ready to be scheduled, the system must
wait to the beginning of the next TTI to transmit the packet.
This part of the delay is defined as the frame alignment delay,
denoted by dFA. dFA is distributed between 0 and the TTI
size [16]. dTx represents the transmission delay, which is the
number of TTIs spent to transmit the packet. It depends on
the channel conditions, packet sizes and available resources,
etc. The dbsp and dmtp represent the processing delay of the
BS and mobile terminal respectively, which depends on the
processing capability of the device itself. In the LTE system,
the downlink processing delay is about fewmilliseconds [17].
With the development of technologies, these two parts of the
delay will be much smaller in 5G [1], which will be ignored
in this work.

B. 5G NR AND NUMEROLOGY
3GPP standardizes the 5G NR technology. During the
study of NR technology, many proposals on physical and
higher layer protocols, radio frequency related issues were
investigated [5]. Feasibility and capability of these new
technologies have been proven. The NR access technol-
ogy has a flexible Orthogonal Frequency Division Multi-
plexing (OFDM) framework, flexible and wide range of
bandwidths, multiple deployment options, greater spec-
trum utilization, and multiple numerologies within one
carrier [18].

To maintain the backward compatibility with LTE,
the length of one frame is 10 ms, including 10 subframes.
The number of slots in each subframe is decided by the
numerology configuration µ, where a slot is composed
of 14 OFDM symbols. Therefore, the OFDM symbol length
(without Cyclic Prefix) is 1 (= 14 × 2µ) ms. Different
NR numerology parameters determine different sizes of the
Resource Block (RB). Multiple OFDM numerologies are
supported by 3GPP as Table 1, where µ and the cyclic
prefix for a bandwidth part are given by the higher-layer
parameters [5].

In the LTE and previous mobile networks infrastructure
design, the TTI is almost a fixed value as 1ms, which means
µ = 0. With the increase of µ, the bandwidth becomes larger
and the TTI becomes shorter. TTI is equal to the length of a
slot in numerical value. Without loss of generality, we choose

TABLE 1. Numerologies in 5G NR.

FIGURE 2. Different RB structure with different TTI.

the common value of µ, which equals to 0,1,2,3, and it
is typical to analyze the performances [9], [11]. The RB is
defined as the minimum granularity of resource allocation,
consisting of one slot in the time domain and 12 subcarriers in
the frequency domain. Because of the different sizes of slots
and subcarriers shown in Table 1, the structure of RB varies
with the TTI. The parameters of TTI length and the frequency
domain size are closely related and jointly determine the
structure of the RB.We use the parameters of TTI to represent
these differences, and the changes and impacts of frequency
domain are also fully considered.

In Fig.2, the smallest grid in the time axis represents
0.125ms, and the frequency axis represents 180kHz per grid.
Each grid can only be assigned to one user. Fig.2 shows the
comparison of RB in four cases. RB #1 - RB #4 represent
RB with 0.125ms, 0.25ms, 0.5ms, 1ms TTI respectively, and
different RB structures are distinguished by different colors.

Fig.3 is a simple illustration of resource allocation with
flexible TTI selection. We use the same color as Fig.2 to
denote the corresponding RB structure and TTI size. The
entire area in Fig.3 represents all available resources. When a
service arrives, the TTI is selected according to some charac-
teristics of the channel and BSs at that time. Services with dif-
ferent TTIs share resources such as frequency bands, power
in the channel. Just like tiling, different services use existing
resources as efficiently as possible. At each opportunity of

FIGURE 3. An illustration of resource allocation with flexible TTI
selection.

VOLUME 7, 2019 65813



J. Zhang et al.: ML-Based Flexible TTI Scheduling for eMBB and uRLLC Coexistence Scenario

scheduling, each service can be assigned certain number of
tiles, which providing a high degree of flexibility in band-
width and TTI length. Due to the size of services and TTIs,
there may be a small portion of remaining resources. Cor-
responding scheduling algorithms applying flexible TTI are
considered to reduce resource surplus and optimize resource
utilization.

IV. SELF-ADAPTIVE FLEXIBLE TTI SCHEDULING
The flexible frame structure and variable TTI sizes provide
the possibility for flexible scheduling. In this paper, we pro-
pose the SAFE-TS method to satisfy the requirements of dif-
ferent services and improve the system performances. In the
scheduling process, the choice of TTI is the most important
issue. The system is flexibly scheduled based on the TTI
of each service. The choosing of TTI length involves many
influence factors, and it is difficult to be quantified as a
formula expression. It is not suitable to apply conventional
optimization methods to solve this problem. Hence, we apply
theMLmethods based on large dataset to research the flexible
TTI scheduling instead of complex theoretical methods.

A. CLASSIFICATION FEATURES FOR ML METHODS
There are many factors that influence the choice of TTI, and
none of them have a simple threshold to make judgment and
decision. We consider the obvious features and use ML to
solve this problem.

1) FEATURE 1: RATIO OF EMBB AND URLLC SERVICES
The ratio is defined as the current proportion of RBs occupied
by the two types of services in the selected BS when the
service arrives. As aforementioned, because of the higher
priority of uRLLC services, the ratio of the two types of
services should also be considered. When the traffic load
conditions of the BSs are similar, especially when there are
no available resources, the uRLLC services can occupy the
eMBB resources to satisfy strict requirements. For uRLLC
services, this ratio reflects the busyness degree of BSs. Hence,
it is feasible to use the proportion of the two types of services
as a feature.

2) FEATURE 2: TRAFFIC LOAD
When a service arrives at the BS, the size of different TTIs
affects the delay of the service. When the traffic load is light,
it is better to choose the shorter TTI. However, as the traffic
load increases, the delay will increase with the TTI. The main
cause of this phenomenon is the impact of queuing delay.
With the increase of traffic load, the advantages of small
TTI due to transmission delay and frame alignment delay
are already less than the impact of queuing delay [10]. The
influence of queuing delay is ascending, and it becomes the
most dominant factor in the five parts of the delay component
as shown in Formula (1). Larger TTI reduces the probability
of queuing by increasing spectral efficiency. Therefore, it is
feasible to take the traffic load as a feature that affects the TTI
selection.

3) FEATURE 3: CONTROL OVERHEAD
Short TTI reduces over-the-air transmission delay at the
expense of increased control signaling overhead, and reduces
the spectral efficiency. We use a flexible frame structure
of 5G NR, and the Control Channel (CCH) is included in
the resources allocated to the service. The CCH contains
scheduling grants and related information for decoding, etc.
Control Channel Element (CCE) is the resource granularity
of CCH, which consists of a certain number of 36 Resource
Elements (REs). According to 3GPP standards, Table 2 shows
the relationship between control overhead and Signal to Inter-
ference plus Noise Ratio (SINR) [19]. The value of SINR
is calculated based on relevant parameters in the simulation.
When the channel quality becomes poor, it is obvious that the
control signaling overhead will be larger. On each schedul-
ing opportunity, corresponding amount of resources must be
occupied to transmit control signaling.

TABLE 2. Control overhead.

4) FEATURE 4: PACKET MAGNITUDE
The impact of different packet sizes on delay performance
is taken into account in this work. With the increase of data
packets, the delay of that service is also increasing due to
the impact of transmission time [20]. In addition, due to the
increase of packet magnitude, the impact of control overhead
on delay is negligible. This also indirectly affects the delay
and the choice of TTI. On this basis, in order to fully explore
the influence factors, the packet size of the same service type
is also diverse.

B. DATA GENERATION AND COLLECTION
Due to the novelty of the scenario and the complexity of
the problem, there is no suitable public dataset available for
us to research. Lacking of appropriate and adequate dataset
is a bottleneck of applicating ML in communication net-
works. A promising solution is to obtain the dataset through
simulation [21]–[23]. We use system-level simulation to gen-
erate and collect data. Each set of data contains the four
eigenvalues mentioned above, along with the corresponding
TTI size. We collect data for the eMBB and uRLLC services
separately. The data is simulated over a long period of time
on a simulation platform close to the real situation, and meets
the relevant requirements in the 3GPP standards [24], [25].
These datasets can also be accessible to other peers and
provide reference for related researches. After the SAFE-TS
method applied, the actual datasets can be easily collected at
the BS side, which will have stronger accuracy and persua-
siveness than the simulation datasets.

The system model is described in section III, and specific
simulation parameters are given in Table 3. We consider a
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TABLE 3. Simulation parameters.

system including three sectors in each macro BS. There are
one pico cluster containing four pico BSs in each sector. Two
thirds of the UE are distributed in the pico BS area evenly. The
other UEs are in the macro BS coverage areas. The service
arrival processes follow the Poisson distribution [10], and the
SINR is calculated during the simulation process. Among the
common scheduling algorithms, we choose the First Come
First Served (FCFS) as the basic scheduling principle [9]. The
specific parameters are based on 3GPP TR 36.814 [24] and
TR 36.872 [25].

The arrival of eMBB and uRLLC services follow the
Poisson process, and the different conditions of traffic load
can be achieved by adjusting the service arrival interval.
After selecting the BS which the service is served, the four
eigenvalues can be determined. The ratio of the two services
can be statistically obtained. The traffic load can be measured
by the ratio of available resources. The control overhead is
determined by the SINR, which is calculated by simulation.
The packet size is randomly selected among the five sizes. For
eMBB services, features of each available BSs are considered
because of the multi-connectivity.

During the simulation, different scheduling conditions
based on each size of TTI are simulated and compared
separately when the four features are determined. The one
with the best performance is selected as the choice of the
service. That is, for the uRLLC services, the TTI length
which achieves the lowest service delay is implemented, and
for the eMBB services, the target is data rate. Each loop
is randomly focused on one service, the feature values and
TTI are recorded as a set of data, and two types of services
are recorded separately. Multiple sets of data constitute the
dataset.

C. RF-ETDA BASED TTI SELECTION
According to above analysis, the issue is a multi-class classi-
fication problem. The features are not independent absolutely
with each other and contain both continuous and discrete
variables. Therefore, we design the RF-ETDA and choose the
following three methods for comparison and analysis.

1) RANDOM FOREST BASED ENSEMBLE TTI DECISION
ALGORITHM
In order to achieve higher classification accuracy, we design
the RF-ETDA based on the k-Nearest Neighbor (kNN) and
the Random Forest (RF) methods. Ensemble learning accom-
plishes learning tasks by building and combining multiple
learners. Several weak classifiers are combined to obtain
a strong classifier with superior classification performance.
RF itself is an ensemble learning method that integrates mul-
tiple decision trees. RF can process high-dimensional data,
has strong anti-interference ability, and is suitable for solving
classification problems.

We train RF-ETDA models for eMBB and uRLLC ser-
vices respectively. The eMBB services mostly choose larger
TTI, on the contrary, uRLLC services prefer shorter TTI.
For uRLLC services, 0.25ms, 0.5ms and 1ms are small
categories, and for eMBB services, the categories except
1ms are small categories. The uneven distribution of dataset
categories affects the accuracy of algorithm classification.
Therefore, we optimize the RF algorithm and combine the
kNN method to implement classification.

The specific algorithm procedure is shown in Algorithm 1.
When the number of samples in each category is similar,
we define that the dataset is balanced. The RF uses boot-
strap to extract multiple samples from the original dataset
to form multiple new sub-datasets. Each sub-dataset selects
certain appropriate features, and uses the weak classifier
decision tree to train the samples. Multiple classifiers vote to
determine the output. The RF-ETDA algorithm is more suit-
able for network requirements and has better classification
performance.

Algorithm 1 RF-ETDA Procedure
Input: Training set: D = (x1, y1), (x2, y2), . . . , (xm, ym)

Number of trees: T

1: for each sample (xi, yi) belongs to small category

2: Select a sample (x̂i, ŷi) from the k-nearest
neighbors of (xi, yi) in the category randomly

3: Generate a new sample (xnew, ynew) :
xnew = xi + (x̂i − xi)× δi, ynew = yi
random number δi ∈ [0, 1].

4: Add the new sample to the original dataset.

5: until the dataset is balanced.

6: for t = 1, 2,. . . ,T

7: Take samples randomly from D, and form new
sub-datasets Dt containing k samples.

8: Select certain eigenvalues, and train the
decision tree model Gt based on Dt .

9: end for
10: Vote for the T weak classifiers.
Output: The final result is the category with the most
votes.
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2) COMPARISON METHODS
a: NEURAL NETWORK (NN)
The NN classification uses a feed-forward neural network,
which consists of an input layer, an output layer, and several
hidden layers. The input features are weighted and passed to
the hidden layer by the input layer neurons, and are sorted by
the output layer through a series of calculations. Backpropa-
gation algorithm is applied to determine the weight between
neurons. After several times attempts and adjustments to the
parameters, a compromise between complexity and accuracy
is achieved.

b: SUPPORT VECTOR MACHINES (SVM)
The SVM classifier was originally only applied to the binary
classification. In order to meet the requirements of our prob-
lem, multiple SVM classifiers are hierarchically constructed
with multi-class classifiers. The classification principle of
SVM is to find the best boundary, which makes the classifica-
tion result more accurate. Multi-dimensional transformation
of data is achieved by nonlinear mapping to make the optimal
boundary a hyperplane [26]. SVM classifier has a strong
ability of generalization, but the disadvantage is that when
the dataset has a large scale, the time cost is relatively high.

c: RANDOM FOREST (RF)
In order to better compare the performance of the proposed
RF-ETDA, we also chose the Random Forest for comparison.

D. SCHEDULING WITH SAFE-TS
After applying the ML method for TTI selection, we propose
the downlink SAFE-TS algorithm. For each RB, we judge
whether the service is completed in each different scheduling
period. The loop is accomplished every 0.125ms, but related
processes are performed only when the RB cycle is com-
pleted, such as updating the queue and releasing resources.

When the new service arrives, the network first selects the
BSs to access according to the maximum Reference Signal
Receiving Power (RSRP) criterion. For the eMBB services,
we take multi-connectivity into account, that is, several BSs
with larger RSRP are taken as alternatives. After judging the
service type, the size of TTI are decided byRF-ETDA accord-
ing to the channel and BS conditions. If the service type is
uRLLC, when the BS available resources cannot meet the
service requirements, it can occupy the resources of eMBB
services in the same BS. It is important to record the TTI
size corresponding to each RB, which is the basis for flexible
TTI scheduling. We choose FCFS as the basic scheduling
principle, and the uRLLC services have higher priority. The
specific scheduling algorithm is shown in Algorithm 2.

V. PERFORMANCE EVALUATION
A. COMPARISON OF ML METHODS
We performed simulation analyses on the ML methods men-
tioned above. The datasets of the eMBB and uRLLC services
are composed of 10000 sets of data respectively. We use

Algorithm 2 Downlink SAFE-TS Procedure

1: for each 0.125ms

2: for each RB

3: if the period of RB is accomplished

4: Determine whether the service is

completed, record data, update queues of

RB, and release resources

5: end if
6: end for
7: end for
8: for each service arrival

9: Select the BSs according to the max-RSRP criterion
10: Select TTI using ML based on channel and BS

conditions
11: if it is uRLLC service
12: if the idle resources of the BS can satisfy the

requirements of the service
13: Occupy the idle resources of the BS
14: else if the resources of eMBB in the BS can

satisfy the requirements of the service
15: Occupy the resources of eMBB in the

same BS
16: else the service enters the queue
17: end if
18: else it is eMBB service
19: if the idle resources of alternative BSs can

satisfy the requirements of the service
20: Occupy the resources of one or

more alternative BSs
21: else the service enters the queue
22: end if
23: end if
24: Record the TTI corresponding to each RB
25: end for

TABLE 4. Accuracy of different ML methods.

supervised learning, and randomly select 80% of the data in
the dataset as the training set and the others as the test set.
To reduce the impact of randomness, we repeat this process
20 times and take the average of the results. We train the
learning model with the training set and evaluate with the test
set.When the characteristic values of the test data is input, and
the output classification result is consistent with the known
result, the classification is correct. The classification accuracy
is defined as the ratio of the number of correct classifications
to the total number of test set. After adjusting some parame-
ters, the classification accuracy is shown in Table 4.
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As shown in Table 4, for the uRLLC services, the proposed
RF-ETDA method has the highest classification accuracy,
and it improves performance compared to other methods. The
SVM method has lowest classification accuracy.

For the eMBB services, the classification performances
of four methods are very close. By observing the dataset,
we find that only a very small part of the eMBB services
do not select the TTI of 1 ms, and the proportion of this
part is about 1%. This is also the reason why the classifi-
cation accuracy of four methods is about 99%. The dataset
shows that 1ms TTI is more suitable for eMBB services.
The classification accuracy of our proposed RF-ETDA does
not improved obviously. For uRLLC services with distinct
classification features, a balanced dataset can improve the
performance of classifier. Since the eMBB services do not
have typical classification features, this process does not lead
to an increase in classifier performance.

We also analyze the reasons for choosing the fixed-length
TTI of 1ms for eMBB services. Due to the eMBB services
aim at high data rate, while the advantages of short TTI
are mainly reflected in the delay. The frequent scheduling
caused by short TTI does not significantly contribute to the
improvement of data rate. Different with uRLLC, eMBB has
larger packet sizes, and transmission time of service is longer.
Larger packet sizemeans that eMBB services are not sensitive
to the impact of control overhead. Besides that, due to the
multi-connectivity, they have alternative BSs to choose from,
the influence of traffic load is relatively small. Since the
eigenvalue has little effect on the data rate, the eMBB services
do not have typical classification features. This conclusion
will also be further proved in the simulation of Section V-B.

Therefore, in the following work, we apply the proposed
RF-ETDA for uRLLC services to select TTI size, while
eMBB services adopt fixed-length TTI of 1ms.

B. SCHEDULING WITH SAFE-TS
After comparing the performance of ML, we simulate the
proposed SAFE-TS to demonstrate the advantages of pro-
posed strategy. The settings of the simulation environment are
consistent with the dataset generation process.

We first analyze the relevant performances of uRLLC ser-
vices. When the uRLLC service arrives at the BS, the TTI
will be determined based on the model trained by the RF-
ETDA. Different from the scheduling in LTE, since each ser-
vice has different TTIs and the basic granularity of resource
allocation is RB, there may be different scheduling slots in
one BS. We use different slots for each RB to perform queue
processing and resource scheduling respectively. Different
conditions of traffic load have an impact on the choice of TTI.
Figures 4−6 is a comparison of the uRLLC services delay
in different traffic load conditions. We achieve different load
conditions bymodulating the service arrival interval, and take
a portion of the picture in the range of 0−2ms.
From any of the figures we can conclude that as the

TTI size increases, the delay tends to increase substan-
tially, which demonstrates the benefits of small TTI for

FIGURE 4. The delay of uRLLC services in light traffic load condition.

FIGURE 5. The delay of uRLLC services in medium traffic load condition.

FIGURE 6. The delay of uRLLC services in heavy traffic load condition.

uRLLC services. In most cases, 0.125ms has better delay
performance. However, there are some cases that the delay
of 0.125ms is significantly increased. This change is espe-
cially noticeable under heavy traffic load condition. As the
traffic load increases, the ratio of 0.125ms fixed-length TTI
scheduling delay exceeds 1ms increases, and the proportion
varies from 3% to 8% and then to 12%. In the case of
large traffic load, certain proportion delay of 0.125ms even
exceeds 2ms, which can be concluded that a small TTI is
an unfavorable choice in that case. Our proposed SAFE-TS
selects the suitable TTI under different circumstances.
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TABLE 5. Delay performance gain of SAFE-TS compared with fixed-length
TTI scheduling methods.

FIGURE 7. Control overhead impact on TTI selection.

Comparing the three graphs, we can notice that the SAFE-TS
has the best delay performance in any case. The delay per-
formance gain of SAFE-TS compared with fixed-length TTI
scheduling methods are shown in Table 5. From Table 5,
we can calculate that the delay performance of SAFE-TS is
increased by 45.64% on average.

Fig.7 shows the impact of control overhead on TTI selec-
tion. Through the statistics of the dataset, the figure compares
the different selection ratios of the four TTIs in proposed
SAFE-TS when the RE size is different. We performed this
set of simulations under medium traffic load conditions. The
ratio of 0.125ms decreases from 90% at 36 REs to 30% at
288 REs. Meanwhile, the proportion of larger TTIs increases,
especially in 0.5ms. When the control overhead is 288 REs,
the advantage of 0.5ms is obvious.

As the control overhead increases due to different SINR
conditions, the proportion of larger TTIs is increases. This
is because on each scheduling opportunity, corresponding
resources should be allocated to transmit control signal-
ing. Frequent scheduling caused by short TTI leads to
large control overhead and low spectral efficiency. However,
the increase trend of 1ms TTI is not obvious, which is because
the control overhead advantage brought by TTI size is not
enough to balance the influence of frame alignment delay and
transmission delay.

Table 6 compares the probability of packet loss occurring
under different traffic load conditions and different schedul-
ing methods. The uRLLC services have strict requirements
of delay and reliability. We define that packet loss occurs
when the delay of uRLLC services exceed 1ms. The PLR is
an important indicator to measure the reliability of uRLLC
services. When the traffic load situation is determined,

TABLE 6. The PLR of uRLLC services.

TABLE 7. PLR performance gain of SAFE-TS compared with fixed-length
TTI scheduling methods.

the SAFE-TS has the lowest PLR. As the traffic load
increases, the PLR of short TTI increases, while that of large
TTI decreases. The performance advantages of large TTI
begin to manifest. When the TTI is 1ms, the value of PLR
is about 40%, because of the frame alignment delay. In the
simulation, frame alignment delay is a random value between
0 and TTI size. The impact of this part leads to a high prob-
ability of the total delay exceeds 1ms. Table 6 demonstrates
the impact of traffic load on TTI selection again and testifies
the flexibility of our proposed scheduling method.

The PLR performance gain of SAFE-TS compared with
fixed-length TTI scheduling methods are shown in Table 7.
In all cases, SAFE-TS has apparent PLR performance advan-
tage. Compared with 0.125ms fixed-length TTI scheduling,
the gain of flexible scheduling increases as the traffic load
increases. The variation trend is reversed in 0.5ms scheduling.
In the case of light traffic load, most of the services in the
flexible scheduling select a shorter TTI, and the SAFE-TS
has less performance gain than the shorter fixed-length TTI
scheduling. As the load increases, the advantage of larger
TTI becomes more obvious. This is consistent with the afore-
mentioned analysis. The SAFE-TS has obvious gain than
1ms scheduling because the 1ms TTI brings large delay to
the uRLLC services, which leads to poor PLR performance.
By calculating the data in Table 7, the PLR performance of
proposed SAFE-TS is increased by 59.17% on average.

As shown in Table 8, we compare the TTI selection ratio
of our proposed SAFE-TS method under different traffic load
conditions. The 0.125ms is the choice of most services under
light traffic load conditions. The reasons why other services
do not select short TTI are the influence of control overhead
and packet size.With the traffic load increases, the proportion
of short TTIs gradually decreases, and the advantages of large
TTIs become apparent. However, under different traffic load
conditions, short TTI is always favored. This is consistent
with the previous analysis.

In the SAFE-TS, the eMBB services use a fixed length TTI
as mentioned before. As shown in Fig.8, larger TTI schedul-
ing has larger data rates. In order to make multiple services
better coordinate resources, we limit the data rate in the range
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TABLE 8. TTI selection ratios of uRLLC services in SAFE-TS.

FIGURE 8. Data rates of eMBB services.

of 0−4000Mbit/s, which makes it possible to support eMBB
services such as VR. Since eMBB services have large packet
sizes, the transmission time is relatively long. Because it
is not sensitive to delay, frequent scheduling will not bring
performance advantages, but will lead to greater overhead.
According to the conclusion of Fig.8, it is not necessary for
eMBB services to adopt flexible TTI scheduling, but to adopt
the 1ms fixed-length TTI.

VI. CONCLUSION
In this paper, we propose the SAFE-TS strategy in eMBB
and uRLLC coexistence scenario to meet the service require-
ments. Appropriate eigenvalues are chosen and the RF-ETDA
is designed to implement the TTI selection for each service.
RF-EDTA has better performance than existing ML algo-
rithms. The resource scheduling and allocation are performed
according to the different TTIs of services. The simulation
results show that the proposed SAFE-TS has obvious advan-
tages compared with the fixed-length TTI. The delay per-
formance of the uRLLC services improves by 45.64% on
average, and the PLR performance improves by 59.17% on
average. The eMBB services do not have typical classifica-
tion characteristics, and prefer the largest TTI. Since there are
no suitable datasets available for reference, we simulated the
relevant scene to collect data. Our datasets will be accessible
to other peers and provide reference for related researches.
In future applications, the dataset will be easily collected
on the BS side, and the ML method will become more
convincing.
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