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ABSTRACT One main challenge in tunnel constructions is to predict the tunnel geological conditions
without excavation to ensure safety during the construction process. This paper proposes a data-driven frame-
work for real-time interpreting the operating data of tunnel boring machines (TBMs) without interrupting
tunneling operations, and eventually automate the tunneling operation. In this framework, we first convert
the indexes of the original data from discontinuous operating time to continuous operating displacement.
After screening outliers, to more exhaustively explore the inherent characteristics of the TBM operating data,
we then augment features by using the first-order and the second-order difference information. There are two
main concerns for developing a desired geological-type predictor: 1) since multiple geological types could
coexist in one tunnel section, the predictor should have multiple outputs and 2) since the geological types are
specified by the values of 7 kinds of physical-mechanical indexes of geological types, this geological charac-
teristic should also be encoded into the predictor’s structure. Therefore, we design a feed-forward multiple-
output artificial neural network (ANN)with two hidden layers as the predictor, where the second hidden layer
has 7 nodes that correspond to 7 kinds of physical-mechanical indexes. The experimental results show that:
1) the feature augmentation (FA) method indeed improves the prediction performance; 2) the ANN predictor
has the best performance on the test set when the second hidden layer has 7 nodes; 3) the proposed ANN
predictor outperforms many widely-used learning models, e.g., XGboost, random forest (RF), and support
vector regression (SVR); and 4) the predictor is capable of accurately predicting the geological types of
stratum.

INDEX TERMS Tunnel boring machines, geological-type prediction, operating parameter, neural network,
physical-mechanical indexes.

I. INTRODUCTION
In the past decades, a large number of tunnels have been con-
structed and are currently under construction to create short
cuts for transportation and public traffic. To date, the conven-
tional tunneling technique, i.e. drilling and blasting, is still
widely used and continuously improved. In general, it is a
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mature, reliable and well-built tunneling approach. However,
its shortcomings are prominent. For example, the tunnel con-
tour is quite rough due to the blasting and therefore additional
efforts are needed to polish the tunnel profile; its efficiency is
quite low. By contrast, mechanical tunneling normally utiliz-
ing tunnel boring machines (TBM) has a significant higher
efficiency and is capable of continuously tunneling under
various ground environments. Furthermore, tunneling using
TBM has been considered to be the safest approach regarding
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FIGURE 1. Collection of TBM operating data and geological information.

security in the workplace [1]. As a consequence, TBM has
been increasingly used in various geological environments,
such as urban environments, in close proximity to other
tunnels and foundations, and in more complex geologies,
e.g. mixed face conditions and karstic rock.
However, under these complex geological conditions,

the excavation process incurs very high risk because
of an unanticipated presence of water leakage, weak
regions or voids, break outs of the tunnel wall, collapse of the
working front or blocking of the cutting wheel. A significant
limitation of the current TBM tunneling technique is the
inability to accurately and efficiently foresee these unex-
pected changes [2]. An encounter with unforeseen ground
conditions during tunneling process seriously delays the
construction schedule and induces large extra costs, causes
instrument damages, introduces additional hazards or even
tremendous casualties. For instance, 19 times of water inrush
hazards occurred during the construction of Maluqing Tun-
nel of Yiwan Railway in China, which disastrously causes
15 deaths [3]. Apparently, it is crucial to fully understand the
geological condition before tunneling to ensure the safety and
efficiency of the tunneling construction.

The geological conditions are always unknown before tun-
neling. To understand the geological condition, a number of
approaches have been developed, including hard methods
and soft methods [4]. Hard methods, such as subsurface
boring, pilot drilling, and utilizing in-site equipment to obtain
geological information in a few specific locations along the
tunnel alignment. Soft methods build predictionmodels using
such as the Markov process approach [4], real-time Bayesian
approach [5], statistical approach [6], artificial neural net-
work [7], ground penetrating radar [8] for ahead forecast-
ing the geological conditions to complement hard methods.

On the other hand, TBM itself has also integrated a number
of different kinds of sensors into the cutting wheel to real-
time collect data associated with the geological information
of the tunnel face. TBM operating data recode the continuous
geological information of the entire construction tunnel and
contain a quantity of features that are strongly associated
with the geological situation of tunnel sections [9]. However,
currently the interpretation of these real-time data entirely
relies on the experience of the operators. This old-fashion
human-machine interaction is not only very inefficient but
also not reliable. Different operators maymake quite different
judgements based on the same dataset. This imperceptibly
increases the risk during the excavation process. Therefore,
it is promising to conduct the tunnel geological-type predic-
tion by exploring themathematical relation between the TBM
operating data and the geological types. However, to the best
of our knowledge, there are limited works on the geological-
type prediction based on TBM operating data to automate the
interpretation of the data. Inspired by the self-driving concept,
this paper aims to build an intelligent model of real-time
interpreting the operating data of TBM without interrupting
tunneling operations, and eventually automate the tunneling
operation, as demonstrated in Fig. 1.

The data-driven technique provides an effectiveway to deal
with the geological-type prediction: instead of directly detect-
ing the geological situation of the tunnel sections, one only
needs to explore the relationship between the geological types
and the observable data. In this manner, the geological-type
prediction will be implemented as a classification or regres-
sion learning task without being restricted by the aforemen-
tioned limitations. In the earlier work [10], Mooney et al.
recorded the TBM vibration frequency from the sensors set
on TBM’s bulkhead as a source of information to examine the
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changes of geological conditions, while their examination is
based on the empirical observation on the data graphs rather
than the mathematical relation between the vibration fre-
quency and the geological condition. Recently, Shi et al. [11]
and Zhang et al. [12] used TBMs’ operating data to build the
machine-learning models for classifying the geological types
appearing in the TBM construction tunnels. However, their
models are unsuitable to (at least cannot be directly used for)
predicting the thickness of the geological types.

In this paper, we propose a data-driven framework for
predicting the geological-type thickness based on TBM oper-
ating data, which are collected from the sensors set on a TBM
in an urban subway construction project and the geological-
type samples are obtained by drilling method at some discrete
locations of the subway construction line. This framework
mainly concerns with the following issues: 1) the raw TBM
operating data are indexed by the discontinuous operating
time because the construction will be intermitted in some
cases, e.g., equipment maintenance or rest; 2) there could be
some outliers because of the complex construction environ-
ment; 3) in contrast with the whole operating data, the size of
data labeled by the geological types is relatively small; and
4) because of complex geological conditions, several geolog-
ical types usually coexist in one tunnel section. Without loss
of the generality, the framework contains three stages to deal
with these issues:

1) Data acquisition - We make the raw data actionable,
where the data indexed by discontinuous operating time
are converted to the data indexed by continuous oper-
ating displacement;

2) Data preprocessing - We use KNN-based method to
screen outliers. To explore the advanced features rel-
evant to geological information from the relatively few
labeled data and meanwhile to avoid the redundant
information, we augment features by applying their
first-order and the second-order difference informa-
tion and then use principle component analysis (PCA)
method to eliminate the redundancy.

3) ANN predictor - We select the feed-forward multiple-
output artificial neural network (ANN) as the
geological-type predictor. It has two hidden layers, and
especially the second hidden layer has 7 nodes, which
correspond to 7 physical-mechanical indexes respec-
tively. Moreover, each of its outputs corresponds to the
proportion of the specific geological type appearing in
the location of interest.

The experimental results show that 1) the proposed ANN
predictor outperforms many learning models including
XGBoost, CatBoost, random forests (RF), decision tree (DT),
support vector regression (SVR), K-nearest neighbors (KNN)
and Bayesian linear regression (BLR); and 2) the feature-
augmenting (FA) method improves the performance of the
geological-type prediction.

The rest of this paper is organized as follows. In Section II,
we introduce the data acquisition and the problem back-
ground. The stage of data reprocessing is arranged

in Section III. Section IV presents the ANN predictor for
geological types. In Section V, we show the experimental
results to support the validity of our framework and the last
section concludes the paper.

II. DATA ACQUISITION
In an urban subway construction project, the operating data
are collected by the sensors set on the earth pressure bal-
ance shield TBM, which consists of cutter-head, chamber,
screw conveyor, tail skin and auxiliaries. The tunnel is about
2000 meter long with diameter of 6.3 meter, and its longitu-
dinal geological profile is shown in Fig. 1. The engineering
route, located in alluvial and coastal plain, is divided into
1364 ring sections, each of which is 1.5 meter long. The
range of ground surface elevation is 0.2 ∼ 5.8 meter and
the depth of the tunnel floor from the ground surface is
within 11.8 ∼ 25.4 meter. The stratum can be divided into
five layers in terms of the geological types, and each layer
can further be divided into 2 ∼ 7 sub-layers according
to physical-mechanical indexes. In this tunnel construction,
there is likely to be 20 kinds of geological types, each of
which is specified by the values of 7 physical-mechanical
indexes (see Tab. 1). The 7 indexes include natural sever-
ity (Y), internal friction angle (quick direct shear test) (FI),
deformation modulus (EM), Poisson’s ratio (P), coefficient
of lateral pressure (SITA), permeability coefficient (K), and
cohesive strength between rock mass and anchors (FRB).1

A total of about 4.6 millions of operating data were
recorded, and each datum has 72 features including torque,
thrust, tunneling speed and fuel tank temperature. It is note-
worthy that the raw TBM operating data are indexed by
the discontinuous operation time because the construction
will be intermitted in some cases, e.g., equipment mainte-
nance or rest. To develop a continuous index system for the
operating data, we apply the velocity integral to locate the
position of each datum, and then the resulting positions form
a continuous index system for the operating data. For the
i-th ring section, denote s(i)(j) as TBM’s position at time t (i)j :

s(i)(j) =
∫ t (i)j

t (i)0

v(i)(t)dt, i = 1, · · · , 88, (1)

where v(i)(t) is the instantaneous velocity at time t in the
i-th ring section and t (i)0 is the initial time of the i-th ring
section.

The geological-type samples are drawn from 88 of the
1364 ring sections by the drilling method. Each drilling sam-
ple is 30 meter deep and runs through the tunnel section

1Besides the aforementioned 7 indexes, there are other rock-soil physical-
mechanical indexes, e.g., natural moisture content, pore ratio, cohesive force
(quick direct shear test), internal friction angle (consolidation quick direct
test), compression modulus, coefficient of subgrade reaction (vertical), coef-
ficient of subgrade reaction (horizontal), uniaxial compressive rock strength
(saturation) and uniaxial compressive rock strength (natural). However, since
these indexes are irrelevant to the TBM tunneling process, this paper does
not consider the relationship between these indexes and TBM operating
data.
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TABLE 1. Rock-soil physical-mechanical indexes of different geological types.

whose diameter is 6.3 meter (see Fig. 1). To exploit the
geological information exhaustively, we extract operating
data within 0.3 meter around the 88 drilling points. Namely,
in each of these ring sections, the data labeled by geo-
logical information lie in the interval of 0.6 meter length
centered at the drilling point. In this manner, we finally
get 66226 operating data labeled by geological-type infor-
mation. Since multiple geological types may coexist in the
tunnel sections, we record the geological types and their
thicknesses. As shown in Tab. 2(a), some geological types
do not appear or have a low number of existence in the
geological-type samples. Thus, we emerge the geological
types with similar physical-mechanical indexes to generate
6 kinds of geological labels (see Tab. 2(b)), and denote them
as

P =
{
2©∗, 4©∗, 7©2−1, 7©2−2, 9©∗,12©∗

}
.

We would like to design a predictor for the thickness
of each geological type in the tunnel section. Specifically,
denote ai,α as the thickness of the geological type α (α ∈ P)
in the i-th drilling sample (i = 1, 2, · · · , 88). Then, the rele-
vant thickness of the geological type Tα in the tunnel part of
the i-th drilling sample can be formulated as

yi,α =
ai,α∑
α∈P ai,α

=
ai,α
6.3

,

which is also the output form of the resulting predictor.

III. DATA PREPROCESSING
There are two main issues considered in the stage of
data preprocessing. First, due to complicated construction

TABLE 2. Geological types appearing in drilling samples. (a) The number
of times that each geological type appears in 88 drilling samples. (b) The
number of times that each geological type appears after being merged.

environments, the operating data could contain some outliers.
Second, since only 88 (out of 1364) ring sections have the
corresponding geological information, there is an imbalance
between the operating data labeled by geological types and
the unlabeled operating data. Thus, to achieve a good predic-
tor, it is crucial to explore the advanced features relevant to
geological information from the relatively few labeled data
and meanwhile to avoid the redundant information.

In this section, we use the K -nearest neighbors
(KNN)-based algorithm, proposed in [13], to detect outliers
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for TBM operating data. Then, we introduce a difference-
based method to obtain new features that are beneficial
to improving generalization performance of the resulting
predictor.

A. OUTLIER DETECTION
Because of complicated construction environments, the
TBM operating data usually contain a certain amount of out-
liers, which seriously influence the data quality. Therefore,
the outlier detection plays an essential role in preprocess-
ing TBM operating data. In general, the outlier-detection
methods can be divided into two categories: the statistics-
based methods (e.g. distribution [14] and density [15]) and
the distance-based methods (e.g. one-class support vector
machine (OCSVM) [16], support vector data description
(SVDD) [17] andK-nearest neighbor (KNN) [13], [18], [19]).
Since it is difficult to explore the distribution of TBM operat-
ing data, we instead consider the distance-based methods for
outlier detection.

The support-vector methods (e.g. OCSVM and SVDD)
aim to find the support vectors from the data to form a
decision boundary for selecting outliers that are the data
points lie outside the decision boundary. Since there are a total
of about 4.6 millions of TBM operating data, the efficiency
of these methods will be affected by the large amount of
data as well as the selection of hyper-parameters. In con-
trast, the KNN-based outlier detection is processed based
on the density of the neighborhoods of the data points, and
thus its efficiency could not be significantly affected by the
amount of data. Peng and Huang [20] have showed that the
KNN-based outlier detection method can is suitable to detect-
ing the outliers from a large amount of data. Therefore,
we finally adopt the KNN-based method to detect the outliers
from the massive TBM operating data (see Algorithm 1).

Algorithm 1 KNN-Based Outlier Detection [18]

Input: sample set {xn}Nn=1 ⊂ RM , neighbor number k = 5
and percentage p% = 5%;

Output: list of outliers;
1: for all samples x1, · · · , xN ; do
2: find the k-nearest neighbor set Nρ(xn, k) of the sample

xn, that is, the set of k points belong to {xn}Nn=1 and are
nearest to xn w.r.t. the metric ρ;

3: compute the outlier score τ of xn for the neighbor
number k:

τ (xn, k) =

∑
y∈Nρ (xn,k) ρ(xn, y)

k
;

4: end for
5: sort the samples {xn}Nn=1 in increasing order of
{τ (xn, k)}Nn=1, and then select the last p% samples
as outliers.

6: return

It is noteworthy that the KNN-based algorithm is sensitive
to the choice of k: 1) if k is too small, one cannot obtain

enough neighbor information of sample points and the time
consuming is high; and 2) if k is too large, the outlier score
τ (xn, k) cannot exactly describe the outlier behavior of the
point xn because τ (xn, k) is the averaged distance between
xn and the points lying in its k-nearest neighbor. Therefore,
we empirically set the parameters k = 5.

B. FEATURE AUGMENTATION
Since only 88 (out of 1364) ring sections have the correspond-
ing geological information, there is an imbalance between the
operating data labeled by geological types and the unlabeled
operating data. Thus, to improve the performance of the pre-
dictor, it is crucial to explore the advanced features relevant to
geological information from the labeled data and meanwhile
to avoid the redundant information. It is noteworthy that many
features of the operating data have the specific physicalmean-
ings. Thus, with the help of the obtained continuous index
system S ⊂ R+, we introduce the feature augmentation (FA)
method to generate new features from the original operating
data.

Let d ∈ (0, 0.2] be the difference gap. The reason why the
upper bound of d is set to be 0.2 is because the labeled data in
each section ring lie in the 0.6-length interval and the second-
order difference is achieved by using three points with the
same gap. Given three data with the same gap (∀ s ∈ S − 2d)

xs =
(
x(1)s , · · · x(M )

s
)
;

xs+d =
(
x(1)s+d , · · · , x

(M )
s+d

)
;

xs+2d =
(
x(1)s+2d , · · · , x

(M )
s+2d

)
,

we then compute the first-order difference:

O1(xs) =
(
x(1)s+d − x

(1)
s , · · · , x(M )

s+d − x
(M )
s

)
,

and the second-order difference:

O2(xs)=
(
x(1)s+2d−2 x

(1)
s+d+x

(1)
s , · · · , x(M )

s+2d−2 x
(M )
s+d+x

(M )
s

)
.

Next, we augment the resulted features into the original
datum xs to generate a new datum:

x̂s :=
(
xs,O1(xs),O2(xs)

)
∈ R3M .

Since the size of feature-augmented datum x̂s is twice larger
than that of xs, there could be some redundancy information
in x̂s. We applied the principle component analysis (PCA)
method to reduce the dimension and meanwhile to elimi-
nate the correlation among the features of x̂s. In this paper,
we retain 95% variance information of the data set {̂xs}.

IV. ANN PREDICTORS FOR GEOLOGICAL TYPES
Artificial neural networks (ANNs) have been successfully
applied in many geological engineering problems [21]–[23].
Compared with other learning models, one main advantage
of ANN is the high flexibility of its structure, which can be
designed to meet specific requirements of real-world prob-
lems. The recent success of deep networks confirm the impor-
tance of designing hidden layers - the structure of hidden
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FIGURE 2. The structure of ANN predictor.

layers should be interpretable and encodes the inherent char-
acteristics of the problems [24].

To develop a desired predictor for geological types based
on TBM operating data, one needs to consider the following
issues: 1) although TBM operating status is strongly related
with the geological types appearing in the tunnel section,
the relationship between them is generally very complex
and cannot be directly formulated by using some common
functions; 2) since several geological types usually coexist
in one tunnel section, the resulting predictor should have
multiple outputs; and 3) as shown in Tab. 1, the geological
types are specified by 7 physical-mechanical indexes, and
thus the geological characteristics should be encoded into the
predictor’s structure.

Compared with other learning models (e.g. support vector
regression and random forest), the following advantages of
ANN make it more suitable to the geological-type prediction
task: 1) ANN has the powerful ability of non-linear map-
ping to implement complex regression or classification tasks;
2) it has a high flexibility to set multiple outputs with-
out significantly increasing the training difficulty; and
3) the structure of ANN can be designed to meet the specific
requirements of practical applications. Therefore, we apply
a feed-forward ANN to achieve the geological-type predic-
tor. The network has one input layer, two hidden layers
and one output layer, and every two adjacent layers are
fully-connected (see Fig. 2). Specifically, the first hidden
layer is used to extract the higher features from the inputs
and the second hidden layer provides a bridge between the
TBM operating information and the geological information.

Let σ : R → R be the active function and we set
it to be the rectified linear unit (ReLU) function that has
been widely used in the current ANN learning models
(see [25], [26]):

σ (x) = max{0, x}, x ∈ R.

The outputs of the first hidden layer, the second hidden layer
and the output layer are respectively computed as follows:

h(i)1 = σ
( M∑
m=1

u(im)x(m)
)
, i = 1, 2, · · · , I ; (2)

h(j)2 = σ
( I∑
i=1

v(ji)h(i)1
)
, j = 1, 2, · · · , J ; (3)

o(l) = σ
( J∑
j=1

w(lj)h(j)2
)
, l = 1, 2, · · · ,L, (4)

where u(im), v(ji) and w(lj) are the weights between the two
adjacent layers. Denote U =

(
u(im)

)
I×M , V =

(
v(ji)

)
J×I and

W =
(
w(lj)

)
L×J as the weight matrices.

Given a sample set {(xn, yn)}Mn=1 ⊂ RM
×RL , we adopt the

mean squared error (MSE) to measure the difference between
the predictor outputs o(l)n and the real outputs y(l)n :

E(U ,V ,W )=
1
2

N∑
n=1

L∑
l=1

(y(l)n − o
(l)
n )2 + λR(U ,V ,W ), (5)

where the coefficient λ > 0 and

R(U ,V ,W ) = ‖U‖2F + ‖V‖
2
F + ‖W‖

2
F .

is the regularization term for preventing the overfitting.
By minimizing the objective function (5), we then obtain
the appropriate weights U , V and W to achieve the
desired predictor. Following the back-propagation algorithm,
the weights are renewed in the (k + 1)th iteration as follows:
for any k = 1, 2, 3, · · · ,

u(im)k+1 = u(im)k +1u(im)k ;

v(ji)k+1 = v(ji)k +1v
(ji)
k ;

w(lj)
k+1 = w(lj)

k +1w
(lj)
k ,

where

1u(im)k = −η
( ∂E

∂u(im)k

+ 2λu(im)k

)
;

1v(ji)k = −η
( ∂E
∂v(ji)k

+ 2λv(ji)k
)
;

1w(lj)
k = −η

( ∂E

∂w(lj)
k

+ 2λw(lj)
k

)
.

V. NUMERICAL EXPERIMENTS
In this section, we present the experimental results to support
the validity of the proposed framework. The experiments are
conducted to verify the following issues: (i)

1) The performance of the geological-type predictor, i.e.,
whether the ANN model outperforms other learning
models for the geological-type prediction task.

2) The node number of the second hidden layer, i.e.,
whether the nodes should correspond to the 7 kinds
of physical-mechanical indexes specifying geological
types;
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FIGURE 3. Boxplots of different models on FA (dw = 0.15) and Non-FA (dw/o = 0.15) samples. (a) Boxplot on FA samples
(dw = 0.15). (b) Boxplot on Non-FA samples (dw/o = 0.15).

TABLE 3. Averaged MSE of different models for geological-type prediction.

3) The effectiveness of the feature augmentation (FA),
i.e., whether the FA method can improve the predictor
performance;

We use Keras (ver. 2.1.4) to process all experiments in a
computer with Intel®i7-6700K CPU at 4.0GHz×8, 64GB
RAM and two Nvidia®GTX-1080 graphic cards. We split
the samples into two parts: 70% of them are treated as the
training set and the remaining 30% are used as the test
set. For the ANN model of interest (cf. Fig. 2), the node
number of the first hidden layer is set to be 20 according to
the empirical observation of the experiments, and the node
number of the second hidden layer is selected from 2 to 20,

respectively. As a comparison, we also consider other learn-
ing models for the prediction task including XGBoost [27],
CatBoost [28], random forest (RF), decision tree (DT), sup-
port vector regression (SVR), K-Nearest Neighbor (KNN)
[29], [30] and Bayesian linear regression (BLR) [31].
To examine the validity of the FA method, we imple-
ment these models by using the FA samples and the non-
FA samples respectively. Specifically, the FA samples are
taken from TBM operating data w.r.t. the difference gap
dw ∈ {0.05, 0.1, 0.15}. To make the experimental results
comparable, the non-FA samples are also taken w.r.t. the
same the difference gap dw/o ∈ {0.05, 0.1, 0.15}. In the
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FIGURE 4. MSE curves of ANN predictors with different numbers of nodes in the second hidden layer. (a) Node = 2.
(b) Node = 3. (c) Node = 4. (d) Node = 5. (e) Node = 6. (f) Node = 7. (g) Node = 8. (h) Node = 9. (i) Node = 10.
(j) Node = 11. (k) Node = 12. (l) Node = 13. (m) Node = 14. (n) Node = 15. (o) Node = 16.
(p) Node = 17. (q) Node = 18. (r) Node = 19. (s) Node = 20.
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back-propagation algorithm, the learning rate η is 0.01;
the batch size is 10; and the maximum number of itera-
tions is 500. The parameters of XGBoost and CatBoost are
obtained by the grid-search method and the parameters of the
other models are selected based on the empirical observation
of the experiments.

In Fig. 4, we first show the mean square error (MSE)
curves of ANN predictors with different numbers of nodes
in the second hidden layer on FA samples and non-FA sam-
ples, respectively. We observe that when the node number of
the second hidden layer is suitably chosen, the geological-
type predictor performs well on the test set. Moreover, the
FA method improves the performance of the predictor, and
the performance of difference gap d = 0.15 is supe-
rior to other values of d in most cases. Interestingly, the
ANN predictor has the best performance when its second
hidden layer has 7 nodes. Recall that the geological types
are specified by the values of 7 kinds of physical-mechanical
indexes, which suggests that the structure of the second hid-
den layer should correspond to these physical-mechanical
indexes, i.e., the node number should be 7 accordingly.

To further verify this finding, we use several state-of-
art regression models to implement the geological-type pre-
diction task including XGBoost, CatBoost, random forests
(RF), decision tree (DT), support vector regression (SVR),
K-nearest neighbor (KNN) and Bayesian linear regression
(BLR). For each kind of experimental setting, we repeat
30 simulations on FA samples and non-FA samples respec-
tively, and the experimental results are recorded in Tab. 3
as well. Compared with the other models, the ANN with
7 nodes in the second hidden layer (denoted as ANN-7)
has the smallest averaged MSE regardless of the FA sam-
ples or the non-FA samples.

Based on the 30 repeated experimental results of these
models, we then draw the boxplots to examine the stabil-
ity of these models in the geological-type prediction task
(cf. Fig. 3). We find that the introduction of FA method
improves the stability of these models on the geological-type
prediction task and ANN-7 has the smallest averaged MSE
among these models. Note that CatBoost has a high stability
in spite of a higher MSE than that of ANN-7.

To sum up, the experimental results support the validity of
the framework in the following aspects: 1) the FA method
improves the performance of the predictors in most cases;
and 2) when the second hidden layer has 7 nodes, the ANN
predictor has the best performance on the test set; and 3) the
ANN model outperforms the other learning models for the
geological-type prediction task.

VI. CONCLUSION
In this paper, we propose a framework to build a predic-
tor for geological types based on TBM operating data. The
framework contains three stages: data acquisition, data pre-
processing and learningmodels. In particular, we first convert
the indexes of the original data from discontinuous operating
time to continuous operating displacement. After screening

outliers, to more exhaustively explore the inherent character-
istics of TBM operating data, we then augment features by
using the first-order and the second-order difference informa-
tion. To select a suitable predictor for geological types, there
are two main concerns:

1) since multiple geological types could coexist in one
tunnel section, the predictor should have multiple out-
puts;

2) since the geological types are specified by the values of
7 kinds of physical-mechanical indicators of geological
types, the structure of the predictor should encode these
geological characteristics.

Therefore, we adopt a feed-forward multiple-output ANN
with two hidden layers to build the predictor, where the sec-
ond hidden layer has 7 nodes to correspond 7 kinds of
physical-mechanical indicators. The experimental results
support the validity of the framework. In addition, we also
verify that: 1) the FA method indeed improves the perfor-
mance of the predictors in most cases; 2) when the second
hidden layer has 7 nodes, the predictor has the best perfor-
mance on the test set; and 3) the proposed ANN predictor out-
performs other well-known learning models (e.g. XGBoost,
CatBoost, random forest and SVR) for the geological-type
prediction task.

In the future works, we will improve the geological-type
data quality by using other data-acquisition methods instead
of the drilling method. Then, some soft methods (e.g., the
Markov process approach [4] and the real-time Bayesian
approach [5]) will be considered to handle the geological-
type prediction task. In addition, we will also consider the
specific outlier detection methods for the TBM operating
data.
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