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ABSTRACT Taking both convergence and diversity into consideration, this paper proposes a two-archive an
evolutionary algorithm based on multi-search strategy (TwoArchM) to cope with many-objective optimiza-
tion problems. The basic idea is to use two separate archives to balance the convergence and diversity and
use a multi-search strategy to improve convergence and diversity. To be specific, two updated strategies are
adopted to maintain diversity and improve the convergence, respectively; a multi-search strategy is utilized to
balance exploration and exploitation. A search strategy selects convergent solutions from offspring and two
archives as parents to enhance the convergence; the goal of another search strategy is to balance exploration
and exploitation. The TwoArchM is compared experimentally with several state-of-the-art algorithms on the
CEC2018 many-objective benchmark functions with up to 15 objectives and the experimental results verify
the competitiveness and effectiveness of the proposed algorithm.

INDEX TERMS Many-objective optimization, two archives, multi-search strategy, evolutionary algorithm.

I. INTRODUCTION

Multi-objective optimization problems (MOPs) are com-
plex and occur in many real-word applications. They
usually include two or three objectives which often are
inter-conflicting. A minimized MOP can be described as
follows [1]:

min F(x) = (fi(x), 2(0), -+, fn(x))

(D

S.t. xeQ2
where m = 2 or m = 3, Q is an n-dimensional decision
vector space (i.e., 2 & R"), x = (x,---,x,) € Qs

a n-dimensional decision variable. In MOPs, the quality of
the optimal solution is evaluated by the tradeoffs between
multiple conflicting objectives. For two solutions x,z € €,
if each fi(x) < fi(z) and ||F(x) — F(2)||, # 0, x dominates z
(or denoted x < 7). A solution vector x is a Pareto optimal
solution or non-dominated solution if there does not exist
another solution that dominates it. The set of Pareto optimal
solutions (PS) is constituted by all Pareto optimal solutions.

The associate editor coordinating the review of this manuscript and
approving it for publication was Geng-Ming Jiang.

The image set of all the Pareto-optimal solutions in the objec-
tive space is called Pareto optimal front (PF).

For MOPs, the multi-objective evolutionary algorithms
(MOEASs) [2]-[7] based on Pareto dominance have been the
state-of-the-art strategies for 2 or 3 objectives. The most
significant feature of MOEAs is that they all use population-
based search to drive individuals towards different sections
of the true PF simultaneously in a single run. In the real
word, may MOPs [8], [9] contain more than three objec-
tives, commonly referred to as many-objective optimization
problems (MaOPs) [10]. Unlike MOPs, MaOPs often need
more emphasis on the convergence ability of MOEAs [11].
Unfortunately, for MaOPs, many MOEAs which are based
on Pareto-dominance [2]-[7] may encounter severe loss of
selection pressure toward the true Pareto-optimal front,
because the number of non-dominated solutions increases
exponentially with the number of objectives in the early
evolution. How to effectively solve MaOPs has caused the
attention of many scholars and has become the hot topic.

Currently, a number of improvement strategies have
been developed well in many-objective evolutionary

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

79277

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0002-2144-1177

IEEE Access

C. Dai: TwoArchM for Many-Objective Optimization

algorithms (MaOEAs) to solve MaOPs [43] and these algo-
rithms can be divided into three categories. The first category
is that relaxed dominance-based approaches [12]-[14] aim
to increase the probability of one solution being dominated
by other solutions, and have been found to have good per-
formances for MaOPs. These modified Pareto dominance
designs relaxed the Pareto dominance relation to make
one solution dominate others easily in a high-dimensional
space. For these approaches, defining new relaxed dominance
relations and their relaxation extent for different problems
remains challenging.

The second approach is indicator-based evolutionary algo-
rithms which use quality indicators (such as hypervol-
ume [15]) to guide the search towards a PF. High search
ability of indicator-based algorithms has been demonstrated
in the literature [16]. The hypervolume estimation algorithm
(HypE [17]) and the indicator-based evolutionary algorithm
(IBEA [18]) are the two representatives in this category.
However, these algorithms have high computation
complexity [19].

Another approach for solving MaOPs is the decomposition
-based method which decomposes a MaOP into a set of tasks
and then solves them collaboratively, such as MOEA/D [7]
and its variants [20]-[26]. Apart from MOEA/D, some other
methods based on decomposition [27]-[29], [44]-[49] also
are proposed. However, these approaches are ineffective to
tackle highly irregular PFs.

Furthermore, combining existing studies may be a novel
avenue to solve MaOPs. As a representative, the two-archive
algorithm [30] first uses two independent archives to keep the
promising solutions. The convergence archive (CA) pursues
the solutions to PF according to the dominance relationship.
The diversity archive (DA) seeks solutions which local in
sparse areas. When the total size of two archives overflows,
the truncation is only operated on DA and crowding solutions
are deleted. However, the number of solutions in CA and
DA may increase significantly when tackling MaOPs. This
is because the number of non-dominated solutions increases
exponentially with the number of objectives in the early
evolution. The improved version of two-archive algorithm
(ITAA) [31] sets a threshold for the size of CA. Then, penalty-
based boundary intersection (PBI) function is used to assign
a fitness value for each solution in CA. The solutions with
smaller fitness values will be deleted from CA. The shift den-
sity estimation-based truncation is used to eliminate solutions
from DA when the total size still overflows. However, since
the size of DA is flexible, the final output of ITAA produces
inadequate diversity. To address this problem, two-archive
2 method (TwoArch2) [32] is proposed. The updated strategy
of IBEA [18] is used to update CA. When the population
overflows, DA iteratively selects boundary solutions which
are solutions with extreme objective values. Finally, DA is
output as the final output of TwoArch2. Cai and Qu [33]
use two updated strategies base on the aggregation-based
framework to update CA and DA. However, for MaOPs with
partial PFs whose projections do not fully cover the unit
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hyperplane, the size of DA may be smaller than the given
size, this is because some the weight vectors may have the
same optimal solution.

Convergence and diversity are two main but conflicting
goals. The key question of an effective MaOEA is how to
design a mechanism for balancing convergence and diver-
sity. Two-archive methods can well balance convergence and
diversity. We aim to improve the convergence of DA by
designing a multi-search strategy to produce good offspring.
The major contributions of this paper can be summarized as
follows.

1. The convergence and diversity is
separately.

2. A multi-search strategy is developed to balance explo-
ration and exploitation. The convergent offspring are
chosen to generate next offspring, which can improve
the convergence of DA.

3. InDA, anew diversity management scheme depends on
the product of two-norm and infinity-norm of two solu-
tions is developed. This method maintains the diversity
by making the distance and difference of any two solu-
tions are as big as possible.

maintained

The rest of this paper is organized as follows: Section 2 dis-
plays the proposed algorithm in detail; while experimental
results of the proposed algorithm and the related analysis are
given in Section 3; finally, Section 4 provides the conclusions
and proposes the future work.

Il. THE PROPOSED ALGORITHM

In this paper, an improvement two-archive evolutionary algo-
rithm based on multi-search strategy (TwoArchM) is devel-
oped to solve MaOPs. The major components of TwoArchM
are that two updated strategies for two-archive are used to
balance convergence and diversity, a multi-search strategy is
proposed to enhance the convergence and balance exploration
and exploitation.

A. BASIC IDEA

The main purpose of population is that maintains the diversity
of the population, enhances the convergence of the population
and provides good parents to generate excellent offspring.
A MaOEA should output a population with good convergence
and diversity. The convergence archive also needs to maintain
diversity to balance exploration and exploitation. However,
the convergence and diversity are very difficult to balance
for MaOPs. Some convergence solutions which can’t be kept
in the convergence archive or the diversity archive are used
to produce offspring. The main motivation of this paper is
that enhance the quality of offspring by using theconvergence
solutions.

B. CONVERGENCE ARCHIVE

In this subsection, the details of the updated strategy for
the CA are present. Solutions in CA are firstly classified to
maintain the diversity. The aggregation function value for
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updating the solutions in CA is used to improve the conver-
gence. For a given set of weight vectors (y!, y2,---,yM)
and the convergence archive CA (where N is the number of
the weight vectors), the solutions in CA are classified by the
following equations:

CAl = {x|x € CA, A (F(x), y")

= max {A(F(x), yH})
<N

1<j
- L« (Fx)—2)T
A(F@.y) = LEEWZD v
] * I1F o) = 2)li
where Z = (Zy,---Z,) is a reference point with Z; =

min{fi(x)lx € Q) A (F(x),y') is the cosine of the angle
between y' and F(x) — Z. After the solutions in CA are
classified, a modified version of the Tchebycheff function is
adopted to delete some solutions. Specifically, the function
for the weight vector ¥’ can be defined as follows:

C TE i _ AN
minimize g <x|y,Z>—ln<—1]_anm{[}§(X) Z]‘/)/j} 3

The optimal solution.xi* of (3) must be the Pareto optimal
solution of (1). If CA* is not empty, the solution in CA" with
the minimum value g’ (x|y’, Z) will be kept and other
solutions in CA? will be deleted. Each CA’ has more than one
solution.

C. DIVERSITY ARCHIVE

The diversity maintenance plays an important role in solving
the MaOPs. For MaOPs, to maintain the diversity, the dis-
tance and difference of any two solutions should be as big as
possible. Based on this idea, the distance value of any solution
x of the population POP is calculated as following equation:

d(x) = min {[|[F(x) = FO)lly * |F(x) = FO)lloo ly
€ POPNy#x} 4

In the diversity archive, some solutions with larger distance
values are selected as the next diversity archive. ||F(x) —
F(y)|2 and ||F(x) — F(y)| s indicate the distance and differ-
ence of two solutions, respectively. The relation of ||F(x) —

F)ll2 and [|F(x) = FO)lloo is I1F(x) = FW)lleo * /7ty <
IF@)—F®)l2 < |IF(x) —F)|loo * +/2. Thus, the two-norm

of two solutions is bigger, these two solutions are kept with
bigger probability.

D. MULTI-SEARCH STRATEGY

A good strategy should help algorithms to balance
exploration and exploitation. In this work, a multi-search
strategy is designed to achieve the goal. The multi-search
strategy contains two search strategies. The first search strat-
egy selects some good convergent solutions from offspring
and CA (or DA) as the parents. For convenience, O indicates
the set of offspring. To select good convergent solutions,
a threshold value 7 is determined by the following formula:

1
= A Y IFE) - 2| )

xeCA
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Then some solutions are selected by the following formula:
pp={xlIF(x) —Z|| <t,x € CAU O} (6)

We use the Eq. (4) to calculate the crowding degree of each
solution in pp. Then, we use the roulette wheel selection to
some better solutions from pp as the parents.

The first search strategy uses Eq. (6) to improve the conver-
gence. To reduce the probability of falling into local optimum
and enhance exploration, we select sparse solutions in pp to
produce offspring. The first search strategy emphasizes local
search and takes into account global search.

The second search strategy based on decomposition is
designed. The details are as follows. We find the T closet
weight vectors to each weight vector according to the
Euclidean distances of any two weight vectors. For each i =
1,---N, set BGQ) = {i1,---,ir} and BB(i) = {x%,.--x'T
where N is the number of weight vectors, A'1, - - - AT are the
T closet weight vectors to A’, x'! is a solution in CA™. If CA"!
is empty, we delete x'! from BB(i); if CA’ is empty, we make
BB(i) also empty. If CA’ is not empty, one or more solutions
are chosen randomly from BB(i) as parents. This search strat-
egy selects solutions which are neighbors from CA as parents,
which may enhance the local search. To enhance the global
search, this search strategy also chooses solutions from CA
at random to generate offspring.

In the paper [4], a multi-search strategy is proposed
improving the search efficiency. This multi-search strategy
contains three search strategies. One search strategy selects
sparse solutions from obtained non-dominated solutions as
parents; another search strategy selects some a dominated
solution and its adjacent non-dominated solution as parents
to help the dominated solution to become is a non-dominated
solution; the third search strategy selects non-dominated solu-
tions and their adjacent solutions as parents to enhance the
local search. The main difference of the multi-search strat-
egy [4] and this proposed multi-search strategy is that this
proposed multi-search strategy selects some good conver-
gent solutions from offspring and CA (or DA) according to
Egs. (5-6) as the parents, the multi-search strategy [4] selects
convergent solutions (the non-dominated solutions) only
from the population as the parent.

E. STEPS OF THE PROPOSED ALGORITHM
Based on all above, an improvement two-archive evolutionary
algorithm based on multi-search strategy (TwoArchM) is
devolved; the general framework of TwoArchM is as follows.
In TwoArchM, the polynomial mutation [40] operator and
the simulated binary crossover (SBX [40]) are used as the
genetic operations. TwoArchM uses two archives to balance
the diversity and convergence. And, TwoArchM adopts a
multi-search strategy to balance exploration and exploitation.
TwoArchM firstly calculate the threshold value t according
to the convergence archive and Eq. (5). This threshold value
is used to select convergent solutions as parents. For the
convergence archive (CA), convergent solutions are selected
from CA and its offspring according to the threshold value;
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The framework of the algorithm TwoArchM

Input :
MaOP (1)
A stopping criterion
N : the number of weight vectors
T : the number of weight vectors in the neighborhood of
each weight vector, 0 < T < N
A2 oo AN sasetof N uniformly distributed weight
vectors
Output: Diversity archive DA
Initialization: Generate an initial population {x', x2, ... x
randomly; determine Z = (zy, - - - , ) by a problem-specific
method; determine the convergence archive CA by Eqgs. (2-3);
determine B(i) = {i1, --- ,ir},(i=1,---,N)and BB(i); set
01 = {x',x%,---xN}, 01 = 0s.
While the stopping criterion is not met do
Calculate the threshold value 7 by Eq. (5).
Determine the sets pp; = {x| |F(x) — Z|| <t,
x € CAUO}and pp, = {x| |[F(x) — Z|| <1,
x € DAUOy};set O1 = ¥ and O, = .
Select N better solutions from pp; by Eq. (4) and the
roulette wheel selection to generate offspring which
are put into Oj.
Select N better solutions from pp, by Eq. (4) and the
roulette wheel selection to generate offspring which
are put into O;.
Set O = .
Fori=1,---,N,do
if CA’ # ¢ then
if rand < J then

N

E = BB(i)
else

E=CA
end if

Randomly select a solution x from E; use x and
x' € CA' to generate offspring X" by
genetic operations, and set O = O U x"".
end if
End for
Set 01 = OUOUCA, O, = OUOL,UDA, O = 0,U0;.
Use O to Update Z: For j = 1,---,m, if z;j <
min{f; (x"%) |x"*" € O}, then set z; = min{f; (x"") [x"" €
O}
Use the updated strategy of Section 2.2 to update CA
from O;.
Use the updated strategy of Section 2.3 to update DA
from O5.
End while

then, N better solutions are selected from these convergent
solutions as parents according to Eq. (4) which is used to
measure the crowding degree of each solution of these con-
vergent solutions; finally, these parents use the genetic oper-
ations to generate offspring. In the same way, the diversity
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archive (DA) produces offspring according to the threshold
value. This search strategy selects convergent solutions to
generate offspring, which can improve the convergence. This
search strategy also uses the crowding degree (Eq. (4)) to
maintain the diversity. Moreover, TwoArchM classifies CA
into some classes by weight vectors and Eq. (2), and for
each non-empty class, only one solution with the minimum
aggregate function value; then, for the solution of each non-
empty class, it and one of its neighbor solutions which is
chosen at random are as parents to generate offspring. These
offspring are also considered as the offspring of DA, which
is to improve the quality of DA’s offspring. The goal of this
strategy is to balance diversity and convergence globally.

TwoArchM uses two updated strategies to update CA
and DA. For CA, CA and its offspring are classified by
Eq. (2), each non-empty class only keep one solution with
the minimum aggregate function value, these kept solutions
make up the next CA. For DA, non-dominated solutions are
firstly found from DA and its offspring; then, some solu-
tions are selected as the next DA according to the crowding
degree (Eq. (4)).

In this algorithm TwoArchM, 5N solutions(O1, Oz, O and
two archives), B()i = 1,---,N), CAl(i = 1,---,N)
and N weight vectors need to be stored, thus the space
complexity of TwoArchM is O (SN xn) + ON *T) +
OWN=*N)+OWN=*m) = O (Nz) (in this paper, n, T,
m < N). So, the space complexity of TwoArchM is O (N?).
The major computation in this algorithm involved is in the
determine the sets (pp; and pp,) and the update step of
TwoArchM. To determine the sets (pp; and pp,), O (3N * n)
basic operations (i.e., +, —, X, +— and comparison) are
needed. To update CA, O (3N % N) basic operations are
needed to classify 3N solutions, and at most O (N * N)
basic operations to determine the best solution of each class.
To update DA, O (3N x 6 « N) basic operations are needed
to calcite the values d(x) of 3N solutions, and at most
O (3N *1g3 %« N) basic operations to choose N best solu-
tions with larger distance values. Totally, the computation
complexity of the algorithm is O (3N xn) + O 3N xN) +
O(N*N)+ OGN x6%xN)+ 03N *Ig3xN) =0 (N?).

lIl. COMPUTATIONAL STUDIES AND RESULTS

A. EXPERIMENTAL SETTINGS

This section presents our experimental study for the perfor-
mance of the TwoArchM by with five art-of-the-state algo-
rithms, i.e., NSGAIII [27], MOEA/DD [36], KnEA [37],
RVEA [38], TwoArch2 [32], on a set of the benchmark
suite from CEC2018 MaOP competition [35]. There are
fifteen many-objective benchmark functions (MaF) with
box constraints in the solution space in this benchmark
suite. For each test problem, the number of objectives can
be set to 5, 10 and 15. NSGAIII [27] employs a set of
preference directions to guide the evolution of population
towards different parts of the PF, promoting the diversity
of population. MOEA/DD [36] combines dominance and
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TABLE 1. The mean and standard deviation values of IGD obtained by TwoArchM, NSGAIIl, MOEA/DD, KnEA, RVEA and TwoArch2. “+” means that
TwoArchM outperforms its competitor algorithm, “—" means that TwoArchM is worse than its competitor algorithm, and “=" means that the competitor
algorithm has the same performance as TwoArchM.

Problems | TwoArchM | NSGAIII MOEA/DD KnEA RVEA TwoArch2
_ 1.1333e-1 2.0756e-1 2.9017e-1 1.2371e-1 4.0018e-1 1.2324e-1
(9.08e-4) (5.91e-3)(+) (2.80e-2)(+) (1.83e-3)(+) (1.75e-1)(+) (1.23e-3) (1)
. 9.2401e-2 1.2910e-1 1.3664e-1 1.2766e-1 1.2787e-1 9.9752¢-2
(1.35e-3) (4.25¢e-4)(+) (3.38e-3)(1) (3.92e-3)(+) (1.53e-3)(+) (1.52e-3) (+)
8.2392e-3 | 9.6731e-2 1.1809e-1 1.5308e-1 8.2950e-2 8.7646¢-2
£ (4.27e-3) (1.80e-3)(+) (1.43e-3)(+) (6.73e-2)(+) (7.68e-3)(+) (1.96e-2) (+)
4 1.8821e+0 | 3.0035¢+0 7.6920e+0 2.9191e+0 4.9814e+0 1.9017e+0
(5.60e-2) (2.56e-1)(+) (3.22e-1)(+) (3.14e-1)(+) (1.38e+0)(+) (1.18e-2) (+)
F5.5 1.7764e+0 | 2.2085¢+0 6.3810e+0 2.4229¢+0 2.3478e+0 1.9100e+0
(3.14e-2) (5.09¢-4)(+) (3.09e-1)(+) (4.43e-2)(+) (1.73e-1)(+) (1.95¢-2) (+)
6.5 3.3807e-3 | 9.1571e-2 7.9096e-2 6.9374e-3 9.3646e-2 6.8065¢-3
(1.63e-4) (2.57e-2)(+) (4.66e-4)(+) (1.65e-3)(+) (2.29¢-2)(+) (6.29¢-5) (+)
F7.5 2.8687e-1 3.2498e-1 3.0005e+0 2.9897e-1 4.4937e-1 2.8792e-1
(8.65e-3) (1.27e-2)(+) (1.37e-6)(+) (3.51e-3)(+) (3.54e-3)(+) (9.17e-3) (+)
8.5 1.1223e-1 2.1374e-1 3.0704e-1 2.6409e-1 4.4649¢-1 1.1291e-1
(2.05e-2) (4.99¢-3)(+) (1.95e-2)(+) (2.90e-2)(+) (7.36e-2)(+) (1.72e-3) (+)
Fo.5 1.0878e-1 2.6409e-1 2.4667e-1 7.8574e-1 3.8989¢-1 1.2218e-1
(9.41e-3) (5.47e-3)(+) (3.57e-3)(+) (1.29e-1)(+) (8.60e-2)(+) (1.48e-2) (+)
F1025 8.2108e-1 4.6073e-1 7.7469¢-1 5.2086e-1 4.4844e-1 4.3020e-1
(1.34e-1) (1.46e-2)(-) (1.54e-1)(-) (3.94e-2)(-) (1.51e-2)(-) (2.99¢-3) ()
F1l.5 6.5169¢-1 8.2588e-1 4.5150e+0 6.5471e-1 1.7788e+0 6.5373e-1
(6.34e-2) (3.81e-3)(-) (6.44¢-2)(+) (1.16e-1)(=) (5.67e-1)(+) (4.77e-2) (=)
Fl2.5 1.0486e+0 | 1.1169¢+0 1.2902e+0 1.1662e+0 1.1274e+0 1.0935¢+0
(1.78e-2) (5.17e-3)(+) (2.17e-2)(+) (9.79¢-3)(+) (1.00e-2)(+) (1.16e-2) (=)
1.1117e-1 2.3375e-1 2.6117e-1 2.2829e-1 6.6361e-1 1.5088e-1
Fi3- (1.83e-2) (7.27e-3)(+) (3.68e-2)(+) (7.28e-3)(+) (1.41e-1)(+) (3.23e-3) (1)
3.3928e-1 7.0040e-1 3.8364e-1 4.8626e-1 8.3614e-1 1.5913e+0
Fla-s (5.29¢-1) (2.44e-1)(+) (5.18e-2)(+) (5.30e-2)(+) (1.70e-1)(+) (1.61e-2) (+)
F15.5 9.8853e-1 1.1500e+0 5.7556e-1 3.7846e+0 6.0225e-1 1.1227e+0
(5.28e-2) (9.48e-3)(+) (2.44¢-2)(-) (2.20e+0)(+) (4.49¢-2)(-) (8.99¢-3) (+)
FL.10 2.2223e-1 2.7014e-1 3.9192e-1 2.3097e-1 6.5904e-1 2.3648e-1
(2.89¢-3) (5.94e-3)(=) (2.21e-2)(+) (5.20e-3)(=) (7.38e-2)(+) (1.07e-3) (=)
210 1.6360e-1 2.0240e-1 2.2270e-1 1.6817e-1 2.6052e-1 1.6567e-1
(3.62¢-3) (1.56e-2)(+) (4.80e-3)(+) (1.37e-2)(+) (7.97e-2)(+) (6.03¢-4) (=)
F3.10 1.1391e-1 2.7372e+2 1.1529e-1 2.3297e+6 1.9320e-1 2.3023e-1
(5.16e-3) (1.68e+2)(+) (2.30e-3)(=) (1.86e+6)(+) (2.20e-1)(+) (2.25e-2) (1)
410 6.0732¢+1 | 8.8824e+1 4.0451e+2 8.0210e+1 2.0455e+2 5.1828e+1
(3.56e+0) (2.60e+0)(+) (7.49¢+0)(+) (8.89e+0)(+) (4.12e+1)(+) (3.60e+0) (-)
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TABLE 1. (Continued.) The mean and standard deviation values of IGD obtained by TwoArchM, NSGAIIl, MOEA/DD, KnEA, RVEA and TwoArch2.
“+" means that TwoArchM outperforms its competitor algorithm, “—" means that TwoArchM is worse than its competitor algorithm, and “=" means that
the competitor algorithm has the same performance as TwoArchM.

4.8290e+1 8.9061e+1 2.9689¢+2 7.3017e+1 9.9679¢+1 4.8217e+1
F3-10 (1.22¢+0) | (2.65e-1)(+) (1.23e+0)(+) (5.21e-1)(+) (6.17e+0)(+) (7.40e-1) (=)
F6.10 3.0904e-3 2.9435e-1 1.1321e-1 1.3068e+1 1.2161e-1 3.7318e-1
(2.32e-4) (7.45¢-2)(+) (3.54e-3)(+) (4.24e+0)(+) (1.75e-2)(+) (5.22e-1) (4)
F7-10 9.5205¢-1 1.0316e+0 2.9641e+0 8.6974e-1 2.9783e+0 9.4187e-1
(1.93e-2) | (9.09¢-2)(=) (6.69¢-2)(+) (9.59¢-3)(-) (3.07e-1)(+) (2.13e-1) (=)
1.4154e-1 3.3710e-1 9.0462¢-1 1.6873¢-1 7.7009¢-1 1.1729e-1
Fe-10 (7.03¢-3) (1.24e-2)(+) (7.04e-3)(+) (3.32e-2)(+) (1.13e-1)(+) (5.18e-4) ()
910 1.8987e-1 6.2161e-1 4.4369¢-1 4.7242e+1 7.8129e-1 1.0350e+0
(7.44e-2) (1.18e-1)(+) (4.18e-3)(+) (4.44e+1)(+) (2.29e-1)(+) (6.52¢-2) (+)
F10-10 1.4618¢+0 | 1.0680e+0 1.9032e+0 1.1648e+0 1.2659¢+0 9.5737e-1
(1.50e-1) (2.53e-2)(-) (1.25e-1)(+) (7.41e-2)(-) (6.46e-2)(+) (9.05e-3) (-)
F11-10 1.4304e+0 | 4.3444e+0 1.5214e+0 2.7405e+0 8.8117e+0 2.7661e+0
(7.68e-1) (9.03e-2)(+) (2.89e-2)(+) (5.88e-1)(+) (1.82e+0)(+) (6.91e-1) (+)
F12-10 4.1411e+0 | 4.5939¢+0 6.6451e+0 4.5421e+0 4.5082e+0 4.2537e+0
(3.27e-2) (8.38¢-3)(+) (1.17e-1)(+) (1.12e-2)(+) (6.74e-2)(+) (7.27e-2) (+)
F13.10 1.4190e-1 2.1097e-1 3.0229e-1 1.5108e-1 9.5107e-1 1.5807e-1
(2.14e-2) (1.32e-2)(+) (1.74e-2)(+) (1.41e-2)(+) (2.16e-1)(+) (8.16e-3) (+)
F14.10 9.2641e-1 1.6855e+0 5.2303e-1 4.5108e+1 6.0231e-1 1.1874e+0
(3.40e+0) | (3.1le-1)(+) (2.26e-2)(-) (2.78e+1)(+) | (2.88e-2)(-) (1.61e-1)
F15.10 2.4387e+0 | 1.6332¢+0 9.8570e-1 6.6282e+0 9.5090e-1 2.5201e+0
(1.18¢+0) | (2.60e-1)(-) (8.70e-3)(-) (3.63e+0)(+) | (6.06e-2)(-) (6.47¢-1) (=)
2.6678e-1 3.1410e-1 5.2549e¢-1 2.7435¢e-1 7.0604e-1 2.8129¢-1
Fi-s (3.12¢-3) (1.20e-4)(+) (5.74e-3)(+) (1.72e-3)(=) (7.76e-2)(+) (2.14e-3) (+)
Fr15 1.4515e-1 2.0260e-1 3.9623e-1 1.8233e-1 5.3873e-1 1.6394e-1
(8.32¢-3) (4.33e-4)(+) (1.46e-3)(+) (1.41e-3)(+) (2.32e-1)(+) (1.01e-3) (+)
F3.15 1.2521e-1 1.8318e-1 1.1059¢-1 4.9121e+9 9.5038e-2 3.4021e-1
(1.28¢-3) | (4.09e-2)(+) (1.87e-3)(-) (5.03e+9)(+) | (5.67e-3)(-) (4.90e-2) (+)
415 1.9040e+3 | 4.1050e+3 1.5425e+4 1.4869¢+4 8.4500e+3 1.4787e+03
(8.40e+1) (1.99¢+2)(+) (1.10e+3)(+) (2.14e+4)(+) (1.96e+3)(+) (8.8%¢+1) (-)
515 1.3936e+3 | 2.6072e+3 7.3113e+3 1.5267e+3 3.3958e+3 1.0695e+3
(8.84e+1) | (1.33e+1)(+) | (8.35e+0)(+) | (6.25e+1)(+) | (7.04e+2)(+) | (1.28e+2) ()
F6.15 3.5905e-3 3.2105e-1 1.3327e-1 2.0123e+1 2.4134e-1 7.4209¢-1
(9.36e-4) (3.01e-2)(+) (1.88e-3)(+) (3.29e+0)(+) (1.81e-1)(+) (1.18e-6) (+)
F715 1.5777e+0 | 4.3214e+0 3.4471e+0 2.4327e+0 4.1309¢+0 1.5094e+0
(5.36¢-2) (4.75¢-1)(+) (2.51e-2)(+) (1.54e-1)(+) (6.74e-1)(+) (8.22e-2) (=)
215 1.9105e-1 4.1812e-1 1.3421e+0 1.3876¢-1 1.2975e+0 1.1051e-1
(1.90e-2) | (4.99¢-3)(+) (3.91e-3)(+) (1.13e-3)(-) (3.08e-1)(+) (1.56€-3) (-)
915 1.5590e-1 1.4357e+0 9.6572e-1 9.5128e-1 1.2312e+0 1.0715e-1
(8.87¢-4) (1.51e+0)(+) (2.15e-3)(+) (6.43e-1)(+) (2.31e-1)(+) (2.40e-3) (-)
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TABLE 1. (Continued.) The mean and standard deviation values of IGD obtained by TwoArchM, NSGAIIl, MOEA/DD, KnEA, RVEA and TwoArch2.
“+" means that TwoArchM outperforms its competitor algorithm, “—" means that TwoArchM is worse than its competitor algorithm, and “=" means that

the competitor algorithm has the same performance as TwoArchM.

Flogs | 20834610 | 15352640 2.3803¢+0 1.7252¢+0 1.7982¢+0 1.4136e+0
(1.43e-1) | (6.98e-3)(-) (2.88¢-2)(-) (5.88¢-2)(-) (7.57e-2)(-) (2.23e-2) (-)
1.2023¢+0 | 6.8030e+0 2.5675¢+1 4.6837¢+0 1.9912¢+1 3.5574e-1

Fi-1s (1.18e+0) | (4.07e+0)+) | @.77e-1)#) | 42le-1)#) | 2.71e+0)+) | (3.31e-1) (-)
7.3710e+0 | 8.0325¢+0 8.5474¢+0 6.5516e+0 7.0894¢+0 7.7344¢+0

Fla-1s (3.54e2) | (5.71e2)#) | 2.94e-1)#) | (1.13e-1)(-) (2.10e-1)(-) (5.81e-2) (+)

Piags | 17086l | 289861 2.8823¢-1 1.1691e-1 1.0959¢+0 1.4698¢-1
(9.96e-3) | (4.22e2)(+) | (3.23e2)(+) | (1.15e-2)(-) (3.59-1)#) | (6.84e-3) ()

Plags | 12505650 | 11236e+0 5.1146e-1 1.4711e+1 8.1407¢-1 1.1334e+0
(4.37e-1) | (1.29e-1)(+) | (5.54e-3)(-) (6.85¢+0)(+) | (1.53e-1)(-) (4.47¢-2) (+)

isqs | 27527610 | 37230610 1.1226e+0 1.1760e+2 1.1599¢+0 1.2555¢+0
(2.14e-1) | (0.00e+0)(+) | (1.92e-2)(-) (7.36e+0)(-) | (2.94e-2)(-) (1.82¢-1) (-)

+=/- 38/2/5 37/1/7 34/3/8 35/0/9 26/8/11

decomposition-based approaches, which exploits the merits
of both dominance-and decomposition-based approaches to
balance the convergence and diversity of the evolutionary
process. KnEA [37] is a knee point-driven EA to enhance
the convergence performance in many-objective optimiza-
tion. RVEA [38] uses the reference vectors to decom-
pose the original multiobjective optimization problem into
a number of single-objective subproblems and elucidate
user preferences to target a preferred subset of the whole
Pareto front. These algorithms can be grouped into three
classes: 1) the reference points/weight vectors based algo-
rithms (MOEAD/DD, NSGAIII and RVEA); 2) knee points
based algorithm (KnEA); 3) Two-archive based algorithm
(TwoArch2).

For these five compared algorithms, all data of each algo-
rithm given in this section are averaged over 20 independent
runs for each test case on PlatEMO [39]. In TwoArchM, Poly-
nomial mutation [40] operator and simulated binary crossover
(SBX [40]) are used; distribution index is 20 and crossover
probability is 1 in the SBX operator; distribution index is
20 and mutation probability is 0.1 in mutation operator; the
size of neighborhood list T is set to 0.IN; J is set to 0.9.
The settings of the experimental studies in this paper are
identical to the standard for CEC2018 MaOP competition,
which can be found in [35], together with the details of
the benchmark functions. The algorithms are implemented
by using the MATLAB language on a PC with Intel Xeon
CPU E3-1226 (3.30 GHz for a single core and the Windows
10 operating system).

B. PERFORMANCE METRICS
In this paper, the inverted generational distance (IGD) [41]
is used to quantitative measurement the performances of

VOLUME 7, 2019

algorithms. For an algorithm, a smaller IGD value means the
better quality of the objective vectors of obtained solutions
for approximating the PF. The benefits of IGD lie in its
computational efficiency and generality for measuring both
convergence and diversity of solutions. IGD requires a set
of reference Pareto optimal solutions. Roughly 10000 points
uniformly sampled on the Pareto fronts are used in the calcu-
lation of IGD for each test problems. Wilcoxon Rank-Sum
test [42] is used in the sense of statistics to compare the
mean IGD of the compared algorithms. It tests whether the
performance of TwoArchM on each test problem is better
(“+”), same (“=""), or worse (‘“—"") than/as that of the
compared algorithms at a significance level of 0.05 by a two-
tailed test.

C. COMPARATIVE STUDIES

The computational results of involved algorithms over 5-, 10,
15-objective test benchmarks are reported in Table I. In the
table, the mean and standard deviation values in term of IGD
obtained by the six MaOEAs over 20 independent runs are
reported. The difference significance between TwoArchM
and compared algorithms is evaluated by Wilcoxons rank sum
test. For each test problem, the result of with the best perfor-
mance is marked in bold. F1-k represents that the number of
objectives adopted in F1 is k.

As shown in Table I, on all forty-five test problems
under consideration, TwoArchM performs statistically bet-
ter than the other compared algorithms on twenty-eight
test problems; TwoArchM obtains the best performance on
all the instances of F1, F2 and F6; NSGAIIl, MOEA/DD,
KnEA, RVEA and TwoArch2 perform statistically better
than TwoArchM on five, seven, eight, nine and eleven
problems, respectively; TwoArchM outperforms NSGAIII,
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TABLE 2. The mean and standard deviation values of IGD obtained by TwoArchM, TwoArchM1, and TwoArchM2. “+” means that TwoArchM outperforms
means that TwoArchM is worse than its competitor algorithm, and “=" means that the competitor algorithm has the same

its competitor algorithm,

“ o

performance as TwoArchM.
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Problems | TwoArchM TwoArchM1 TwoArchM2

F1-5 1.1333e-1(9.08e-4) | 1.1662e-1(5.495-3)(+) 1.1440e-1(1.41e-4) (+)
F2-5 9.2401e-2(1.35e-3) | 9.8105e-2(7.10e-3) (+) | 9.4445e-2(4.21e-3) (+)
F3-5 8.2392e-3(4.27e-3) | 7.0058e-2(2.51e-2) (+) | 6.0627e+1(9.15¢+0) (+)
F4-5 1.8821e+0(5.60e-2) | 2.1928e+0(5.77¢-2) (+) | 9.0245e+0(7.91e-2) (+)
Fs5-5 1.7764e+0(3.14e-2) | 1.7902e+0(3.71e-2) (=) | 1.8042e+0(9.59¢-2) (=)
F6-5 3.3807e-3(1.63e-4) | 3.3560e-3(7.78e-4) (=) | 8.8425e-3(6.55¢-4) (+)
F7-5 2.8687e-1(8.65¢-3) | 3.0118e-1(5.49¢-2) (=) | 3.5229e-1(3.57¢-3) (+)
F8-5 1.1223e-1(2.05e-2) | 9.9672e-2(7.11e-2) (=) | 2.8944e-1(8.49¢-2) (+)
F9-5 1.0878e-1(9.41e-3) | 1.1491e-1(6.89¢-2) (=) | 2.4121e-1(9.33¢-2) (+)
F10-5 8.2108e-1(1.34e-1) | 1.0629e+0(7.24e-1) (+) | 1.4593e+0(6.78e-1) (+)
F11-5 6.5169¢-1(6.34e-2) | 7.3796e-1(5.57¢-2) (+) | 1.2512e+0(7.57e-1) (+)
F12-5 1.0486e+0(1.78e-2) | 1.0437e+0(9.74e-1) (=) | 1.0460e+0(7.43e-1) (=)
F13-5 1.1117e-1(1.83e-2) | 2.0399e-1(3.91e-2) (+) | 2.0285e-1(3.92¢-2) (+)
F14-5 3.3928e-1(5.29e-1) | 8.8471e-1(5.91e-1) (+) | 9.1865e-1(6.55¢-1) (+)
F15-5 9.8853e-1(5.28e-2) | 1.0192e+0(7.28e-2) (+) | 9.9046e-1(1.71e-2) (=)
F1-10 2.2223e-1(2.89¢-3) | 2.5462e-1(5.52¢-2) (+) | 2.4112e-1(7.06e-3) (+)
F2-10 1.6360e-1(3.62¢-3) | 1.8149¢-1(7.00e-3) (+) | 2.9871e-1(3.18e-3) (+)
F3-10 1.1391e-1(5.16e-3) | 4.8890e-1(5.88¢-2) (+) | 1.0057e+0(2.76¢-2) (+)
F4-10 6.0732e+1(3.56e+0) | 6.4629e+1(9.77e-1) (+) | 7.2830e+1(4.61e-1) (+)
F5-10 4.8290e+1(1.22e+0) | 5.5235e+1(6.80e+0) (+) | 4.9092e+1(9.71e+0) (=)
F6-10 3.0904e-3(2.32¢-4) | 2.9510e-3(5.73e-4) (=) | 5.4808e-3(8.23e-4) (+)
F7-10 9.5205e-1(1.93e-2) | 1.0251e+0(8.42e-1) (+) | 1.0535e+0(6.94e-1) (+)
F8-10 1.4154e-1(7.03e-3) | 1.3691e-1(3.26e-2) (=) | 5.9655e-1(3.17¢-2) (+)
F9-10 1.8987e-1(7.44e-2) | 4.5590e+0(1.05¢-1) (+) | 2.0744e+1(9.50e-2) (+)
F10-10 1.4618e+0(1.50e-1) | 1.7662e+0(8.8%¢-1) (+) | 2.9023e+0(3.44e-1) (+)
F11-10 1.4304e+0(7.68e-1) | 3.1610e+0(5.92e-1) (+) | 1.1167e+1(4.38e-1) (+)
F12-10 4.1411e+0(3.27¢-2) | 4.3092e+0(8.68e-2) (+) | 5.0180e+0(3.81e-2) (+)
F13-10 1.4190e-1(2.14e-2) | 1.4970e-1(3.73e-2) (+) | 1.8457e-1(7.65¢e-2) (+)
F14-10 9.2641e-1(3.40e+0) | 3.3266e+0(6.64e-2) (+) | 9.7009¢-1(7.95¢-2) (+)
F15-10 2.4387e+0(1.18e+0) | 3.2861e+0(5.52e-1) (+) | 1.9591e+0(1.86e-1) (+)
Fl1-15 2.6678e-1(3.12¢-3) | 4.2043¢-1(3.56e-2) (+) | 2.6866e-1(4.89¢-2) (=)
F2-15 1.4515e-1(8.32¢-3) | 1.8729¢-1(3.85¢-2) (+) | 3.8999e-1(4.45¢-2) (+)
F3-15 1.2521e-1(1.28¢-3) | 1.3749¢-1(1.74e-2) (+) | 1.5829¢-1(6.46e-2) (+)
F4-15 1.9040e+3(8.40e+1) | 2.1537e+3(4.96e+1) (+) | 2.6416e+3(7.09¢e+1) (+)
F5-15 1.3936e+3(8.84e+1) | 1.5843e+3(6.64e+1) (+) | 2.3004e+3(7.54e+1) (+)
Fo6-15 3.5905e-3(9.36e-4) | 3.7705e-3(1.32¢-2) (+) | 1.0566e-2(2.76e-2) (+)
F7-15 1.5777e+0(5.36e-2) | 2.1283e+0(8.79¢-2) (+) | 2.8911e+0(6.79¢-2) (+)
F8-15 1.9105e-1(1.90e-2) | 1.9778e-1(1.01e-2) (=) | 6.0880e-1(6.55¢-2) (+)
F9-15 1.5590e-1(8.87e-4) | 1.5588e-1(1.86e-1) (=) | 1.168%e+1(1.62e-1) (+)
F10-15 2.0834e+0(1.43e-1) | 2.0434e+0(4.23e-1) (=) | 3.2684e+0(1.19e-1) (+)
F11-15 1.2023e+0(1.18e+0) | 4.0369e+0(1.14e+0) (+) | 9.4041e+0(4.98e+0) (+)
F12-15 7.3710e+0(3.54e-2) | 7.4099e+0(4.57e-2) (=) | 8.4083e+0(9.59¢-2) (+)
F13-15 1.7086e-1(9.96e-3) | 2.3458e-1(2.26e-2) (+) | 1.6233e-1(3.40e-2) (+)
F14-15 1.2505e+0(4.37e-1) | 2.5540e+0(8.33e-2) (+) | 1.6304e+0(5.14e-1) (+)
F15-15 2.7527e+0(2.14e-1) | 2.9245e+0(6.14e-1) (+) | 3.1465e+0(3.27e-1) (+)
+/=/- 33/12/0 40/5/0
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MOEA/DD, KnEA, RVEA and TwoArch2 on thirty-eight,
thirty-seven, thirty-four, thirty-five and twenty-six problems,
respectively. These indicate that the quality of solutions
obtained by TwoArchM is better than those obtained by
NSGAIII, MOEA/DD, KnEA, RVEA and TwoArch2 on most
problems.

For the 8 problems (F1, F2, F4, F5, F7, F8, F9 and F15)
with partial PFs whose projections do not fully cover the unit
hyperplane, the mean values of IGD obtained by TwoArchM
are smaller than those obtained by NSGAIIl, MOEA/DD,
KnEA, RVEA and TwoArch2 on twenty-three, twenty-one,
twenty-one, twenty-one and fifteen problems, which indicate
that the proposed algorithm obtains the best overall perfor-
mance in the form of IGD on most problems. For the prob-
lem F6 with degraded PF, the performances of TwoArchM
outperform than NSGAIII, MOEA/DD, KnEA, RVEA and
TwoArch2 on three problems. These comparison results
demonstrating that the updated strategy of DA has brought
versatility for the diverse PFs.

When dealing with problems with PF projection fully cover
the unit hyperplane (F3, F10, F11, F12, F13 and F14), the
mean values of IGD obtained by TwoArchM are smaller than
those obtained by NSGAIIl, MOEA/DD, KnEA, RVEA and
TwoArch2 on fourteen, eleven, twelve, fourteen and fourteen
problems, these imply that TwoArchM obtains the best over-
all performance in the form IGD on most problems and the
multi-search strategy has good search performance.

D. ROLES OF MULTI-SEARCH STRATEGY

The roles of multi-search strategy are to improve the con-
vergence and balance to exploration and exploitation. The
first search strategy selects convergent solutions as parents
to enhance the local search. The second search strategy is
to balance the global search and local search. To identify
this, TwoArchM compares with TwoArchM seriatim without
the first search strategy or the second search strategy which
denoted as TwoArchM1, or TwoArchM?2 on forty-five prob-
lems. The parameters are the same as in Section 3.1.

Table II shows the mean and standard deviation values
of IGD metric obtained by TwoArchM, TwoArchM1 and
TwoArchM2 on these forty-five problems. It can be seen from
Table II that, TwoArchM outperforms TwoArchM1 on thirty-
three problems and TwoArchM is worse than TwoArchM1 on
no problem, which hint that the first search strategy can help
this algorithm to improve convergence on these problems;
TwoArchM outperforms TwoArchM2 on forty problems and
TwoArchM is worse than TwoArchM2 on no problem, which
indicates that the second search strategy can help TwoArchM
to improve the search efficiency. Moreover, for three MaOPs
with many local PFs (F3, F4, F7), the values of IGD obtained
by both of TwoArchM and TwoArchM1 are smaller than
those obtained by TwoArchM?2, which suggests that the sec-
ond search strategy can help TwoArchM to avoid the remain-
ing local optima. Comparison results illustrate that these
two search strategies can help the algorithm to improve the
performance.
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IV. CONCLUSIONS

To address the problems in the existing MOEAs for MaOPs,
an improvement two-archive evolutionary algorithm based on
multi-search strategy (TwoArchM) is designed to obtain a
set of solutions with good diversity and convergence. In this
algorithm, a multi-search strategy is used to improve the
convergence and balance the exploration and exploitation;
two archives respectively to save convergent solutions and
diversity solutions; two updated strategies are respectively
proposed to update the diversity archive and convergence
archive. Compare experimental results with the state-of-
the-art algorithms also indicate that the proposed algorithm
obtains competitive results on the CEC2018 many-objective
benchmark functions.

COMPETING INTERESTS
The authors declare that they have no competing interests.

ACKNOWLEDGMENT
In this work, Ren Aihong provided professional writing
services. Thanks for her help.

DATA AVAILABILITY

The [DATA TYPE] data used to support the findings of
this study are available from the corresponding author upon
request.

ETHICAL APPROVAL
This article does not contain any studies with human
participants performed by any of the authors.

REFERENCES

[1] D. A. Van Veldhuizen, “Multiobjective evolutionary algorithms: Clas-
sifications, analyses, and new innovations,” Air Force Inst. Technol.,
Wright-Patterson AFB, OH, USA, 1999.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182-197, Apr. 2002.

[3] B. Tang, Z. Zhu, H.-S. Shin, A. Tsourdos, and J. Luo, “A framework for
multi-objective optimisation based on a new self-adaptive particle swarm
optimisation algorithm,” Inf. Sci., vol. 420, pp. 364385, Dec. 2017.

[4] N. Dong and C. Dai, “An improvement decomposition-based multi-
objective evolutionary algorithm using multi-search strategy,” Knowl.-
Based Syst., vol. 163, pp. 572-580, Jan. 2019.

[5] R. Shang, L. Jiao, F. Liu, and W. Ma, ““A novel immune clonal algorithm
for MO problems,” IEEE Trans. Evol. Comput., vol. 16, no. 1, pp. 35-50,
Feb. 2012.

[6] Z.-H. Zhan, J. Li, J. Cao, J. Zhang, H. S.-H. Chung, and Y.-H. Shi,
“Multiple populations for multiple objectives: A coevolutionary technique
for solving multiobjective optimization problems,” IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 445-463, Apr. 2013.

[7]1 Q.Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712-731, Dec. 2007.

[8] R.J. Lygoe, M. Cary, and P. J. Fleming, “A real-world application of a
many-objective optimisation complexity reduction process,” in Proc. 7th
Int. Conf. Evol. MultiCriterion Optim., Sheffield, U.K., 2013, pp. 641-655.

[9] R.Cheng, T. Rodemann, M. Fischer, M. Olhofer, and Y. Jin, “Evolutionary
many-objective optimization of hybrid electric vehicle control: From gen-
eral optimization to preference articulation,” IEEE Trans. Emerg. Topics
Comput. Intell., vol. 1, no. 2, pp. 97-111, Apr. 2017.

[10] E. J. Hughes, “Evolutionary many-objective optimisation: Many once
or one many?” in Proc. IEEE Congr. Evol. Comput., Edinburgh, U.K.,
Sep. 2005, pp. 222-227.

79285



IEEE Access

C. Dai: TwoArchM for Many-Objective Optimization

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Z. He and G. G. Yen, “Many-objective evolutionary algorithm: Objective
space reduction and diversity improvement,” IEEE Trans. Evol. Comput.,
vol. 20, no. 1, pp. 145-160, Feb. 2016.

K. Ikeda, H. Kita, and S. Kobayashi, “Failure of Pareto-based MOEAs:
Does non-dominated really mean near to optimal?” in Proc. Congr. Evol.
Comput., vol. 2, 2001, pp. 957-962.

C. Dai, Y. Wang, and M. Ye, “A new evolutionary algorithm based on con-
traction method for many-objective optimization problems,” Appl. Math.
Comput., vol. 245, pp. 191-205, Oct. 2014.

H. Sato, H. E. Aguirre, and K. Tanaka, “Controlling dominance area of
solutions and its impact on the performance of mOEAs,” in Evolution-
ary Multi-Criterion Optimization (Lecture Notes in Computer Science),
vol. 4403, S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata,
Eds. Berlin, Germany: Springer, 2007, pp. 5-20.

A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, “Theory of the hyper-
volume indicator: Optimal p-distributions and the choice of the reference
point,” in Proc. Found. Genetic Algorithm, 2009, pp. 87-102.

T. Wagner, N. Beume, and B. Naujoks, “Pareto-, aggregation-, and
indicator-based methods in many-objective optimization,” in Evolution-
ary Multi-Criterion Optimization (Lecture Notes in Computer Science)
vol. 4403. Berlin, Germany: Springer, 2007, pp. 742-756.

J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-based
many-objective optimization,” Evol. Comput., vol. 19, no. 1, pp. 45-76,
Mar. 2011.

E. Zitzler and S. Kiinzli, “Indicator-based selection in multiobjective
search,” in Parallel Problem Solving From Nature—PPSN VIII (Lec-
ture Notes in Computer Science). Berlin, Germany: Springer, 2004,
pp. 832-842.

B. Li, K. Tang, J. Li, and X. Yao, “Stochastic ranking algorithm for many-
objective optimization based on multiple indicators,” IEEE Trans. Evol.
Comput., vol. 20, no. 6, pp. 924-938, Dec. 2016.

M. Elarbi, S. Bechikh, A. Gupta, L. Ben Said, and Y.-S. Ong, “A new
decomposition-based NSGA-II for many-objective optimization,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 48, no. 7, pp. 1191-1210, Jul. 2018.
L. Wang, Q. Zhang, M. Gong, L. Jiao, and A. Zhou, ‘““Constrained subprob-
lems in a decomposition-based multiobjective evolutionary algorithm,”
IEEE Trans. Evol. Comput., vol. 20, no. 3, pp. 475-480, Jun. 2016.

H. Zhu, Z. He, and Y. Jia, “A novel approach to multiple sequence
alignment using multiobjective evolutionary algorithm based on decom-
position,” [EEE J. Biomed. Health Inform., vol. 20, no. 2, pp. 717-727,
Mar. 2016.

S.Jiang and S. Yang, ““An improved multiobjective optimization evolution-
ary algorithm based on decomposition for complex Pareto fronts,” IEEE
Trans. Cybern., vol. 46, no. 2, pp. 421-437, Mar. 2016.

A. Zhou and Q. Zhang, “Are all the subproblems equally important?
Resource allocation in decomposition-based multiobjective evolutionary
algorithms,” IEEE Trans. Evol. Comput., vol. 20, no. 1, pp. 52-64,
Feb. 2016.

H.Zhang, X. Zhang, S. Song, and X.-Z. Gao, ““Self-organizing multiobjec-
tive optimization based on decomposition with neighborhood ensemble,”
Neurocomputing, vol. 173, pp. 1868—1884, Jan. 2016.

N. Al Mpubayed, A. Petrovski, and J. McCall, “DXMOPSO: MOPSO
based on decomposition and dominance with archiving using crowding
distance in objective and solution spaces,” Evol. Comput., vol. 22, no. 1,
pp. 47-78, 2014.

K. Deb and H. Jain, “An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part
I: Solving problems with box constraints,” IEEE Trans. Evol. Comput.,
vol. 18, no. 4, pp. 577-601, Apr. 2013.

Y. Zhou, Y. Xiang, Z. Chen, J. He, and J. Wang, “A scalar projection
and angle-based evolutionary algorithm for many-objective optimization
problems,” IEEE Trans. Cybern., vol. 49, no. 6, pp. 2073-2084, Jun. 2019.
M. Asafuddoula, H. K. Singh, and T. Ray, ““An enhanced decomposition-
based evolutionary algorithm with adaptive reference vectors,” IEEE
Trans. Cybern., vol. 48, no. 8, pp. 2321-2334, Aug. 2017.

79286

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

(46]

[47]

(48]

[49]

K. Praditwong and X. Yao, “‘A new multi-objective evolutionary optimi-
sation algorithm: The two-archive algorithm,” in Proc. Int. Conf. Comput.
Intell. Secur., 20006, pp. 286-291.

B.Li,J. Li, K. Tang, and X. Yao, “An improved two archive algorithm for
many-objective optimization,” in Proc. IEEE Congr. Evol. Comput. (CEC),
Jul. 2014, pp. 2869-2876.

H. Wang, L. Jiao, and X. Yao, ‘“Two_Arch2: An improved two-archive
algorithm for many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 19, no. 4, pp. 524-541, Aug. 2014.

L. Cai, S. Qu, and G. Cheng, ‘“Two-archive method for aggregation-
based many-objective optimization,” Inf. Sci., vol. 422, pp. 305-317,
Jan. 2018.

J. G. Falcén-Cardona and C. A. C. Coello, “A new indicator-based many-
objective ant colony optimizer for continuous search spaces,” Swarm
Intell., vol. 11, no. 1, pp. 71-100, 2017.

R. Cheng, M. Li, Y. Tian, X. Xiang, X. Zhang, S. Yang, Y. Jin, and X. Yao,
“Benchmark functions for the CEC’2018 competition on many-objective
optimization,” CERCIA, School Comput. Sci., Univ. Birmingham
Edgbaston, Birmingham, U.K., Tech. Rep. CSR-17-01, 2017.

K. Li, K. Deb, Q. Zhang, and S. Kwong, ““An evolutionary many-objective
optimization algorithm based on dominance and decomposition,” IEEE
Trans. Evol. Comput., vol. 19, no. 5, pp. 694-716, Oct. 2015.

X.Zhang, Y. Tian, and Y. Jin, “‘A knee point-driven evolutionary algorithm
for many-objective optimization,” IEEE Trans. Evol. Comput., vol. 19,
no. 6, pp. 761-776, Dec. 2015.

R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector guided
evolutionary algorithm for many-objective optimization,” [EEE Trans.
Evol. Comput., vol. 20, no. 5, pp. 773-791, Oct. 2016.

Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “‘PlatEMO: A MATLAB platform
for evolutionary multi-objective optimization [educational forum],” IEEE
Comput. Intell. Mag., vol. 12, no. 4, pp. 73-87, Nov. 2017.

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
New York, NY, USA: Wiley, 2001.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca,
“Performance assessment of multiobjective optimizers: An analysis
and review,” IEEE Trans. Evol. Comput., vol. 7, no. 2, pp. 117-132,
Apr. 2003.

R.D. G. Steel, J. H. Torrie, and D. A. Dickey, Principles and Procedures of
Statistics: A Biometrical Approach. New York, NY, USA: McGraw-Hill,
1997.

K. Li, R. Wang, T. Zhang, and H. Ishibuchi, “Evolutionary many-objective
optimization: A comparative study of the state-of-the-art,” IEEE Access,
vol. 6, pp. 26194-26214, 2018.

H.-L. Lin, L. Chen, Q. Zhang, and K. Deb, “Adaptively allocating search
effort in challenging many-objective optimization problems,” IEEE Trans.
Evol. Comput., vol. 22, no. 3, pp. 433—448, Jun. 2018.

B. Khan, S. Hanoun, M. Johnstone, C. P. Lim, D. Creighton, and
S. Nahavandi, “A scalarization-based dominance evolutionary algorithm
for many-objective optimization,” Inf. Sci., vol. 474, pp. 236-252,
Feb. 2019.

M. Asafuddoula, B. Verma, and M. Zhang, “A divide-and-conquer-
based ensemble classifier learning by means of many-objective opti-
mization,” IEEE Trans. Evol. Comput., vol. 22, no. 5, pp. 762-777,
Oct. 2018.

M. Zhang and H. Li, “A reference direction and entropy based evolutionary
algorithm for many-objective optimization,” Appl. Soft Comput., vol. 70,
pp. 108-130, Sep. 2018.

F. Li, R. Cheng, J. Liu, and Y. Jin, “A two-stage R2 indicator based evo-
lutionary algorithm for many-objective optimization,” Appl. Soft Comput.,
vol. 67, pp. 245-260, Jun. 2018.

J. Liu, F. Li, X. Kong, and P. Huang, “Handling many-objective opti-
misation problems with R2 indicator and decomposition-based particle
swarm optimiser,” Int. J. Syst. Sci., vol. 50, no. 2, pp. 320-336, 2019.
doi: 10.1080/00207721.2018.1552765.

VOLUME 7, 2019


http://dx.doi.org/10.1080/00207721.2018.1552765

	INTRODUCTION
	THE PROPOSED ALGORITHM
	BASIC IDEA
	CONVERGENCE ARCHIVE
	DIVERSITY ARCHIVE
	MULTI-SEARCH STRATEGY
	STEPS OF THE PROPOSED ALGORITHM

	COMPUTATIONAL STUDIES AND RESULTS
	EXPERIMENTAL SETTINGS
	PERFORMANCE METRICS
	COMPARATIVE STUDIES
	ROLES OF MULTI-SEARCH STRATEGY

	CONCLUSIONS
	REFERENCES

